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Collapse modes in simple cubic and body-centered cubic arrangements of elastic beads
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Collapse modes in compressed simple cubic (SC) and body-centered cubic (BCC) periodic arrangements of
elastic frictionless beads were studied numerically using the discrete element method. Under pure hydrostatic
compression, the SC arrangement tends to transform into a defective hexagonal close-packed or amorphous
structure. The BCC assembly exhibits several modes of collapse, one of which, identified as cI16 structure, is
consistent with the behavior of BCC metals Li and Na under high pressure. The presence of a deviatoric stress
leads to the transformation of the BCC structure into face-centered cubic (FCC) one via the Bain path. The
observed effects expand the knowledge on possible packings of soft elastic spheres and transformations between
them, while providing an unexpected link with the mechanical behavior of certain atomic systems.
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I. INTRODUCTION

It had long been known that monodisperse spherical elastic
particles enclosed in a confined space tend to form regular
arrangements; e.g., depending on the boundary conditions,
they can form either face-centered cubic (FCC) or hexagonal
close-packed (HCP) structures. These two arrangements of
elastic spheres remain stable under compressive loads with
significant deviatoric stress components; this property is often
used for storage of spherical goods. Simple cubic (SC) and
body-centered cubic (BCC) structures of monodisperse spher-
ical particles are unstable under compression, although they
can be stabilized by frictional forces. Crystalline assemblies of
elastic spheres have been getting considerable attention in soft
and granular matter communities because of exotic packing
configurations [1,2], pressure-induced pattern transformations
[3–6], and nontrivial acoustic properties [7,8].

In this article, we expand the knowledge on pattern trans-
formations in elastic spheres by exploring the modes of
collapse for SC and BCC arrangements of elastic (Hertzian)
frictionless beads. The collapse of these arrangements leads to
new packings with a surprising variety of possible morpholo-
gies, including amorphous structures, defect-free or defective
crystalline structures, and mixed-type arrangements. Under
certain conditions, the BCC packing of beads exhibits a transi-
tion to the cI16 structure, similarly to some BCC metals under
high pressure [9,10]. The application of deviatoric stress leads
to the seamless transformation of BCC structure to FCC via
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the Bain path. Our results point at curious and previously
not described similarities between elastic beads and atomic
systems. The FCC, HCP, and BCC structures are extremely
common among metals at normal conditions, whereas SC
structure is known only for alpha-Po, where it is stabilized by
relativistic effects [11,12]. cI16 phases are observed in lithium
and sodium under high pressures [9,10], whereas Bain path
transformation is responsible for martensitic transformation
in steels [13]. Below we will take a closer look at these
similarities.

II. METHOD

We used the discrete element method (DEM) [14] to study
the rearrangements of elastic beads, employing the open-
source DEM package YADE [15] in the calculations. The
damped dynamics of equal-sized rigid spherical beads with
mass M, radius R, volume V p = 4

3πR3, and moment of in-
ertia 2

5 MR2 was computed using the velocity Verlet time
integration scheme. Unless otherwise noted, the simulations
are carried out without friction. The interaction of the beads
in this case is described by a contact model that links the
overlap δ and the intercenter repulsion force F . We used the
Hertzian contact model, which provides the exact solution for
the force-displacement relation in the case of identical elastic
frictionless spheres:

F = 4
3Y ∗R∗ 1

2 δ
3
2 , (1)

where R∗ = R
2 is the effective contact radius, Y ∗ = Y

2(1−ν2 ) is
effective Young’s modulus, and Y and ν are Young’s modu-
lus and Poisson’s ratio of the particle material, respectively.
Because Hertz contact model does not apply torques or shear
forces at a contact point, there are no rotations in frictionless
simulations. In the presence of nonzero friction between the
beads, the classical Hertz-Mindlin no-slip contact model is
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employed. The detailed description of this model is available
in Ref. [16].

