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a b s t r a c t

AICON (Ab Initio Conductivities) is a program written in Python for computing lattice thermal
conductivity of crystalline bulk materials using the modified Debye–Callaway model. Building upon
the traditional Debye–Callaway theory, the modified model obtains the lattice thermal conductivity
by averaging the contributions from acoustic and optical branches based on their specific heat. The
only inputs of this program are the phonon spectrum, phonon velocity and Grüneisen parameter, all
of which can be calculated using third-party ab initio packages, making the method fully parameter-
free. This leads to a fast and accurate evaluation and enables high-throughput calculations of lattice
thermal conductivity even in large and complex systems. In addition, this program calculates the
specific heat and phonon relaxation times for different scattering processes, which will be beneficial
for understanding the phonon transfer behavior.
Program summary
Program Title: AICON
Program Files doi: http://dx.doi.org/10.17632/s9b8y8t92c.1
Licensing provisions: GNU General public license 3
Programming language: Python3
External routines/libraries: Numpy, Scipy, spglib, pymatgen
Nature of problem: The calculation of lattice thermal conductivity from first principles with an
anharmonic approximation requires a large number of calculations to construct the third-order force
constants matrix, which could be prohibitively long time.
Solution method: Modified Debye–Callaway model, where only the phonon spectrum, phonon velocity
and Grüneisen parameter are needed. The acoustic branch and optic branch are both considered to
obtain the final lattice thermal conductivity.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Studies of thermal conductivity and its behavior under ex-
treme conditions play an important role in various technological
and scientific applications, including thermoelectricity, heat man-
agement, and investigations of the deep Earth (mantle and core of
the Earth). Calculations of thermal conductivity that use as input
only the basic information (such as crystal structure) and do not
require any other parameters obtained from experiments, while
maintaining a sufficient accuracy, could be especially helpful in
such research. Over the years, several approaches were proposed
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to fulfil this objective, e.g. the relaxation time approximation
(RTA), iterative solution of the Boltzmann transport equation
(BTE) and ab initio molecular dynamics. These methods are used
in such software tools as Phono3py [1], ShengBTE [2], LAMMPS.
However, all these approaches need large computing resources.
Addressing these issues, here we present a small but robust com-
puter program that calculates the lattice thermal conductivity,
which is the phonon contribution of the thermal conductivity
of bulk crystalline materials. The program works fast and shows
good accuracy.

Lattice thermal conductivity can be calculated directly using
the temperature gradient from the nonequilibrium molecular dy-
namics (MD) simulation at a given heat current [3,4] or from the
equilibrium MD simulations using the Green–Kubo method [5].
However, MD simulations need a large supercell to take into
account crucially important long-wavelength phonons, and long
simulation time is needed to converge the autocorrelation func-
tion. The second method to calculate lattice thermal conductivity
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is solving the phonon Boltzmann transport equation (PBTE), for
which the most convenient way is to use the relaxation time
approximation (RTA) along with the Debye approximation. Based
on the RTA, a full iterative solution to the PBTE was developed [6].
However, these calculations need the second- and third-order
interatomic force constants. Although density functional theory
(DFT) is a convenient tool for accurately calculating the inter-
atomic interactions in many cases, obtaining the third-order force
constants used in the description of anharmonicity in phonon–
phonon processes is still time-consuming. Another way to cal-
culate lattice thermal conductivity κL from first principles is the
Debye–Callaway model.

In 1959, Callaway proposed a solution for the PBTE based
on three assumptions [7]: first, only four scattering mechanisms
are considered, including point impurities (isotopic disorder),
normal three-phonon processes, Umklapp processes and bound-
ary scattering; second, all phonon scattering processes can be
represented by frequency-dependent relaxation times; third, the
crystal vibrational spectrum is isotropic and dispersionless (as-
suming linear dependence of the acoustic frequencies on the
wavevector). Based on this model, κL of germanium was calcu-
lated in the temperature range of 2 K to 100 K. The results showed
reasonable agreement with the experiments for both normal and
isotopically pure material. Asen-Palmer [8] modified the Debye–
Callaway model by accounting for the contributions of longitudi-
nal and transverse acoustic branches differently. In addition, this
approach uses six freely adjustable parameters for longitudinal
and transverse modes in order to include the anharmonic effect
and contributions from the boundary and isotope scattering. Un-
fortunately, these models lack the predictive power since they
incorporate parameters that are either fitted to experimental data
or freely adjustable. Morelli et al. [9] modeled lattice thermal
conductivity and isotope effect in Ge, Si, and diamond using an
approach similar to that of Asen-Palmer. However, they used the
known phonon dispersion relations of these crystals to derive
all the necessary parameters except the Grüneisen parameter.
Recently, Zhang [10] developed a first-principles Debye–Callaway
approach, where all the parameters (i.e., the Debye temperature
Θ , phonon velocity ν and Grüneisen parameter γ ) can be directly
calculated from the vibrational properties of compounds within
the quasi-harmonic approximation.

