USPEX 10.5 manual

1

J. Maddox. Crystals from first principles. Nature, 335:201, 1988.

2

A.R. Oganov and C.W. Glass. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. The Journal of Chemical Physics, 124:244704, 2006.

3

C.W. Glass, A.R. Oganov, and N. Hansen. USPEX — evolutionary crystal structure prediction. Comp. Phys. Comm., 175:713–720, 2006.

4

A.R. Oganov and S. Ono. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D" layer. Nature, 430(6998):445–448, July 2004.

5

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi. Post-perovskite phase transition in MgSiO3. Science, 304(5672):855–858, 2004.

6

C.J. Pickard and R.J. Needs. High-pressure phases of silane. Phys. Rev. Lett., 97:045504, Jul 2006.

7

M. Martinez-Canales, A.R. Oganov, Y. Ma, Y. Yan, A.O. Lyakhov, and A. Bergara. Novel structures and superconductivity of silane under pressure. Phys. Rev. Lett., 102:087005, Feb 2009.

8

Y. Ma, A.R. Oganov, Y. Xie, Z. Li, and J. Kotakoski. Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett., 102:065501, 2009.

9

C.J. Pickard and R.J. Needs. High-pressure phases of nitrogen. Phys. Rev. Lett., 102:125702, Mar 2009.

10

G. Gao, A.R. Oganov, P. Li, Z. Li, H. Wang, T. Cui, Y. Ma, A. Bergara, A.O. Lyakhov, T. Iitaka, and G. Zou. High-pressure crystal structures and superconductivity of stannane (SnH4). Proceedings of the National Academy of Sciences, 107(4):1317–1320, 2010.

11

C.J. Pickard and R.J. Needs. Structures at high pressure from random searching. physica status solidi (b), 246(3):536–540, 2009.

12

A.O. Lyakhov, A.R. Oganov, H.T. Stokes, and Q. Zhu. New developments in evolutionary structure prediction algorithm USPEX. Comp. Phys. Comm., 184:1172–1182, 2013.

13

G.R. Qian, X. Dong, X.-F. Zhou, Y. Tian, A.R. Oganov, and H.-T. Wang. Variable cell nudged elastic band method for studying solid-solid structural phase transitions. Computer Physics Communications, 184(9):2111–2118, 2013.

14

C. Dellago, P.G. Bolhuis, F.S. Csajka, and D. Chandler. Transition path sampling and the calculation of rate constants. The Journal of Chemical Physics, 108(5):1964–1977, 1998.

15

S.E. Boulfelfel, A.R. Oganov, and S. Leoni. Understanding the nature of "superhard graphite’". Scientific Reports, 2(471):1–9, 2012.

16

A.R. Oganov and M. Valle. How to quantify energy landscapes of solids. The Journal of Chemical Physics, 130:104504, 2009.

17

A.R. Oganov, A.O. Lyakhov, and M. Valle. How evolutionary crystal structure prediction works — and why. Accounts of Chemical Research, 44(3):227–237, 2011.

18

Efim Mazhnik and Artem R. Oganov. Application of machine learning methods for predicting new superhard materials. Journal of Applied Physics, 128(7):075102, 2020.

19

Efim Mazhnik and Artem R. Oganov. A model of hardness and fracture toughness of solids. Journal of Applied Physics, 126(12):125109, 2019.

20

A.R. Oganov and A.O. Lyakhov. Towards the theory of hardness of materials. Journal of Superhard Materials, 32(3):143–147, 2010.

21

L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harrison, R. Ahuja, B. Holm, and B. Johansson. Materials science: The hardest known oxide. Nature, 410(6829):653–654, 2001.

22

R. Martoňák, A. Laio, M. Bernasconi, C. Ceriani, P. Raiteri, F. Zipoli, and M. Parrinello. Simulation of structural phase transitions by metadynamics. Z. Krist., 220:489–498, 2005.

23

A.R. Oganov and C.W. Glass. Evolutionary crystal structure prediction as a tool in materials design. Journal of Physics: Condensed Matter, 20(6):064210, 2008.

24

W. Zhang, A.R. Oganov, A.F. Goncharov, Q. Zhu, S.E. Boulfelfel, A.O. Lyakhov, E. Stavrou, M. Somayazulu, V.B. Prakapenka, and Z. Konopkova. Unexpected stable stoichiometries of sodium chlorides. Science, 342(6165):1502–1505, 2013.

25

Georg KH Madsen and David J Singh. Boltztrap. a code for calculating band-structure dependent quantities. Comput. Phys. Commun., 175(1):67–71, Jul 2006.

26

Q. Zhu, L. Li, A.R. Oganov, and P.B. Allen. Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys. Rev. B, 87:195317, May 2013.

27

S.T. Call, D.Yu. Zubarev, and A.I. Boldyrev. Global minimum structure searches via particle swarm optimization. Journal of Computational Chemistry, 28(7):1177–1186, 2007.

28

Y. Wang, J. Lv, L. Zhu, and Y. Ma. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 82:094116, Sep 2010.

29

G. Mills, H. Jónsson, and G.K. Schenter. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci., 324(2):305–337, 1995.

30

G. Henkelman, B.P. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113(22):9901–9904, 2000.

31

G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 113(22):9978–9985, 2000.

32

E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch. Structural relaxation made simple. Phys. Rev. Lett., 97(17):170201, 2006.

33

M. Valle. STM3: a chemistry visualization platform. Z. Krist., 220:585–588, 2005.

34

B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, and S. Alvarez. Covalent radii revisited. Dalton Trans., 21:2832–2838, 2008.