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ABSTRACT: We present a universal method for the large-scale prediction of
the atomic structure of clusters. Our algorithm performs the joint evolutionary
search for all clusters in a given area of the compositional space and takes
advantage of structural similarities frequently observed in clusters of close
compositions. The resulting speedup is up to 50 times compared to current
methods. This enables first-principles studies of multicomponent clusters with
full coverage of a wide range of compositions. As an example, we report an
unprecedented first-principles global optimization of 315 SinOm clusters with n
≤ 15 and m ≤ 20. The obtained map of Si−O cluster stability shows the
existence of both expected (SiO2)n and unexpected (e.g., Si4O18) stable (magic)
clusters, which can be important for a variety of applications.

The unique properties of nanoparticles are extensively used
in optoelectronics, photovoltaics, photocatalysis, biome-

dicine, etc. These properties are closely linked to the atomic
structure of particles, especially in small particles and
nanoclusters.1,2 Despite the importance of knowing the
structure, its experimental determination remains very
difficult.3 For this reason the main body of structural
information on clusters is obtained via first-principles
calculations4 that were mostly done either for monatomic
clusters or for binary clusters of stoichiometric composition
corresponding to the bulk compounds, whereas clusters of
general composition were studied in only a few publications.5,6

Such a focus in ab initio research ignores the fact that the
chemistry of clusters is much richer than that of solids because
of a large share of surface atoms. Multicomponent clusters
often have stable compositions that are far from chemical
compounds presented in the bulk x−T phase diagram. This is
of interest not only for basic chemistry of clusters. It
significantly increases the scope of candidate nanomaterials
for practical applications, such as the development of efficient
and affordable catalysts7,8 and magnets,9 the investigation of
complex processes of nucleation and particle growth,10−12 etc.
The bottleneck of first-principles study of nanoclusters is the

computational cost of cluster structure prediction, which is a
global optimization of the total energy among all possible
atomic configurations. There are several methods of structure
prediction (basin and minima hopping,13,14 simulated
annealing,15 evolutionary algorithm,16 etc.); however, they all
involve thousands of local optimizations (relaxations) even for
finding a structure of one cluster. Given the existence and

importance of unexpected cluster compositions, cluster
structure prediction and the screening of stability and
properties are required in wide regions including hundreds of
cluster compositions; therefore, such first-principles inves-
tigations turn out to be extremely demanding. To reduce the
computational cost, the global optimization is often performed
in combination with semiempirical methods or force fields.17,18

Success depends greatly on the model potential, which is often
difficult to make sufficiently accurate. Here we suggest a
different approach to this problem, which does not invoke
semiempirical potentials at all. Our method simultaneously
predicts all clusters in the whole given area of compositions in
a highly efficient manner that incorporates exchange of
structural information, i.e., learning between clusters of
different compositions. The effectiveness of our approach is
based on the frequent similarity of structural motifs in clusters
of close compositions. We will refer to our technique as
variable-composition cluster search in contrast to the previous,
fixed-composition approaches.
Our method is derived from the evolutionary algorithm

implemented in the USPEX code,16,19,20 which proved to be
successful for predicting novel materials.21,22 Briefly, the
algorithm is based on the analogy with natural evolution:
first population of structures (the first generation) is created
randomly and locally optimized. A certain percentage of the
best structures serve as parents for the next generation, which
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is produced using the so-called variation operators: crossover,
mutations, etc. Then the newly produced generation is locally
optimized and so on, until global minimum is found.
Our technique performs a joint evolutionary search for the

whole given area of compositions at the same time. It
required two major innovations. First, the selection of the
fittest configurations (selecting best parents) is performed on
equal footing for clusters of all compositions. Second, we
developed new variation operators to provide the transfer of
structural information between clusters of different composi-
tions.
Let us consider the new selection procedure in more detail.

It is grounded in the notion of “magic” clusters. We classify a
cluster as magic if a pair of such clusters is stable against the
transfer of one atom between them. Giving it a formal
description, we denote the composition of a cluster with the
formula Xn1Yn2...Znk by a vector n = (n1, n2,···, nk). If an atom of
sort s is added or removed, the composition becomes ns

± =
(n1, ···, ns ± 1,···, nk). The cluster is magic if the second-order
differences of the energy