In our computational experiments, a supercell containing
N × N × N periodic cells of the crystalline (SC or BCC)
arrangement of K identical spherical particles was confined
within a cubic box with periodic boundary conditions. At the
beginning of the simulation, the assembly was undeformed.
Then strain contraction (εx, εy, εz ) was gradually applied by
adjusting the x, y, and z sizes of the periodic cell while the ho-
mogenized compressive stress components σx, σy, and σz were
measured (this simulation uses the standard periodic triaxial
controller from YADE suite [15]). During the simulation, we
monitored the intermediate configurations of beads, homog-
enized principal stresses and strains, cell volume V c, elastic
strain energy per particle E , and density of assembly φ =
KV p/V c. The stability of a lattice under hydrostatic pressure
σ0 is characterized by the lattice enthalpy per particle H =
E + σ0φ

−1V p. The maximum strain rate was constrained to
ensure a quasistatic loading with relatively small inertia terms.
During the loading and mechanical equilibration, the size of
the periodic cell may change significantly while the particles
perform multiple rearrangements. The excess of kinetic en-
ergy is taken out by local damping, imposing forces opposite
to velocities and proportional to contact forces [17]. The local
damping proportionality coefficient was set to 0.9. The sim-
ulation is stopped when the target stress is reached and the
largest unbalanced force in the system does not exceed its tol-
erance (10−3 in our simulations). The target stress was preset
as σx = −σ0 + �σ0, σy = −σ0, σz = −σ0. Here �σ0 is the
magnitude of reduction of the principal stress coaligned with
the x axis. Unless otherwise noted, �σ0 = 0. To ensure the
validity of the Hertzian contact approximation, the magnitude
σ0 did not exceed 10−2Y , guaranteeing that the value of the
elastic strains in the system remains about 1%.

III. RESULTS

The simulations expectedly proved that the SC and BCC
structures of frictionless elastic beads are unstable, unlike
FCC or HCP arrangements. What is more intriguing, these
two simple structures demonstrated several distinct modes of
collapse (Fig. 1).

The initial SC structure tended to collapse to a mixture of
competing crystalline and amorphous phases. The crystalline
phase dominates for small supercells, whereas large supercells
are characterized by the mixture of two phases.

The crystalline phase is usually the HCP structure. For
an initially cubic supercell, the geometric constraints hinder
rearrangement of the SC structure into the one with a hexag-
onal symmetry, since it requires significant change of the
simulation box aspect ratio. Although such transformations
are kinematically possible, they are rarely observed in our
simulations. Therefore, if the SC structure exhibits a transition
into an HCP packing, structure defects are likely (see the
examples in supplementary material [18]). In this study, only
the 4 × 4 × 4 cubic supercell underwent a seamless trans-
formation into a defect-free HCP structure (video 1 in the
supplementary material [18]).

The normalized elastic strain energy, normalized enthalpy,
and density of the collapsed N × N × N SC supercell are

FIG. 1. Initial structures and their major collapse modes (side
projection). For ease of perception, the beads are shown 50% smaller
than the actual beads.

shown in Figs. 2(a), 2(c) and 2(e). For gradually increasing
N , two distinct phases are observed: defective HCP phase
and amorphous one. The HCP phase is more likely for
an even number of periods (N = 4, 6, 8). In large-enough
specimens, the dominant amorphous and crystalline phases
coexist [Fig. 3(a)], whereas the energy per particle, en-
thalpy, and relative density tend to remain nearly constant.

FIG. 2. Elastic strain energy E , enthalpy H , and density φ of [(a),
(c), and (e)] collapsed SC structures and [(b), (d), and (f)] collapsed
BCC structures as functions of the cubic supercell size N . Energies
and enthalpies are normalized against the corresponding quantities
per particle of the initial structure.
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FIG. 3. (a) Mixed HCP-amorphous phase in large collapsed SC
specimens. (b) Formation of grains in sufficiently large BCC speci-
mens. The color legend gives the magnitude of translational velocity
at the end of the simulation, helping to identify different regions.

Because the elastic contacts between spheres enable over-
laps, the observed densities, 55% for the SC phase, 76% for
the HCP phase, and approximately 70% for the amorphous
phase, are somewhat higher than the theoretical values for
rigid spheres [19,20] (π/6 ≈ 52%,

√
2π/6 ≈ 74%, and 64%,

respectively).
The supercells of BCC structure demonstrate a richer

set of collapse modes. Depending on the boundary condi-
tions, a BCC structure can collapse into cI16 [Fig. 1(c)],
FCC [Fig. 1(d)], and simple hexagonal (SH) [Fig. 1(e)]
structures. The most likely possibility for a cubic supercell
with even number of periods along every axis is the cI16
phase, which is also the only structure whose specimens
are defect-free in a wide range of supercell sizes. The den-
sity of BCC structure 70.9% increases to 73.6% for cI16
structure.

