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Phase diagram of uranium from ab initio calculations and machine learning

Ivan A. Kruglov ,1,2,* Alexey Yanilkin,1,2 Artem R. Oganov,3,2,1 and Pavel Korotaev1,4

1Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russian Federation
2Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation

3Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russian Federation
4Material Modeling and Development Laboratory, NUST MISiS, Moscow 119991, Russian Federation

(Received 7 May 2019; revised manuscript received 17 October 2019; published 12 November 2019)

Experimental studies of materials at extreme conditions are challenging, and as a consequence, P-T phase
diagrams are still unknown for many elements and materials. In this work, we present the P-T phase diagram of
uranium calculated up to extreme conditions. First, we searched for possible crystal structures using the evolu-
tionary algorithm USPEX. Their free energies were then calculated using thermodynamic integration (TI) and
temperature-dependent effective potential techniques. TI was performed using molecular dynamics, employing
a machine learning (ML) force field trained on energies and forces from density-functional calculations at the
generalized gradient approximation level. The prediction error of the ML force field for the energy was less than
10 meV/atom. Using thermodynamic perturbation theory (including first and second order corrections), from
the free energies of the ML force field, we obtained free energies and phase diagram at the level of quality of the
underlying density-functional calculations at pressures up to 800 GPa and temperatures up to 16 000 K.

DOI: 10.1103/PhysRevB.100.174104

I. INTRODUCTION

Uranium is one of the most important elements in nuclear
industry, yet its phase diagram at extreme conditions remains
unknown. It has several low-temperature phases, including
the orthorhombic α phase (stable at normal conditions), high-
temperature tetragonal β phase, body-centered cubic (bcc)
γ phase [1] and high-pressure bct γ ′ phase. The difference
between two tetragonal phases is that γ ′-U has I4/mmm space
group with Z = 2, while β-U has uncertain space group
(P42/mnm, P42nm, or P4̄n2) with Z ∼ 30. It was found that at
ambient pressure α phase transforms into the β phase at 940 K
and then into the γ phase at 1050 K. As pressure increases,
the β phase rapidly disappears from the phase diagram in a
triple point at ∼3 GPa and ∼1000 K2. At temperatures below
50 K, α-U experiences a sequence of two first-order and one
second-order phase transitions, with the charge density wave
formation and superconducting states arising in succession
[2–5]. High-pressure phase transitions were experimentally
investigated in a laser-heated diamond anvil cell at pressures
up to 100 GPa and temperatures 4500 K [6–9]. We will use
these data for comparison and will extend the phase diagram
to much higher pressures and temperatures.

Phase diagrams can be studied using different theoretical
techniques. Quantum-mechanical approaches, such as den-
sity functional theory (DFT), are often applied, but become
expensive at nonzero temperatures. For example, DFT was
used to study structural properties in the equilibrium α-
U phase [10–13], its elastic properties [13–15], and com-
pression stability [16,17]. It was shown that the α phase
transforms into the bct γ ′ phase at 285 GPa, while γ -U is

*Corresponding author: ivan.kruglov@phystech.edu

0.1–0.2 eV/atom higher in enthalpy than the bct phase up
to 500 GPa with a possible transition from γ ′-U to γ -U at
2.3 TPa [16]. To check whether there are other low-enthalpy
phases that might have stability fields on the P-T phase
diagram, we can use global optimization techniques, such
as the evolutionary algorithm USPEX [18–20]. Investigating
phase stability at high temperatures is trickier, as it requires
that thermal contribution to the free energy be taken into ac-
count. High-temperature phase stability can be studied using
a variety of approaches, including the finite-displacements
method [21–23], self-consistent ab initio lattice dynamics
(SCAILD) [24], temperature-dependent effective potential
(TDEP) [25,26], and thermodynamic integration (TI) [27–30]
techniques. Recently, the TDEP technique was used in combi-
nation with ab initio molecular dynamics (AIMD) to explore
the phase diagram of uranium at pressures up to 100 GPa and
temperatures up to 2000 K [31]. The study did not only reveal
strong anharmonic effects in uranium, but also showed that
when anharmonicity is properly included, the theoretical α-γ
equilibrium line on the phase diagram agrees well with the
experiment from Ref. [6].