In this paper we present a software package, AICON, for cal-
culating lattice thermal conductivity from the phonon disper-
sion curves obtained ab initio. However, unlike the traditional
Debye–Callaway model which only considers acoustic branches,
our modified method also accounts for the contribution from
optical branches, which could be as large as 20% to 50% at high
temperatures, according to Slack [11]. We obtain the lattice ther-
mal conductivity by averaging the contributions from the acoustic
branches and optical branches based on their specific heat cv . In
addition, our software package can calculate the phonon–phonon
relaxation times for different scattering mechanisms (including N
process, U process and isotope scattering), which is important for
the deeper analysis of the heat transfer.

The paper is structured as follows. In Section 2 we introduce
the mathematical formalism and methodological choices behind
AICON. Section 3 includes tests for three different systems. We
present our main conclusions and discuss future directions for
development in Section 4.

2. Methodology

2.1. AICON workflow

The software presented in this paper enables approximate and
highly efficient lattice thermal conductivity calculation from first

Fig. 1. The workflow of lattice thermal conductivity calculation using AICON.
Gold boxes represent steps of the calculation, blue boxes for the results of these
steps, and computer programs are denoted as black text outside of the box.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

principles. The main improvement of our method compared with
the older Callaway model is that the contribution from the optical
branches is included and all the necessary physical quantities
including Debye temperature, phonon velocity and Grüneisen
parameter are obtained by first-principles calculations. The only
inputs needed by AICON are phonon dispersion curves, phonon
velocity and mode Grüneisen parameters. Our program relies
completely on external tools (such as Phonopy [12]) to generate
them.

We recommend to use VASP [13] combined with Phonopy to
do the DFT calculations. A summary of our workflow, starting
with structure relaxation of each material and ending with the
calculation of κL, is shown in Fig. 1.

2.2. Modified Debye–Callaway model

Following the approach used by Morelli [9], we update the
formalism used to calculate lattice thermal conductivity. The total
lattice thermal conductivity κ is the weighted average of the
acoustic branches (one longitudinal κLA, two transverse κTA and
κTA′ ) and one pseudo-optic branch (κO):

κ =
cacoV

cacoV + coptV

×
κLA + κTA + κTA′

3
+

cacoV

cacoV + coptV

× κO (1)

where κi = κi1 + κi2, with i denoting LA, TA, TA′ and optic modes
O. cacoV and coptV are specific heat of acoustic and optical branches,
which will be explained later. The partial conductivities κi1 and
κi2 are the common Debye–Callaway terms:

κi1 = CiT 3
∫ θi/T

0

τ i
C (x)x

4ex

(ex − 1)2
d x (2a)

κi2 = CiT 3

∫ θi/T
0

τ iC (x)x
4ex

(ex−1)2
d x∫ θi/T

0
τ iC (x)x

4ex

τ iN (x)τ iR(x)(e
x−1)2

d x
(2b)
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In these expressions, θi is the Debye temperature for each phonon
branch, Ci = k4B/(2π

2h̄3νi) and x = h̄ω/kBT , where h̄ is the
Planck constant, kB is the Boltzmann constant, ω is the phonon
frequency, and νi is the phonon velocity for each branch; (τ i

N )
−1

is the scattering rate of the normal phonon process, (τ i
R)

−1 is
the total scattering rate of all the resistive scattering processes,
and (τ i

C )
−1

= (τ i
N )

−1
+ (τ i

R)
−1. According to Callaway, (τ i

R)
−1

should equal the sum of the scattering rates of the phonon–
phonon Umklapp scattering, isotope point defect scattering, and
scattering from the crystal boundary. In our model, only the
Umklapp scattering and isotope scattering are considered, so that
(τ i

R)
−1

= (τ i
U )

−1
+ (τ i

I )
−1. For most practical applications like

thermoelectricity, where the temperature is usually above 300 K,
it is reasonable to omit boundary scattering because it becomes
significant only at very low temperatures, usually tens of Kelvins.