Figures 2(b), 2(d) and 2(f) show the elastic strain en-
ergy, enthalpy, and density of the collapsed N × N × N
BCC supercell. The BCC phase tended to form only crys-
talline structures. Supercells with N = 3, 4, 5, 6, 7 remained
in the initial BCC phase [Fig. 2(b)], whereas those with
N = 2, 8, 10, 12, 14, 16, 20, and 24 collapsed into defect-free
cI16 structure. The observed equilibrium of SC and BCC
structures is unstable and is affected by the simulation pro-
tocol, e.g., strain rate. Although cI16 structure corresponds to
larger stored elastic strain energy compared to BCC structure,
the BCC-cI16 transition corresponds to a decrease in en-
thalpy, which indicates greater stability of cI16 structure under
pressure.

The BCC-cI16 transformation is a nearly coherent, al-
though not instantaneous, rearrangement (video 2 in the
supplementary material [18]); it takes considerable time and
is accompanied by symmetry-breaking rearrangements with
a dynamic evolution of system energy [Fig. 4(a)], princi-
pal stresses [Fig. 4(b)], density [Fig. 4(c)], and principal
strains [Fig. 4(d)]. The formation of a single cI16 cell re-
quires 2 × 2 × 2 BCC cells; therefore, in the case of an odd
number of periods along each direction of a supercell, the
seamless rearrangement into cI16 is impossible. Supercells
with N = 11, 13, 15, 17-19, 23, 25, 27, 29, 30 form defective
cI16 structures. Supercells with N = 22, 26 form defective
FCC structures, and supercells with N = 21, 28 form defec-
tive prismatic SH grains (see the supplementary material for
details [18]).

FIG. 4. Time evolution of (a) energy, (b) principal stresses,
(c) density, and (d) principal strains during the BCC-cI16 transfor-
mation of a 12 × 12 × 12 specimen.

Large specimens tend to form heterogeneous grains with
distinctive grain boundaries: for example, the collapsed cI16
structure can coexist with the BCC arrangement in a neigh-
boring grain [Fig. 3(b)].

The collapse mode of a BCC arrangement, unlike that of
an SC structure, appears to be sensitive to the presence of the
deviatoric loading. A relatively small reduction of one of the
principal stresses (approximately 3% of the baseline isotropic
stress for a 12 × 12 × 12 supercell) leads to another type of
collapse. Instead of cI16, the BCC arrangement transforms
into FCC, with a specimen expanding in the direction of the
reduced stress (video 3 in the supplementary material [18]).
The transformation between the BCC and FCC structures via
a tetragonal distortion is very well known as the Bain path
[13] [Fig. 5(a)]. The transition corresponds to a 35% drop
in stored elastic energy per particle [Fig. 5(b)], in contrast
with the BCC-cI16 transition under hydrostatic compression,
which increases the stored energy by 37%. Simple geometric
considerations [Fig. 5(a)] show that the BCC-FCC transition
in a system of rigid beads corresponds to an extension by√

6/2 − 1 ≈ 0.2247 in the direction of the reduced princi-
pal stress and a contraction by

√
3/2 − 1 ≈ −0.1339 in the

other principal directions. The FCC structure has 12 near-
est neighbors and a density of 76% in the case of elastic
contacts between the beads. The principal strain components
[Fig. 5(c)] and measured density [Fig. 5(d)] observed in our
simulations closely correspond to these predictions. A closer
look at the BCC-FCC transition reveals that the supercell
often goes through cI16 phase before reaching its final FCC
arrangement [Fig. 5(e)].