The SCAILD and TDEP techniques are approximate,
whereas the TI method is exact, although it requires a large
supercell and long simulation times and, therefore, is expen-
sive. Much cheaper calculations can be done using classical
molecular dynamics based on force fields, for example, the
embedded atom model (EAM) [32] and modified embedded
atom model [33] potentials. The EAM potential from Ref. [34]
provided a fairly good description of the α-γ transition in
uranium at zero pressure. Another EAM potential [35] devel-
oped using the force matching technique was quite accurate
in reproducing lattice parameters and bulk modulus of α-U
and the melting curve of U at pressures up to 80 GPa. Other
force fields for U exist [36–38], and were used for predicting
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the melting curve at pressures up to 800 GPa [38]. However,
the α-γ ′ (bct) and γ ′-γ equilibrium lines remained unknown.
Generally, the use of force fields can lead to significant errors.
A possible solution is to parameterize the force field for
each thermodynamic state independently so that the DFT data
are reproduced for that state as accurately as possible and
the errors in the free energy are minimal. This strategy was
adopted in Refs. [39–41] to calculate the free energy of copper
with the EAM potential, and aluminum and iron with the
inverse-power potential.

Recently, we used machine learning (ML) to develop ac-
curate force fields [42]. Various ML-based interatomic po-
tentials are now used extensively and their training on data
from ab initio molecular dynamics simulation is becoming a
common strategy. Neural network potentials were developed
[43,44] and applied to sodium [45,46], silicon [47], water
[48], and zinc oxide [49]. The Gaussian approximation po-
tential (GAP) based on the bispectrum feature vector and
Gaussian regression was constructed and applied to many
problems [50–53]. The moment tensor potential approach
(MTP) [54–57] is another promising approach, as it offers
higher efficiency than GAP, while having the same accuracy
[58]. A comparison between different methods can be found
in Ref. [59].

In this work, we applied a two-step strategy to study the
phase diagram of uranium up to 800 GPa and 16 000 K. First,
we found plausible candidate crystal structures at pressures
up to 800 GPa. Then, their free energies were obtained as
a function of temperature using two approaches: rigorous TI
method and less accurate (since it does not account for the full
anharmonic contribution to the free energy) TDEP approach,
and we compare results of these methods. For the melting line
calculation we used the modified Z method [60].

II. COMPUTATIONAL METHODOLOGY

We conducted searches for lowest-enthalpy structures of
uranium with a variable number of atoms using evolutionary
algorithm USPEX [18–20] at zero temperature and pressures
of up to 800 GPa. The first-generation crystal structures were
created using random symmetric [19] and random topological
[61] structure generators, and each subsequent generation
comprised 30% random structures and 70% structures created
using heredity, softmutation and lattice mutation operators.
We explored systems with variable number of atoms in the
primitive unit cell (from 8 to 16), at pressures 0, 100, 200,
and 300 GPa. The structure that had the lowest enthalpy in 30
successive generations was considered the most stable one.
Structure relaxations and energy calculations were performed
using (DFT within Perdew-Burke-Ernzerhof [62] functional,
as implemented in the VASP code [63–65]. The projector-
augmented wave (PAW) [66] method was used to describe
core electrons and their interaction with valence electrons;
we used PAW potentials with 14 valence electrons and 2.8 Å
core radius (at the highest pressure explored, 800 GPa, the
overlap between core regions was 3.32 Å). The plane wave
kinetic energy cutoff was set at 500 eV and �-centered k-point

meshes with the resolution of 2π × 0.05 Å
−1

were used for
sampling the Brillouin zone. The phase diagram was built
based on the free energies obtained using the TI method.

