
LECTURE 10. TAO FAN. METHODS AND APPROXIMATIONS FOR 

COMPUTING THERMOELECTRIC 

Section 1. 

The First question, what key parameters we need to know in order to evaluate 

thermoelectric performance of a material. 

Let’s briefly retrospect the definition of thermoelectric materials and the 

physical scheme under it.  

Thermoelectric material is a kind of functional material which can achieve 

conversion between heat and electricity using its internal carrier movement. 

The advantages of thermoelectric devices are: solid device, no moving part, 

low noise, reliable performance, size adjustable, ideal for small scale, distributed 

electric generator. 

The physics scheme that analyzes thermoelectric energy conversion is based 

on the Seebeck effect and Peltier effect. 

 

The physical principles underlying the thermoelectric energy conversion are 

the Seebeck effect and the Peltier effect. As a simple schematic shown in Fig., it can 

be considered as a circuit formed from two different conductors a and b (referred to 

as thermocouple legs in a thermoelectric device), which are connected in series. Two 

junction points are A and B. Conductor b is divided into two parts (the breaking 



points are C and D). Supposing a temperature difference ∆T is established between 

the two junctions while the two free ends of conductor b are maintained at the same 

temperature, if we insert a voltmeter in the gap., a potential difference V will be 

observed between points C and D. this is the Seebeck effect and here we define the 

differential Seebeck coefficient αab, as the ratio of V to ∆T. Instead, if we insert a 

power source to points C and D so as to drive electric current in the circuit, then the 

junction A will be heated and junction B be cooled. This is the Peltier effect and we 

define the relative Peltier coefficient πab is equal to the ratio of the rate of heating 

or cooling q at each junction to the electric current I. the differential seebeck 

coefficient and differential Peltier coefficient can be related by Kelvin relationship. 

Let’s see the thermoelectric refrigerator first.  

The question is, what is the energy conversion efficiency of a thermoelectric 

refrigerator like this one. This is a thermodynamic problem. Supposing that thermal 

radiation and losses by conduction and convection through the surrounding medium 

are negligible. for this refrigerator(or heat pump), the efficiency is expressed by 

coefficient of performance, which is the heat absorbed q divided by electrical power 

input w. where the rate of absorption of heat from the source includes three part: the 

Peltier cooling effect at the heat source, which is opposed by the heat conductance 

in the device, and the Joule heating within the thermoelements. For the rate of 

expenditure of electrical energy, it includes two terms:  the first term is the rate of 

working to overcome the thermoelectric voltage whereas the second term is the 



resistive loss. Since the thermal conductance, the electrical resistances and the 

temperature are usually fixed, we can see actually q, w and even COP are quadratic 

functions of current I. For these functions, we are interested in two points :  

 

The first point, when the q1, cooling power is maximized, we get the current 

corresponding to this maximum q1 and also, the COP like this. The second point, 

when the COP is maximized, the corresponding current is expressed as, and the 

maximum COP is. Here we introduce a new parameter, uppercase Z, named figure 

of merit, which is expressed by Seebeck coefficient, thermal conductance and 

electrical resistivity of the two branches. COP depends solely on Z and temperature. 

As we can see from the formulas, the larger of Z, the better. Since the thermal 

conductance and electrical resistivity related with the shape of the thermoelement, 

the factor in the denominator can be minimized, by setting the shape of the two 

branches satisfy the relationship, then the optimized Z can be expressed as, which is 

determined by the intrinsic properties of the branches. By the way, one would wish 

to operate a thermoelectric refrigerator as close to the condition of maximum COP 

as possible, However, this is sometimes not practical, because the cooling power 

under this condition can be much less than the maximum value, particularly, when 

the temperature difference between the source and sink is small. the preferred current 

will lie somewhere between that for maximum cooling power and optimum COP. 



Now for thermoelectric generators, again, we assume that thermal radiation 

and losses by conduction and convection through the surrounding medium are 

negligible.  

 

The efficiency eta is the ratio of the output power w to the rate at which heat 

is drawn from the source q1. where the power delivered to the load is and the rate of 

heat flow from the source includes two terms: part of the heat drawn from the source 

is used to balance the Peltier cooling associated with the flow of current. In addition, 

there is the flow of heat due to thermal conduction along the branches. For 

generators, the current in the circuit can be adjusted by resistance of the load. There 

are also two interesting points (pict.). 