Our simulations indicate that adding a slight Coulomb
friction (coefficient of friction μ = 0.01) between the beads
immediately leads to stabilization of BCC and SC bead
structures under hydrostatic stress, and BCC-cI16 trans-
formation is not observed. However, the deviatoric stress
may still initiate BCC-FCC transformation in a frictional
assembly.
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FIG. 5. Shift from BCC-cI16 to BCC-FCC mode of collapse in
the presence of deviatoric stress in an initially BCC 12 × 12 × 12 su-
percell. (a) Schematics of the BCC-FCC transformation via the Bain
path. (b) Normalized elastic strain energy per particle, (c) principal
strains, and (d) density as functions of the applied reduction of first
principal stress �σ0/σ0. (e) Evolution of the packing density during
the transformation.

IV. DISCUSSION

Our study revealed several interesting mechanical phenom-
ena in monodisperse assemblies of elastic spheres that can be
qualitatively related with the behavior of atomic structures in
crystals. For example, the collapse and amorphization of a SC
structure resembles the pressure-induced amorphization that
occurs most often in low-density solids [21,22]. Therefore, it
is not surprising that here we observed it in the low-density
SC structure.

The most notable result of this study is the transition
of the BCC structure of frictionless elastic beads under an
isotropic pressure into the cI16 structure, which is similar to
the rearrangement of atoms occurring in the BCC phases of
lithium and sodium under extreme pressures. Hanfland et al.
[9] attributed the formation of the cI16 structure in Li to elec-
tronic structure effects. However, the cI16 phase emerges in
our mechanistic model that relies on pair interactions between
elastic beads, which suggests that electronic structure effects
(or complicated many-body terms of an interaction potential)
are not necessary for explaining this transition.

Recently, a similar BCC-cI16 transition has been observed
in another classical model: the Monte Carlo simulations of
the BCC arrangement of classical hard spheres [23]. Our
study confirms and strengthens this result, demonstrating the

same transition in explicit classical dynamic simulation of
elastic spheres. Another important result of this study is the
bifurcation between the BCC-cI16 and BCC-FCC modes of
collapse at a certain critical deviatoric stress. This result was
not discussed so far, although Bain-like transformations in
pair potential systems have been studied [24]. The existence
of such a bifurcation suggests that similar mechanisms might
be found in BCC metals under high pressure with a strong
deviatoric stress component.

As far as we know, the described observations have never
been discussed within the soft matter community, where pack-
ings of jammed rigid and deformable particles are widely
studied [4,25,26]. It is worth noting that exotic packings of
spherical particles have been a hot topic in the past few
years, within the context of the discovery of Frank-Kasper
phases in few classes of soft matter: block copolymers, liquid
crystals, and colloidal nanoparticles [1,2,27]. Interestingly,
Frank-Kasper phases, e.g., A15 phase, emerge in hyperelastic
sphere systems that exhibit coordination-dependent faceting,
whereas the cI16 phase in our simulations is observed in
Hertzian spheres implying independent treatment of elastic
contacts. Increasing attention to granular structures and their
exotic properties is also associated with the recent discovery
of pressure-induced pattern transformations in such struc-
tures [4–6]. Most of the efforts so far have been focusing
on two-dimensional (2D) and bidisperse structures, with only
few works studying 3D granular crystals (e.g., [8]) and none
discussing 3D pattern transformations. The collapse modes
observed in our work could be employed in designing novel
granular metamaterials.

V. CONCLUSIONS

In this work, we performed a numerical study of the
dynamic evolution of unstable SC and BCC structures of
frictionless elastic beads. We found that such assemblies
demonstrate a surprising variety of admissible behaviors.
Whereas the SC structures tend to collapse into a mixed-phase
amorphous+HCP assemblage, the BCC structures under pres-
sure transform into the cI16 arrangement, similarly to BCC
metals lithium and sodium. We have established that the col-
lapse of a BCC structure can follow different paths, preferring
either cI16 or FCC phases, controlled by a vanishingly small
change in the deviatoric stress. The obtained simulation re-
sults could be verified experimentally via a setup able to apply
hydrostatic stress (e.g., through the transparent membrane) in
combination with deviatoric stress (e.g., through the hydraulic
press) to a regular packing of spheres. However, the neces-
sity of vanishingly small friction might constitute significant
challenge for such a verification. Our results suggest that the
dissipative dynamics of classical frictionless Hertzian beads
may be a meaningful and predictive model for real processes
in soft matter and colloidal and atomic systems.
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