TI was performed along the nonequilibrium trajectory of
the Frenkel-Ladd path [67] from the actual system (i.e., the
ML force field) to the reference potential and back, as was
described in Ref. [68]. Calculating the absolute value of the
free energy requires a reference potential with known free
energy, such as the Einstein crystal, which is suitable for
the solid state. This strategy is very similar to that published
in Refs. [39–41]. The melting line was calculated using the
modified Z method [60] from a solid-liquid coexistence state.
For this, we used a simulation box, the length of which in
one direction is much larger in comparison with the others.
The initial temperature was set approximately two times the
expected melting point. If the initial energy was high enough,
then in the NVE ensemble the simulated system evolved into
the steady solid-liquid coexistence state. Its average tempera-
ture equals to the melting temperature of the solid.

The ML force field was trained on results (configurations,
energies, forces) of ab initio MD calculations, which were
performed at temperatures from 1000 to 3000 K for α-U, from
1000 to 5000 K for γ ′-U and from 1000 to 15 000 K for γ -U.
The ML force field was formulated following Ref. [69]. The
feature vector, characterizing each configuration, is defined as

X E =
Nat∑
i=1

Ni
neigh∑
j=1

exp

[
−

(
ri j

rcut (l )

)p(l )
]
, l = 1 . . . k, (1)

where Nat is the number of atoms in the unit cell, Ni
neigh is the

number of neighboring atoms of the ith atom, rcut and p are
the constants that must be chosen optimally, and ri j = |−→ri j |.
The length of the feature vector is equal to the number of
(rcut, p) pairs. Following our recent work [42], we used linear
regression with regularization as the ML algorithm, which
means that the energy is a linear function of the feature vector
and, therefore, the forces are derivatives of the energy with
respect to atomic positions (with the minus sign). In this case
the energy is determined as

E = �XE + �0, (2)

where � denotes coefficients of linear regression. Thus, the
force on atom i in the x direction (equations being the same
for the y and z directions) is defined as

fx,i = −∂E

∂xi
= −�

∂XE

∂xi
= �Xf . (3)

To find the parameters of linear regression, we solve E =
�XE + �0 and f = �Xf equations with respect to �:

� = (
X T

E XE
)−1

E , � = (
X T

f Xf
)−1

f . (4)

Here, a bias �0 is included in �. To satisfy Eqs. (2) and
(3), we add rows of ones and zeros to the XE and Xf ma-
trices, respectively. The algorithm is trained simultaneously
on energies E and forces f . After finding �, we can apply
Eqs. (2) and (3) to calculate the energies and forces on atoms
in a new structure. We implemented this potential in the
LAMMPS [70] code using the LAMMPS domain decomposition
for parallelization.

174104-2



PHASE DIAGRAM OF URANIUM FROM … PHYSICAL REVIEW B 100, 174104 (2019)

FIG. 1. Enthalpies of γ ′-U and γ -U (relative to α-U) as a func-
tion of pressure (left). Crystal structures of these phases are shown
on the right.

III. RESULTS

A. Stability of uranium phases at 0 K

First, we looked at stability of uranium phases at zero
Kelvin. We conducted global optimization, searching for the
most stable (and low-enthalpy metastable) uranium phases
using USPEX. This is a more rigorous approach than what
was used in previous works (e.g., Ref. [16]), where calcula-
tions there were limited to comparing enthalpies of known
uranium phases and the most common crystal structure types
(fcc and hcp). USPEX makes no assumptions about possible
crystal structures and is capable of predicting completely
unexpected and even counterintuitive phases [71–75]. In our
USPEX calculations we found previously known Cmcm α-U
and P4/mmm γ ′-U to be the most stable structures, with the
transition pressure of 270 GPa (Fig. 1). Accounting for zero-
point energy shifts α-U → γ ′-U transition pressure at zero
temperature to 265 GPa (See Supplemental Material Fig. S1
[76]). According to DFT calculations, bcc-structured (space
group Im3̄m) γ -U is always ∼0.1−0.15 eV/atom higher in
enthalpy than the γ ′-U phase (yet γ -U is known to be stable
at higher temperatures2), so any new phase which is lower in
enthalpy than γ -U could be stable at high temperature. We
found seven phases that satisfy this condition (see Figs. S2–
S3). Hereinafter we will discuss their potential stability in the
full P-T space explored here.