2.2.1. Phonon–phonon normal scattering
Although the normal phonon scattering is not a resistive

process, it can redistribute the momentum and energy among
phonons and influence other resistive scattering processes (such
as the Umklapp scattering). Following the approach of Asen-
Palmer [8], the appropriate forms for longitudinal and transverse
acoustic phonons are

[τ L
N (x)]

−1
= BL

N (
kB
h̄
)2x2T 5 (3a)

and

[τ T
N (x)]

−1
= BT

N (
kB
h̄
)2xT 5 (3b)

with the magnitudes BN depending on the phonon velocity ν and
Grüneisen parameter γ ,

BL
N =

k3Bγ
2
L V

Mh̄2ν5
L

(4a)

and

BT
N =

k4Bγ
2
T V

Mh̄3ν5
T

(4b)

where M is the mean atomic mass in the crystal and V is the
volume per atom. A more general case and further discussion are
included in the Appendix of Ref. [9]. For the optical branch, we
assume the same formula as for the longitudinal acoustic branch.

2.2.2. Phonon–phonon Umklapp scattering
The phonon–phonon Umklapp processes dominate at high

temperatures, following an exponential behavior. According to
Morelli [9], the Umklapp scattering rate for longitudinal and
transverse acoustic phonons is:

[τ i
U (x)]

−1
= Bi

U (
kB
h̄
)2x2T 3e−θi/3T (5a)

where

Bi
U =

h̄γ 2
i

Mν2
i θi

(5b)

The Umklapp scattering rate thus depends on Debye tempera-
ture, phonon velocity, and Grüneisen parameter of each branch.
Again, we assume the optical branch to be described by the same
formula as the longitudinal acoustic branch.

2.2.3. Phonon-isotope scattering
According to Klemens [14], the scattering rate of mass fluctu-

ation due to the presence of isotopes should take the form

[τ i
I (x)]

−1
=

Vk4BΓ
4π h̄4ν3

i

x4T 4 (6)

Therefore, the isotope scattering rate also depends on the phonon
velocity. The mass fluctuation phonon scattering parameter Γ for
a single element composed of several naturally occurring isotopes
is

Γ =

∑
i

ci[
mi − m̄

m̄
]
2 (7a)

where

m̄ =

∑
i

cimi (7b)

mi is the atomic mass of the ith isotope and ci is the fractional
atomic natural abundance. For a compound including N different
elements,

Γ (AB . . . ) = N

[(
MA

MA + MB + . . .

)2

Γ (A)

+

(
MB

MA + MB + . . .

)2

Γ (B) + · · ·

]
(8)

where Mi(i = A, B, . . . ) denotes the average atomic mass of
element i.

2.2.4. Specific heat
The specific heat is usually calculated using Debye model,

which is only suitable for the acoustic branches. For structures
whose primitive cell contains more than one atom (p > 1), a
more accurate method would be using the Debye model for the
acoustic branches, while approximating the optical branches by
the Einstein model. Then, the specific heat is

cacoV = 3
N
V
kBfD

(
ΘD

T

)
(9a)

coptV = (3p − 3)
N
V
kBfE

(
ΘE

T

)
(9b)

fD(x) =
3
x3

∫ x

0

y4ey d y
(ex − 1)2

(9c)

and

fE(x) = x2
ex

(ex − 1)2
(9d)

where ΘD is the Debye temperature, ΘE is the Einstein temper-
ature, N is the number of primitive cells, fD and fE are the Debye
function and Einstein function respectively.

2.2.5. Debye temperature, Grüneisen parameter, and phonon veloc-
ity

The lattice thermal conductivity is a function of the Debye
temperature θi, Grüneisen parameter γi and phonon velocity νi
of each phonon branch (Eqs. (1)–(9)), the parameters that can be
readily obtained from an external software such as Phonopy.