 



 

The first point, when the w output power is maximized, which happens when 

load resistance equals to the generator resistance. The second point, when the 

efficiency eta is maximized, the ratio M of the resistance of the load to that of the 

generator fulfills the relationship like this. Here the same Z as that for thermoelectric 

refrigerator, and Tm is the average temperature between heat source and sink. Thus, 

the maximum eta also depends solely on Z and temperature. If ZTm were much 

greater than 1, M would also be very large and the efficiency would approach .(T1 - 

T2)/T1, which is the value for the Carnot cycle. Currently, the highest eta which was 

achieved in the laboratory is around 15%. 

A short summary, according to the discussion above, for both thermoelectric 

generator or thermoelectric refrigerator, the energy conversion efficiency of the 

device is proportional to this parameter, figure of merit for a couple of 

thermoelement. In the search for improved thermocouples, it is uncommon to 

investigate a pair of substances at the same time. It would, therefore, be convenient 

if there is a merit for a single material. Now, we define the figure of merit for a single 

material, which is alpha square divided by thermal conductivity and electrical 

resistivity of a material. Although this uppercase Z is different with lowercase z of 

both n-type and p-type thermoelement, it is found that Z lies close to the average of 

zp and zn so that it is meaningful to select materials on the basis of the single-



material figure of merit. Usually, you see this dimensionless figure of merit in most 

papers and books, which uses electrical conductivity instead of electrical resistivity, 

and split thermal conductivity into contributions from lattice vibration and from 

electrons. Alpha square multiply sigma also called power factor. For now, the 

commonly used thermoelectric materials are Bi2Te3, PbTe and SnSe, their figure of 

merit values are 1 or 2, not larger than 3. But for massive commercial deployment, 

the ZT value is expected to be larger than 4. There is a large space to improve. 

However, it is hard to optimize these parameters simultaneously because they are 

interdependent with each other. As this picture shows, both α and σ are related with 

carrier concentration n. σ is proportional to n, while α is inversely proportional to n 

(the Pisarenko relation).  In addition, according to the Wiedemann-Franz law, 

κ_e=LσT, where L is the Lorenz number. Thus, any method increasing σ will also 

increase κe. 

 

 

 

 

 

 



 

Reading: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section 2 

In this section, I will introduce the physical models which are used to calculate 

those parameters involved in the figure of merit, which are mainly based on 

Boltzmann transport theory. I will also mention available software for such 

calculations. 

Let’s start from a very simple model, Drude model or say free electron gas model.  

 

 

This model has been successfully applied to metals.  We know a solid 

compound is composed of ion cores and valence electrons. In the free electron gas 

model, there are two basic assumptions to clarify the meaning of free: assumption 1, 

Ignore the interaction between electrons and ionic cores. This is equivalent to 

treating the ionic system as a uniform positive charge background that keeps the 

system neutral, also called “jellium model”. Since the positive charge is uniformly 

distributed, there is no interaction with electrons. Assumption 2, Ignore the 

interaction among electrons. This is also called “independent electron 

approximation”. Thus, based on these two assumptions, from the single electron 

Schrodinger equation, the equation can be simplified to this second order differential 

equation, and it has a solution of plane wave format. 

Consider an existence of an external field, for example electromagnetic field.  

 



 

 

 

The behavior of free electrons under an external field should obey the time 

dependent Schrodinger equation, here phi is a scalar potential related to the external 

electric field. In order to further discuss the transport properties of free electrons 

under an external field, there are two more assumptions: assumption 1, electrons 

experience collision or scattering from ion cores. Such an event happens 

instantaneously. Between two successive collisions, the electrons move in a straight 

line, following Newton's laws. Assumption 2, the collision experienced by electrons 

can be described by relaxation time τ simply. Within dt time, the probability of any 

electron  getting hit is dt/τ. So tau generally equals to the average time between two 

successive collisions. These two assumptions make the problem greatly simplified, 

but we need to be careful that the conditions of these assumptions are valid. It 

requires the mean free path of the electron and the scale of the external field should 

be greatly larger than the uncertainty of the coordinate of the electron. For electrons 

in metal, it is true, since electrons in metal usually have large momentum, its mean 

free path around 10 nanometer at room temperature, and larger than its coordinate 

uncertainty, which usually is several ionic distances. So for metal, the classical 

model is a good approximation. 

Now we can write the kinetic equation of electrons. 



 

 

 

Assume the average momentum of electrons at t moment is p(t), after dt time, 

those electrons without getting collision have a contribution to average moment. For 

those electrons with collision, the probability is dt/tau, and their contribution to the 

average moment after a dt time will include dt square, and under the first order 

approximation, this contribution can be neglected. Thus, the kinetic equation of the 

system can be written as this and the final expression is this. As can be seen, the 

effect of collision is adding a damping term on the classical equation. 

 

We consider the simplest situation, the external field is constant and the 

system reaches steady state, at that time, the electric field force equals the damping 

force and the acceleration stops. The electrons move a t constant velocity which can 

be calculated as vd, this velocity is called drift velocity. 