B. Accuracy of ML interatomic potential for uranium phases

As the next step, we computed free energies of different
phases of uranium and built the phase diagram. Free energy
was calculated by applying the TI technique during MD sim-
ulation with the ML force field. To reach the highest possible
accuracy at a specific density and temperature, we trained
a new ML potential at each temperature and density. We
emphasize that at high temperatures, it is important to include
the electronic contribution to thermodynamic properties; we
did this by training ML force fields on Mermin’s [77] DFT
free energy, which includes electronic entropy computed via
Fermi-Dirac smeared occupancies of the electronic states.

A training set for each ML potential consisted of 20%
structures chosen randomly from a 5-ps AIMD trajectory.
We used 3 × 3 × 3 supercells for γ and γ ′ and 3 × 2
× 2 for α phase. The k-point mesh was 2 × 2 × 2 in

all the calculations. We used 11 equally distributed (rcut, p)
pairs taken from [1,5] and [3,1] intervals, respectively (for
more details on the procedure, see Ref. [42].) Earlier, we
demonstrated [42] that this leads to lower errors for the forces
than with traditional force fields. The accuracy of the free
energy calculation depends on how accurately it reproduces
the potential energy surface. Figure 2 shows the root-mean-
squared error (RMSE) for the energies for different U phases
at different conditions, and one can see that the lowest and
highest errors are 2 and 14 meV/atom, respectively, while
the average error is below 10 meV/atom. With a force field
of such quality, we can compute reasonably accurate free
energies, eliminating the remaining errors later by the use of
thermodynamic perturbation theory.

C. Free energy calculation and P − T phase diagram

To begin with, new uranium phases found by USPEX
(from Fig. S2 [76]) were considered at ρ = 29.28 g/cm3 and
T = 3000 K. We chose to check such a high temperature
because all the new structures are metastable at zero Kelvin,
and the only possibility for them to become stable is due to
entropic stabilization at high temperatures. First we performed
a 10-ps MD run in the NVE ensemble (at T = 3000 K) with a
1000-atom supercell, using the ML interatomic potential. We
found the same behavior for all newly predicted structures,
and we discuss here Cmcm-U as an example. During MD
simulation in the NVE ensemble, this structure relaxed to a
new bct-U phase (“bct2”) differing from γ ′-U in that it had
smaller lattice parameters a and b as compared to c. In order
to check the stability of the “bct2”-U phase, a MD simulation
in the NPT ensemble at 3000 K and corresponding pressure
is needed. However, our ML force field was not trained on
stresses, so we used a MTP force field [58]. It assumes
that energy linearly depends on the basis functions which
are in turn functions of atomic neighborhoods. The basis
functions satisfy all symmetries such as rotation invariance
and invariance with respect to permutation of atoms of the
same type and have explicit expressions for calculation of the
forces and stresses. The number of basis functions is chosen
as a compromise between the accuracy and computational
efficiency of the potential. In this work we used 100 basis
functions. Using MTP potentials the “bct2”-U phase relaxed
to the previously known γ -U. γ -U does not correspond to an
energy minimum, is anharmonically stabilized and covers a
wide basin on the energy landscape. Note that here we used
the MTP force field for NPT molecular dynamics, but not
for free energy calculations, as it often fails during thermody-
namic integration, because phase space changes significantly
while integrating to Einstein crystal and backwards. ML po-
tential, presented in this work, is based on smooth exponential
functions, appears to behave better in rare situations where
extrapolation is needed, and, therefore, it was used for free
energy calculations.

Having selected the most relevant structures, we computed
their free energies. The spring constants of Einstein crystals
used for TI were selected for different phases and densities
in order to minimize the free energy difference from the
reference system. This allows using the shortest integration
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FIG. 2. Root-mean-squared errors (RMSE) shown as histograms of the ML force fields for (a) α, (b) γ ′, and (c) γ -U phases at different
densities and temperatures

times between two potentials and relatively small supercells.
These spring constants are given in Table S2.