For Debye temperature, we select the highest frequency of
each branch to calculate θi:

θi =
h̄ωmax

i

kB
(10)

The Debye temperature ΘD in Eq. (9a) could, in principle, calcu-
lated from the specific heat at low temperatures or, equivalently,
from the elastic constants. However, this determination is implic-
itly based on the assumption that acoustic frequencies depend
linearly on the wavevector, and will overestimate the maximum
acoustic frequency. Here we determine the Debye temperatures
from the maximum θi of the three acoustic branches, and this
gives ΘD somewhat lower than standard values of the Debye
temperature.
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Table 1
The characteristic temperatures (θ ), phonon velocities (ν) and Grüneisen parameters (γ ) of the transverse, longitudinal acoustic branches and optical branch of Si,
diamond and SnSe.
Material θTA (K) θTA′ (K) θLA (K) θO (K) νTA (m s−1) νTA′ (m s−1) νLA (m s−1) νO (m s−1) γTA γTA′ γLA γO

Si 289.4 315.3 576.9 723.2 4635.7 4931.3 8424.0 385.2 0.57 0.37 1.04 1.18
C 1308.5 1415.5 1561.8 1872.7 11803.0 12236.6 17694.1 423.8 0.54 0.82 1.05 1.07
SnSe 70.2 70.2 71.4 197.3 2212.5 2194.7 2948.9 303.7 16.71 3.32 2.96 0.74

The phonon velocity and Grüneisen parameter of each branch
are calculated using a two-step averaging. The results of the
Phonopy calculation of the phonon velocity and Grüneisen pa-
rameter are a function of band index i and wavevector q, namely
ν(i, q) and γ (i, q). The first average is taken within each high
symmetry path of the same branch:

ν(i, j) = ν(i, q) (11a)

γ 2(i, j) = [γ (i, q)]2 (11b)

where j denotes a different high symmetry path in each branch.
The second average is taken of these high symmetry paths:

νi =

∑
j mjν(i, j)∑

j mj
(12a)

γi =

√∑
j mjγ 2(i, j)∑

j mj
(12b)

where mj is the multiplicity of each high symmetry path, a value
related to the symmetry of the structure.

We did not use all the optical branches in the thermal con-
ductivity calculations. Instead, to correspond with the Einstein
model and treat the optical branches’ contribution as a correction
to the original Callaway model, we use a ‘‘pseudo-optical’’ branch,
which is an average of the optical branches. ΘE in Eq. (9b) is
the characteristic Einstein temperature of this ‘‘pseudo-optical’’
branch.

2.3. Settings for first-principles calculations

All the first-principles calculations were performed using the
VASP code with the projector-augmented wave (PAW) method [15,
16]. The exchange–correlation energy was approximated by the
PBE-GGA functional [17]. For total energy calculations and struc-
ture relaxation, the plane wave kinetic energy cutoff was set to
600 eV and the Brillouin zone was sampled using Γ -centered
meshes [18] with reciprocal-space resolution of 2π × 0.03 Å−1.
Kohn-Sham equations were solved self-consistently with total en-
ergy tolerance of 10−7 eV/cell and structures were relaxed until
the maximum force became less than 10−3 eV/Å. For the phonon
calculations, a 2 × 2 × 2 supercell was built and DFPT [19]
was used to obtain the second-order interatomic force constants
(IFCs). To get Grüneisen parameters, three phonon calculations
have to be run: one at the equilibrium volume, the other two at
slightly smaller (−0.4%) and larger volume (+0.4%) volumes. For
SnSe, the van der Waals correction (IVDW = 11) was included
because this material has layered structure.

3. Examples

We illustrate the capabilities of AICON by performing cal-
culations for three prototypical systems: (1) carbon in the dia-
mond phase, an insulator with very high thermal conductivity;
(2) silicon, the most studied semiconductor with normal thermal
conductivity value; (3) tin selenide (SnSe), a famous thermoelec-
tric material with the highest figure of merit achieved in its single
crystal, mainly because of its very low thermal conductivity.