 

 

Then the current density in the field can be expressed as this, and according 

to Ohm’s law, current density equals to electrical conductivity multiplying electric 

field strength. So we get electrical conductivity. Here tau is the electronic relaxation 

time and m is the mass of electrons. 

 

For the classical model, the average velocity of electrons equals to the average 

velocity of thermal motion, determined by the temperature of the environment. For 

quasi-classical model, because of the application of fermi statistics, although the 

motion of electrons under an external field is treated classically, the average velocity 

of electrons uses fermi velocity. So it is called quasi-classical model. Thus, to 

calculate the mean free path of electrons, the fermi velocity should be used. 

 

 



Let’s make the model more complex. Still starting from the single electron 

Schrodinger equation. In the previous model, the potential part V, which represents 

the ion-electron and electron-electron interaction, is just ignored. We know it is not 

true, it cannot be omitted. Here, without considering the specific expression of the 

potential, just consider it has periodicity as the lattice. According to Bloch theorem, 

the eigen function is Bloch wave function, here the uk function represents 

periodicity. The electron’s energy spectrum also shows an energy band structure. 

Talking about the semi-classical model, the external fields dealt with classical way, 

but electrons are Bloch electrons described by Bloch wave function now. The 

detailed definition of the model is each electron has a determinate location r, wave 

vector k and band index n. For a specified εn(k), under the external fields, r, k and n 

vary with time by following the rules: Band index n is constant, ignoring the 

probability of electronic transition; The velocity of electrons is expressed like this; 

the variation of k with time expressed like this. This means the wave vector k can be 

changed by an external field. The model is valid if the external field varies slowly in 

the space. 

 

From the above model, we can get some important deductions. For example, 

Full occupied bands don’t contribute to the current density J. Let's express the 

current density as the total contribution from energy band. Here the integration is for 

all occupied states. The energy band εn(k) is an even function, then the vn(k) would 

be an odd function. Thus, in a full occupied band, the contribution from k state and 



–k state electrons just cancels each other out. The total current density is zero. For a 

partially occupied band, we can use the fact that the full band doesn’t contribute 

current density, write an expression like this, here the integration is just for the 

unoccupied level. Move the term to the right. This equation is like, we treated all 

occupied states by electrons as empty states, while the remaining unoccupied states 

were occupied by particles with positive e charge. This hypothetical particle is a 

hole. 

 

The above semi-classical model describes the motion of Bloch electrons in 

the external field. In a real situation, the electrons also experience collision from the 

lattice. What is the behavior of electrons when external fields and collisions coexist? 

This problem can be studied based on the distribution function of electrons. In 

thermal equilibrium condition, the electrons’ distribution follows Fermi-Dirac 

distribution function, the system is uniform and f is irrelated with electron’s position 

r. When external fields exist, and involve collision, the distribution deviates from f0, 

thus having the nonequilibrium distribution function. This term is from the 

assumption that if there is no collision, the electrons at r,k,t state are from its previous 

state. The second term is because of the collision. We expand the first term and keep 

the linear term of dt, get this new equation. When the system reaches steady state, 

the derivative of f with respect to t would be zero. Thus, we get the final format of 

the equation, called the Boltzmann equation. The left side is called drift term and the 

right term is collision term. The meaning of the Boltzmann equation is it connects 



the quantum band structure of the materials (reflected in r), the influence of the 

external field (reflect in derivative of k), the effect of collision with the distribution 

function f. therefore, this function is the start of dealing with transport properties in 

solid. 

 

Even now, the Boltzmann equation cannot be solved fully. Several approximations 

have to be used. The first approximation is The nonequilibrium function f just has a 

small deviation from f0, f1 is a small quantity. Also, as talked before, using 

relaxation time approximation to express the collision term. Then for a situation with 

an electromagnetic field and collision, the transport equation looks like this. In the 

simplest case, there is only a constant electrical field, the equation can be finally 

simplified to this form. Once we know the expression of f1, we can calculate the 

current density 



 

The equilibrium distribution has no contribution to the total current, the 

current solely from the deviated distribution. Substituting it into the formula, this 

integration is for all wave vectors in the Brillouin zone and difficult to calculate. 

Here we define a transport distribution function, by this function, \tau v square as a 

function of band index n and wave vector k is converted to that as a function of band 

energy. Further, we define this generalized transport coefficient, which converts 

\sigma \epsilon to a function of chemical potential \mu and temperature. It turns out 

all experimentally measurable transport properties such as electrical conductivity, 

Seebeck coefficient, electronic thermal conductivity can be expressed by a series of 

generalized transport coefficients. In these coefficients, the band energy 

\epsilon(n,k), electron velocity can be computed by modern first-principle method, 

such as DFT, the only trouble is this electronic relaxation time \tau(n,k), which is 

hard to calculate. 