Two points should be mentioned. First, an increase in
density produces an increase in the spring constant for all
the phases. Second, the close-packed structure, α uranium,
has the highest spring constant, whereas the anharmonically
stabilized γ phase has the lowest one, the γ ′ phase being in
between. With these spring constants, typical supercell size
(2000 atoms) and TI time (20 ps), we computed free energies
with precision better than 1 meV/atom.

These free energies, corresponding to a ML force field,
were then used to obtain full DFT values of the free energy
with corrections from thermodynamic perturbation theory
[78]. Given a reasonably good ML force field (which we
clearly do have), one can obtain free energies virtually in-
distinguishable from full DFT free energies using thermo-
dynamic perturbation theory, which to second order gives
the following Helmholtz free energy difference (per atom)
between the ab initio system and the system described by the
ML force field [39,41]:


F � 1

Nat

[
〈U − U0〉0 − 1

2kbT
〈[U − U0 − 〈U − U0〉]2〉0

]
,

(5)

where U is the total energy computed with our force field, U0

is the reference DFT energy, and Nat is the number of atoms.
As it turns out, corrections due to Eq. (5) are mild, shifting
phase transition temperatures by less than 150 K (Fig. 3).

Helmholtz free energies of α, γ ′, and γ phases, computed
as a function of temperature at a fixed densities are shown
in Fig. 3. Each F(T) line was fitted using the least squares
method to given values of free energies (marked with disk
and triangle in Fig. 3). This brings an additional error to tran-
sition temperature estimation of about 50 K. At each density,
temperature of phase equilibrium corresponds to crossing of
the F(T) lines, and phase equilibrium pressure is obtained
by averaging pressures of the two phases (at given V and T)
[79,80]: P = PI +PII

2 ; the maximum error of this estimate is
PI −PII

2 (here, only a few GPa).
The importance of anharmonicity is seen in Fig. 3(a),

which shows the free energy of bct-U phase obtained using the
quasiharmonic approximation (Fharm) and fully anharmonic
free energies of all phases obtained using TI. It is clear
from Fig. 3(a) that quasiharmonic and fully anharmonic free
energies are very different, which is indicative of strong
anharmonic effects.

Figure 3 shows that at the density of 29.3 g/cm3, α-U re-
mains stable at temperatures up to 1700 K and then transforms

174104-4



PHASE DIAGRAM OF URANIUM FROM … PHYSICAL REVIEW B 100, 174104 (2019)

FIG. 3. Free energies of uranium phases as a function of tem-
perature at the density of 29.3 g/cm3: (a) fully anharmonic free
energies and quasiharmonic free energy of γ ′-U, all based on our ML
force field, and (b) fully anharmonic free energies relative to γ ′-U,
obtained using our ML force field and at DFT level of theory (using
thermodynamic perturbation theory).

to gamma′-U, which then transforms to gamma-U at 2900 K
(with thermodynamic perturbation theory corrections taken
into account). Then for a given density and temperature (in
this case 1700 K and 29.3 g/cm3) using the P(V,T) function we
calculated the corresponding pressure (162 GPa in this case).
In order to verify the obtained results, we also calculated free
energies of different phases of uranium using TDEP fitted
directly to the AIMD data. The free energies calculated with
different methods are compared in Fig. S4 [76], where one can
see a minor difference between the values of the free energy,
becoming greater at higher temperatures. The temperature of
the phase transition from α- to γ ′ phase calculated using
TDEP at ρ = 29.3 g/cm3 is equal to 2000 K, which shows
semiquantitative agreement between two methods. As TI is
a more rigorous way of calculating free energies, all results
reported here are based only on TI.