E E E En n n n( ) ( ) ( ) 2 ( )ss s sΔ = + −+ −
(1)

are positive for all atomic types s. Having the (nonregular) set
of magic compositions, we build the reference energy surface
Eref(n) as a piecewise linear interpolation of “magic” energies
over all given areas of compositions. A configuration is
classified as “best” and selected to participate as a parent for
the next generation if its energy falls in the interval Econf(n) −
Eref(n) ≤ ΔEsel. The interval ΔEsel is defined so that the share
of the best configurations is Nbest/N ≈ 0.6−0.8. We note that
the global thermodynamic stability of clusters is not required,
as any cluster system is unstable with respect to growth or
coalescence; the only truly thermodynamically stable cluster is
the infinite one, i.e., a crystal. This situation is totally different
from the variable-stoichiometry prediction of crystalline
structures,23 which provides only the thermodynamically stable
phases.
Our method uses all variation operators of the standard

fixed-composition approach:20 (1) creating structures with
randomly picked point symmetries, (2) permutations of
chemically different atoms, (3) softmutation (displacement
of atoms along eigenvectors of the softest vibrational modes),
and (4) heredity (creating child structure from fragments of
two parents). Among these operators, only heredity is suitable
for structural exchange between clusters of different
compositions and was modified accordingly. To further
enhance such exchange, three new variation operators are
introduced: (5) transmutation (change of chemical identity of
randomly selected atoms), (6) removal of one atom from the
cluster, and (7) addition of one atom to the cluster.
For operators 6 and 7, the site where one atom should be

removed or added is of importance. The choice of an atom i to
be removed is defined by its effective coordination number Oi:

O
r R R d

r R R d

exp( ( )/ )

max exp( ( )/ )i
j ij i j

j ij i j
=

∑ − − −

− − − (2)

where rij is the distance between atoms i and j; Ri and Rj are the
covalent radii of atoms i and j depending only on their
chemical identities;24 ; d = 0.23 Å is the empirically determined
parameter. The ith atom is removed with a probability pi
proportional to maxi∈s[Oi]−Oi, where s is the identity of an
atom i. Thus, the removal of weakly bound atoms is preferable.

The same applies to the choice of an atom to which an
additional atom should be attached. Such atom addition
enhances coupling between a weakly bound atom and the
remainder of the cluster that gives the maximum gain in
binding energy. In addition, our algorithm allows the addition
or removal of two atoms simultaneously. This can be useful for
systems that prefer an even number of atoms of a particular
sort.
We note that the new atomic addition/removal operators

usually do not create new structural motifs but spread the good
ones between different compositions, thus providing the
thorough exploration of the low-energy areas of the landscape.
Other operators, considering their greater stochasticity, are
responsible for a sufficient level of structural diversity. Such an
approach provides a balance between scattering of trials for the
effective sampling of search space and focusing on the most
promising regions, which is crucial for any heuristic
optimization scheme.
The seven variation operators show varying efficiency for

different systems and even at different stages of evolutionary
search. To take this into account, we implemented the
parameter control procedure which changes on-the-fly the
number of offspring produced by each operator considering
their efficiency at previous stages of the search.25 To increase
structural diversity, our method uses yet another, very powerful
tool, namely, antiseeds.20 It gives energy penalty for structures
that are best for too many generations. This allows one to
reliably determine structures of all nonmagic clusters belonging
to the area of compositions, as well as low-energy isomer
structures.
One may recall that many researchers tried to exploit

structural similarity of clusters of close compositions by
hand.10,26−28 However, the number of possible configurations
is still extremely large. For this reason such manual sampling
requires too much effort and often fails. In contrast, our
method makes similar sampling fully automatic, integrating it
into the general evolutionary process. Combined functioning
of all variation operators, the new selection scheme, the
antiseed technique, and other features give a synergistic effect
that results in the high performance of our method.
We test our technique on two model systems: Lennard-

Jones clusters with 30−60 atoms and SinOm clusters (n = 6−8
and m = 10−16) within the semiempirical MNDO approach as
implemented in the MOPAC package.29 We compare the
convergence speed of the new approach with the standard
fixed-composition technique implemented in the USPEX
code.20 Figure 1 shows the energy deviations from the ground
state averaged over all compositions as a function of the
number of relaxations for both methods. This integral
characteristic of the convergence rate shows a great speedup
of the new method (∼5 times for LJ clusters and up to 50
times for SinOm clusters). A more thorough analysis presented
in the Supporting Information shows high efficiency of new
variation operators which produce most of the low-energy
offspring of the new method.
As the first real application, we chose SinOm clusters owing

to their practical importance and great structural diversity
(crystalline silica alone has 14 structural forms). The search
was performed at the ab initio level within the unprecedentedly
wide range of compositions (1 ≤ n ≤ 15 and 0 ≤ m ≤ 20, i.e.,
315 cluster compositions). We note that the earlier
investigations of SinOm were either done for relatively small
clusters (n ≤ 7)6,26,28,30,31 or focused on stoichiometric
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compounds (SiO)n or (SiO2)n.
4,10,27,32,33 Even for these

compositions it is often seen that newer papers report lower-
energy structures than the older ones. As an example, we
mention recent study of (SiO)n clusters which were
constructed “by hand”, joining fragments of (SiO2)n and Sin
clusters together.10 Surprisingly, these structures turned out to
be better than those reported in all previous studies using
global optimization techniques.
We perform our global optimization combined with density

functional calculations within the PAW−PBE approximation
implemented in the VASP code.34,35 The energies of the 10
best structures for each composition were refined using the
Gaussian code36 with the B3LYP/6-311+G(2d,p) approach.37