 



 

 

The electronic relaxation time equals to the inverse of the scattering rate 

\gamma, which can be calculated as a summation of scattering probability W. when 

only consider electron-phonon scattering process, the scattering probability involves 

both phonon emission and absorption processes can be expressed as this. Here 

gmnv(k,q) are the electron-phonon matrix elements which quantify the probability 

amplitude for an electron to scatter from an initial  state |├ nk⟩ to the final state |├ 

mk+q⟩, by emitting or absorbing a phonon with wavevector q and mode index ν; 

N_vq^0are equilibrium Bose-Einstein phonon distribution functions. For transport 

properties’ calculation, most of the time is spent on calculating matrix elements, 

because, in order to converge the transport with the Boltzmann transport equation, 

the  e-ph matrix element need to be computed on a extremely-dense k- and q-point 

grid in the Brillouin zone, usually over 1 million points. Therefore, this is where the 

approximation has to be introduced. Many models exist differentiating by level of 

approximation. 

 

 



 

In the table, I list the commonly used software for calculating electronic 

transport properties, ranked by complexity of the model.  

 

 

 

Among them, AICON is a program developed by our group, which uses the 

Kane band model to describe the energy band and deformation potential theory to 

calculate the electron-phonon coupling matrix element. I will introduce this program 

detailly later. BoltzTrap2 and BoltzWann use constant relaxation time 

approximation. Users need to calculate band energy and velocity on a dense mesh 

with first principle method, then the program will interpolate the energy and velocity 

and combine with a constant relaxation time to calculate Generalized transport 

coefficients. EPA, EPIC STAR and AMSET use some semi-empirical and simpler 



models to calculate the electron phonon matrix elements, thus avoiding calculating 

them on extremely dense mesh. PERTURBO and elphbolt engage purely first 

principle calculation for matrix elements, thus their calculations are time-consuming 

and only affordable for simple systems. 

For phonon transport properties such as lattice thermal conductivity, similar 

to electronic transport properties, it can also be solved from the Boltzmann transport 

equation. In the presence of a temperature gradient ∇𝑇, the phonon distribution 

function deviates from f0 which is Bose–Einstein distribution. Two factors affect 

the phonon distribution: diffusion due to ∇T and scattering arising from allowed 

processes. In the steady state, the rate of change in the distribution must vanish, the 

condition is expressed as. where λ comprises both a phonon branch index n and a 

wave vector q, vλ is the group velocity of phonon mode λ. Usually, the norm of ∇T 

is small enough that fλ can be expanded to first order in ∇T, here gλ looks like this 

form. For scattering process, the most important way is phonon-phonon 

interaction, so 

 

Considering only two- and three-phonon processes, the BTE can be simplified 

and written as. Again here we use the relaxation time approximation. τλ is the 

relaxation time of mode λ as obtained from perturbation theory. while Δλ, with the 

dimensions of velocity, is the measure of how much the population of a specific 



phonon mode – and thus the associated heat current – deviates from the RTA 

prediction. For phonon relaxation time, it can be calculated by the sum of scattering 

rate belonging to different types of scattering process. Gamma plus corresponds to 

absorption processes, resulting in only one phonon with the combination of two 

incident phonons, while \Gamma minus describes emission processes in which the 

energy of one incident phonon is split among two phonons. The scattering rate is 

proportional to the square of scattering matrix element V, which is proportional to 

third order force constant. After obtaining the uppercase Fλ, the lattice thermal 

conductivity can be calculated as. In the whole process, the most time consuming 

part is calculating the high order force constants. Which, even for a simple structure 

like silicon, needs hundreds of static calculations. 

 

 

 

In this table, I list the commonly used software for calculating lattice thermal 

conductivity, ranked by complexity of the model. Our software AICON uses the 

semi-empirical model, so-called Debye Callaway model, which doesn’t need to 

calculate time consuming high order force constant, thus pretty fast. ShengBTE and 

phono3py use relaxation time approximation and need to calculate both second order 

and third order force constant. AFLOW-AAPL uses the same methods as 

ShengBTE, however, it makes full  use of symmetry to reduce the number of static 



calculations for force constants. Last but not least, the lattice thermal conductivity 

can also be calculated by nonequilibrium molecular dynamics or Green-Kubo 

method. However, these methods require accurate interatomic potentials, which 

unfortunately are not always available for the studied compounds. Besides, the 

required simulation time is also very long. 
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