3.1. Carbon (diamond)

The phonon spectrum of diamond is shown in Fig. 2a. The
lattice thermal conductivity of diamond calculated in this work is
shown in Fig. 2b in comparison with the measurements reported
in two studies [20,21] and the calculation using the full ab initio
method [22]. We also compare with results of ShengBTE pro-
gram. The needed second-order force constants file, third-order
force constants file and other parameters were obtained from
the database [23]. The calculated Debye temperature, phonon
velocity and Grüneisen parameter of diamond used with our
method are listed in Table 1. We compared these parameters
with previous work [9] to make sure these input parameters are
correct.

High lattice thermal conductivity of diamond is mainly caused
by its very high phonon velocity. In general, our method tends
to overestimate the value of the lattice thermal conductivity at
low temperatures. For example, κL obtained in our calculations
at 300 K is 3180 W m−1 K−1, while the experimental value is
close to 2000 W m−1 K−1. This is partly because we did not
account for boundary scattering, while the Debye temperature of
diamond is very high (∼2000 K), meaning that 300 K can even be
considered as a low temperature. Different isotopic compositions
in experiment and calculation could also account for such a differ-
ence of the thermal conductivity at low temperatures. At higher
temperatures (>500 K), the difference between our calculation
results and the reference values is within 10%. Comparing with
the results of ShengBTE, we see good agreement at temperatures
below 400 K, but at higher temperatures our results are much
closer to experiment.

The ratios of the acoustic specific heat to total specific heat
(RA) and of the optical specific heat to total specific heat (RO),
which can reflect the relative contribution of the acoustic
branches and optical branches, are shown in Fig. 2c. Within
the temperature range of 200 K–1000 K, RA is larger than RO,
indicating the domination of the acoustic branches. However, RA
diminishes while RO grows as temperature increases, making the
contributions from the acoustic and optical branches almost equal
above 1000 K.

Fig. 2d shows the phonon relaxation times in the resistive
scattering processes, i.e. Umklapp scattering and isotope scat-
tering, for each branch. From these data, we can compare the
contribution of different scattering processes and understand the
origin of thermal resistivity. For example, in the isotope scattering
process, the relaxation times are 5.70E−11 s, 4.64E−11 s and
9.47E−11 s for the TA, TA′ and LA branches, respectively. In the
Umklapp process, the relaxation times above 300 K are shorter
than those in the isotope scattering process for all the acoustic
branches, suggesting that Umklapp scattering is stronger than
isotope scattering. The relaxation times for optical branches are
shorter than those for the acoustic branches by three orders of
magnitude, suggesting a very strong scattering of phonons.

3.2. Silicon

The calculated phonon spectrum and lattice thermal conduc-
tivity of Si are shown in Fig. 3a and b, respectively, the latter
providing a comparison with the experimental results for the
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Fig. 2. (a) Phonon spectrum of diamond. (b) Lattice thermal conductivity of diamond calculated by our method compared with the experimental and full ab initio
results. (c) Percentage of specific heat from the acoustic and optical branches in the total specific heat of diamond. (d) Phonon relaxation times for the resistive
scattering processes.

natural Si isotopic composition [24,25] and results calculated
from ShengBTE. The results are in close agreement with the
experimentally measured values at temperatures above 200 K.
For example, at 300 K, the lattice thermal conductivity calculated
using our method is 130 W m−1 K−1, while the experimental
value is 140 W m−1 K−1–143 W m−1 K−1, which shows the
difference of 7%–9%. For temperatures below 200 K, the difference
may be larger due to the neglect of boundary scattering in the
calculations and possible difference of the isotopic composition.
Compared with ShengBTE, both methods give close results in the
calculated temperature range.

The ratios of the acoustic specific heat to total specific heat,
RA, and that of the optical specific heat to total specific heat,
RO, are shown in Fig. 3c. The two ratios converge as temper-
ature increases. Similar to diamond, in the temperature range
200 K–1000 K, RA is larger than RO, indicating the dominance
of the acoustic branches. The phonon relaxation times in the
resistive scattering processes are shown in Fig. 3d.