Computing free energies and P-T points of phase equilib-
ria, we built the phase diagram of uranium (Fig. 4). A more
detailed phase diagram (with plotted calculated transition and
melting points) is shown in supplementary Fig. S6 [76]. We
found that α-U transforms to γ ′-U at 64 GPa and 1500 K, and
then γ ′-U to γ -U at 2000 K. In Ref. [31] the authors did not
consider γ ′-U phase and showed that α-U transforms to γ -U
at almost the same conditions (∼60 GPa and 1500 K). With

FIG. 4. Phase diagram of uranium. Black diamonds and circles
denote experimental data from Ref. [6]. Solid black lines correspond
to our computed phase boundaries. Dashed black line is the extrapo-
lated experimental melting line using Simon-Glatzel law [81], dotted
magenta and dashed (with dots) blue lines are melting lines from
Ref. [38].

rising temperature γ ′-U transforms to bcc γ -U, which remains
stable up to the melting temperature. TDEP calculations show
qualitatively similar results.

To calculate the melting curve of uranium, we used the
modified Z method [60]. The system (4 × 4 × 100 bcc-
U supercell) was simulated at a fixed density in the NVE
ensemble. Initially the temperature was set approximately
two times higher than estimated melting point. Shortly after
the start, temperature decreased to some constant value, and
then melting happened. Calculated melting temperatures at
different densities are shown in Table I. For comparison, the
experimental melting line was extrapolated to high P-T con-
ditions using Simon-Glatzel law [81] (TS (P) = T0(1 + aP)c)
with parameters taken from Ref. [38].

Our final results for the melting curve also included cor-
rections from thermodynamic perturbation theory. Free en-
ergy correction 
F will induce a shift 
T in the melting
temperature, such that 
T = 
F


Sm
, where 
Sm is the entropy

of melting. The latter can be calculated from the Clausius-
Clapeyron relation: 
Sm = dP

dT 
Vm, where dP
dT is the slope

of the melting curve, and 
Vm can be calculated from the
two-phase system formed during melting temperature calcu-
lation (all values are presented in Table I). As we can see
from Table I, the melting curve is shifted only slightly due

TABLE I. Melting properties of U at different densities.

Density (g/cm3) 24.1 29.3 36.0 40.2
Tmelt (K) (ML) 2822 6232 11822 16052


Vm(Å
3
) 0.27 0.23 0.19 0.13


Sm(kB) 0.84 0.81 0.8 0.8

T (K) −26 18 −13 −20
T corr

melt (K) (DFT) 2796 6250 11809 16032
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to thermodynamic perturbation theory corrections. The final
melting curve of γ -U is in good agreement with experimental
data (Fig. 4, black diamonds), but is about 1500 K higher than
previous results obtained using DFT and EAM potentials [38]
(dotted magenta and dashed (with dots) blue lines in Fig. 4,
respectively). At the pressure of 800 GPa, uranium melts at
almost 16 000 K.

IV. CONCLUSIONS

In this work, we present the P-T phase diagram of uranium
computed to pressures up to 800 GPa and temperatures up
to 16000 K. To do this, we first constructed an accurate
(RMSE within 10 meV/atom) machine learning force field.
This cheap and accurate machine learning force field allowed
us to study large systems, perform long molecular dynamics
simulations, and obtain accurate free energies. First, free en-
ergies of different phases were calculated to zeroth-order ap-
proximation based on machine learning force fields and using
thermodynamic integration from the Einstein crystal. Fully
anharmonic ab initio free energies were obtained by adding

to these free energies first- and second-order corrections from
thermodynamic perturbation theory. Such corrections were
also applied to the melting curve. As a result, we obtained
an ab initio quality phase diagram of uranium up to ultrahigh
pressures and temperatures.

The phase diagram shows that the only phases with wide
stability field at conditions up to 800 GPa and 16000 K are
the previously known α-U, γ -U, and γ ′-U. α-U is stable
up to 270 GPa and 1500 K. Then, with rising temperature,
it transforms first to γ ′-U and then to γ -U. The presented
approach is general and enables building P-T phase diagrams
of any element or (with some modification) compound. For
example, phase diagrams of other actinides with a much wider
variety of different phases can be studied.
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