Comparison of our results with earl ier publica-
tions4,6,10,26−28,30−33 showed that for 101 SinOm compositions
we found the same global minima as previously published, for
17 compositions we found lower-energy structures, and 197

cluster compositions were studied for the first time to our best
knowledge (see Table S1). Figure 2 shows SinOm stable
(magic) clusters which are divided into four groups discussed
below. The optimal structures of all 315 clusters are given in
Table S2.
Scanning over wide composition areas reveals trends in

cluster structure and related properties. To illustrate this point,
we explore the stability patterns of SinOm clusters using two
criteria. The first one characterizes the resistance toward the
transfer of Si or O atoms between clusters. It calculates second-
order differences over Si and O atoms (ΔEnn(n, m) and
ΔEmm(n, m) of eq 1) and takes the minimal one: Δmin(n, m) =
min{ΔnnE(n, m), ΔmmE(n, m)}. The second criterion calculates
dissociation energies for all possible fragmentation channels
SinOm → SikOl + Sin−kOm−l with 0 ≤ k ≤ n and 0 ≤ l ≤ m:

E n m k l E k l E n k m l E n m( , , , ) ( , ) ( , ) ( , )diss = + − − −
(3)

and picks the lowest of them: Ediss(n, m) = mink,l{Ediss(n, m, k,
l)}.The higher Ediss(n, m), the more resistant to fragmentation
the cluster. In stable clusters, both Δmin(n, m) and Ediss(n, m)
should be positive, while a negative value of Δmin(n, m) or
Ediss(n, m) is a sign of instability.
Figure 3 shows the contour maps of calculated Δmin(n, m)

and Ediss(n, m) as functions of n and m. In both figures, the
areas of high stability look like mountain ridges or islands. As
expected, silica (SiO2)n clusters are highly stable according to
both criteria. Surprisingly, SinOm clusters with n ≈ 2/3m
exhibit comparable stability. These clusters (Figure 2a)
resemble (SiO2)n (Figure 2c) but are constructed of Si−O−
Si bridges only and have no Si=O double bonds. As seen in
Figure 3a, there are also several minor stability islands running
along n ≈ 4 + 2m/3, n ≈ 6 + 2m/3, and n ≈ 10 + 2m/3. Such
nonstoichiometric compounds are also rather stable according
to the second criterion (Figure 3b). They contain excess of
silicon, which segregates as a compact group of Si atoms,
attached to the skeleton of Si−O bonds only (see Figure 2b).
Such clusters are of interest because of experiments on growth

Figure 1. Convergence rate of variable- and fixed-composition
methods. Energy deviations from the ground states averaged over
all compositions as a function of number of relaxations is given for (a)
Lennard-Jones clusters with 30−60 atoms and (b) SinOm clusters (n =
6−8 and m = 10−16) calculated by the MNDO method (the
logarithmic scale is used).

Figure 2. Optimal structure of selected stable SinOm clusters, divided into four groups: the most stable clusters with (a) n:m ≈ 2:3 and (c) n:m =
1:2; (b) silicon-rich clusters and (d) superoxidized clusters (m ≥ 2n + 1).
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of long silicon nanowires from gas-phase SiO.11 Another
interesting class of stable compounds is superoxidized Si4O10
and SinO2n+1 (n ≥ 5) clusters (see Figure 2d). The latter have
relatively low values of Δmin but quite high values (2.5−3 eV)
of Ediss(n, m). We also distinguish the Si4O18 cluster, which is
notably stable by the first criterion. Interestingly, this cluster is
similar to the recently synthesized P4O18 cluster

38 but has free-
ending O3 groups instead of closed ones in P4O18 (see Figure
2d). The important feature of superoxidized clusters is spin-
polarized groups with O−O bonds providing their high
reactivity, which may determine the toxicity of silica
particles.6,39

The exploration of (SiO)n clusters is of interest for
astrophysics because of the presence of SiO molecules in the
circumstellar space and their role in the formation of silicates.
We note that these clusters do not form a distinct range of
Δmin or Ediss. For this reason they can transform to neighboring,
more stable clusters that should be taken into account when
interpreting their optical signatures.
In conslusion, we have developed a new method for

simultaneous prediction of structures of clusters in vast areas
of compositions. In comparison to currently used methods, our
approach demonstrated 5−50 times speedup, allowing for
massive ab initio calculations of nanoclusters at a reasonable
cost. The availability of such an efficient tool opens the door to
wide exploration of trends in chemistry of multicomponent
nanoclusters; to study cluster features connected with the bulk
x−T phase diagram; and to the search for new, non-
stoichiometric “islands of stability”, which can be interesting
for applications. These prospects for nanomaterials science are
supported by our first-principles study of SinOm clusters in a
very wide range of compositions. We present the overall
picture of stability in these clusters and show numerous ridges
and islands of stability, which are very distinct from well-
studied silica clusters. We hope this first attempt gives strong
impetus to wide ab initio research into the plethora of
important multicomponent cluster systems with rich chem-
istry.
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