3.3. Tin selenide (SnSe)

SnSe is a newly discovered thermoelectric material with a very
high figure of merit (claimed to be as high as 2.6 at 923 K along
the b axis) [26]. Its crystal structure is highly anisotropic and its
good thermoelectric performance is mainly due to its intrinsically
very low lattice thermal conductivity along b and c axes. At
about 750 K, SnSe goes through a phase transition from the
low-temperature Pnma structure to the high-temperature Cmcm
structure. The high figure of merit values appear near and above
the transition temperature. Here we calculate the lattice thermal

conductivity of the low-temperature phase and compared the
results with the experimental measurements.

The phonon spectrum and lattice thermal conductivity of SnSe
are shown in Fig. 4a and 4b, respectively. The calculated κL of
SnSe using our method is more than twice the experimentally
measured values in the temperature range of 300 K to 1000 K.
The results of ShengBTE are also higher than experimental values,
but are closer to them. Note, however, that experimental thermal
conductivity values from Zhao et al. [26] are most likely sig-
nificantly underestimated [27]. Nevertheless, it is clear, and our
calculations confirm, that SnSe single crystal has a very low lattice
thermal conductivity (around 1 W m−1 K−1), the reason being a
low phonon velocity and high Grüneisen parameter, especially for
the TA branch (as shown in Table 1). In addition, extremely low
characteristic temperatures of the acoustic and optical branches
(Table 1) make its specific heat converge quickly to the classical
Dulong-Petit constant value, and since the structure is relatively
complex, there are many more optical phonons than acoustic
phonons (Fig. 4c), but the former have much shorter relaxation
time. This suggests a way to identify materials with likely low
lattice thermal conductivity by looking for compounds with very
low acoustic Debye temperature and complex structures with
many atoms in the primitive cell.

In general, the method proposed in this work can give reliable
results, especially for materials with normal and high lattice
thermal conductivity (tens of W m−1 K−1 and above) at tem-
peratures >200 K. Our approach does not require any exper-
imental information and enables relatively cheap and accurate
calculations.
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Fig. 3. (a) Phonon spectrum of Si. (b) Lattice thermal conductivity of Si calculated by our method, and compared with two experimental results. (c) Percentage of
specific heat from the acoustic and optical branches in total specific heat of Si. (d) Phonon relaxation times for resistive scattering processes.

4. Conclusion

We have presented a computer program AICON for calculat-
ing the lattice thermal conductivity using the modified Debye–
Callaway model. Going beyond the original Callaway
model, we take into consideration the optical branches, using the
specific heat ratio as a weight to sum the contribution of the
acoustic and optical branches. Our method takes into account the
phonon–phonon normal scattering, Umklapp scattering, and iso-
tope scattering processes, while all the necessary parameters can
be calculated using first-principles methods. The capability of our
program has been demonstrated on three examples of isotropic
and anisotropic systems, which included compounds with very
high and very low thermal conductivity. All the reviewed cases
validate the robustness and accuracy of our method.

Compared to fully ab initio program like ShengBTE, our pro-
gram works much faster with the total calculation time three
(or two) times that of a phonon spectrum calculation, since we
do not need to calculate the computationally expensive anhar-
monic force constants. Our approach can be used for a wide
range of materials and gives more accurate results compared
with other semi-empirical methods. For different scattering pro-
cesses, AICON directly estimates phonon relaxation times, pro-
viding additional information for studying the origins of thermal
resistivity.

One of the shortcomings of the presented approach is that the
optical branch is treated as a longitudinal acoustic branch, which
is clearly a rough approximation. In reality, the optical branch has
its own dependence on the frequency and temperature, which
needs further theoretical investigation to find the proper formal-
ism. The other issue comes from the original Debye–Callaway

model, where Callaway used the classical Boltzmann distribution
to describe the phonon behavior. However, the Bose–Einstein dis-
tribution should be used for phonons, and the resulting equations
may differ from the original ones. This has been addressed by
Allen [28] and the modified formulas will be included in the
future version of the presented method. We strongly encourage
those who have similar research interests to join us and further
develop this program.

Overall, our program will be useful for a high-throughput
screening of the lattice thermal conductivity of materials.
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Fig. 4. (a) Phonon spectrum of SnSe. (b) Lattice thermal conductivity of SnSe calculated by our method in comparison with the experimental results. (c) Percentage
of specific heat from the acoustic and optical branches in total specific heat of SnSe.
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