Supported by the Russian Scientific Foundation grant No. 19072-30043 "Computational materials design laboratory

## Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its application to real strongly correlated materials

## Vladimir I. Anisimov



Russian Science Foundation Institute of Metal Physics Ekaterinburg, Russia





### **Method formulation:**

- **Dynamical Mean-Field Theory (DMFT)**
- Wannier functions as localized orbitals basis
- **Determination of Hamiltonian parameters**
- "Constrained DFT" calculations for Coulomb interaction parameters
- **DFT+DMFT** calculation scheme



### **Results of DFT+DMFT calculations:**

Strongly correlated metal Sr(Ca)VO<sub>3</sub> Metal-insulator transition in  $V_2O_3$ Heavy fermions in d-system Li<sub>2</sub>VO<sub>4</sub> **Charge transfer insulator NiO** Metal-insulator transition with pressure in MnO **Correlated covalent insulators FeSi and FeSb2 Novel superconductor LaOFeAs** Jahn-Teller distortions in KCuF<sub>3</sub> **f-electrons localization in Ce** 

Dynamical Mean-Field Theory



$$H = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow}$$

D=2,3: unsolvable many-body problem

- reliable approximations?
- non-perturbative energy scale?

Static mean-field (DFT+*U*) does not describe correlated metal and paramagnetic insulator

Gutzwiller (1963) Hubbard (1963) Kanamori (1963)

DFT





$$\left\langle n_{\mathbf{i}\uparrow}n_{\mathbf{i}\downarrow}\right\rangle \neq \left\langle n_{\mathbf{i}\uparrow}\right\rangle \left\langle n_{\mathbf{i}\downarrow}\right\rangle$$

**Correlation phenomena:** Metal-insulator transition Ferromagnetisms,...

# Dynamical Mean-Field Theory

### Single-impurity Anderson Model:



$$\begin{split} \hat{H}_{SIAM} &= \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k},\sigma} \hat{c}_{\mathbf{k},\sigma} + \frac{U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow}}{+ \sum_{\mathbf{k},\sigma} (V_{\mathbf{k}} d^{\dagger}_{\sigma} c_{\mathbf{k},\sigma} + h.c.)} \end{split}$$

many-body problem: solve with QMC, NRG,...

Characteristic 3-peak structure *non-perturbative* energy scale ("Kondo physics") Non-interacting conduction (*s*-) electrons + Single *d*-orbital ("impurity") with **interaction** *U* + *s,d*-hybridization

### SIAM spectral function:



Mapping impurity Anderson model on lattice Hubbard model



"single-impurity Anderson model" + self-consistency

Georges and Kotliar (1992)

*dynamic* mean-field (hybridization function):

$$\Delta(\omega) = \sum_{\mathbf{k}} \frac{|V_{\mathbf{k}}|^2}{\omega - \epsilon_{\mathbf{k}}}$$

self-consistency condition:

$$G[\Delta(\omega)] = \sum_{\mathbf{k}} \{\omega - \Sigma[\Delta(\omega)] - t_{\mathbf{k}}\}^{-1}$$
$$\Sigma[\Delta(\omega)] \equiv \Delta(\omega) - G^{-1}(\Delta(\omega)) + \omega$$

Effective impurity model defined by hybridization function is solved with an "impurity" solver, e.g., QMC, NRG, ED,...

# Including material specific details





Anisimov *et al.* (1997) Lichtenstein, Katsnelson (1998) Kotliar, Vollhardt (2004)

DFT+DMFT

• DFT band structure:

$$\varepsilon_{lml'm'}(k) \rightarrow \hat{H}_{LDA}$$

• + Coulomb U



- solve  $\hat{H}_{\textit{LDA+corr}}$  by DMFT



**Density Functional Theory:** 

- material specific: "ab initio"
- fails for strong correlations

## Wannier functions in real space [1]:

$$W_i(\mathbf{r} - \mathbf{T}) = \sum_{\mathbf{k}} e^{-i\mathbf{kT}} \langle \mathbf{r} | \psi_{i\mathbf{k}} \rangle$$
 Bloch functions

### Advantages of Wannier function basis set:

<Explicit form of the orbitals

forming complete basis set

? Localized orbitals

? Orbitals are centered on atoms)

like in Hubbard model

Uncertainty of WF definition for a many-band case:

$$|\psi_{i\mathbf{k}}\rangle = \sum_{j} U_{ji}^{(\mathbf{k})} |\psi_{j\mathbf{k}}\rangle$$

$$\uparrow$$
Unitary matrix

**WF in k-space** – projection of the set of trial functions [2] (atomic orbitals) into Bloch functions subspace :

$$|\widetilde{W}_{n\mathbf{k}}
angle = \sum_{i=N_1}^{N_2} |\psi_{i\mathbf{k}}
angle \langle \psi_{i\mathbf{k}} |\phi_n 
angle$$

Bloch functions in DFT basis (LMTO or plane waves):

$$|\widetilde{W}_{n\mathbf{k}}
angle = \sum_{i=N_1}^{N_2} \sum_j c_{ji}(\mathbf{k}) c^{\star}_{ni}(\mathbf{k}) |\phi^{\mathbf{k}}_j
angle = \sum_j \widetilde{b}^{\mathbf{k}}_{jn} |\phi^{\mathbf{k}}_j
angle$$

**coefficients** of WF expansion in LMTO-orbitals:

 $ilde{b}_{jn}^{\mathbf{k}} = \sum_{i=N_1}^{N_2} c_{ji}(\mathbf{k}) c^{\star}_{ni}(\mathbf{k})$ 

[2] D.Vanderbildt et al, Phys. Rev.B 56, 12847 (1997)

Example of WF in real space

### WF basis set for V-3d ( $t_{2g}$ ) subband of SrVO<sub>3</sub>: XY, XZ, YZ - orbitals









Full bands projection

d-bands only projection

Dm.Korotin et al, Europ. Phys. J. B 65, 91 (2008).

## WF for stripe phase in cuprates



V.Anisimov et al, Phys. Rev. B 70, 172501 (2004)

WF for stripe phase in cuprates



Matrix elements of projected Hamiltonian:

$$\widetilde{H}_{nm}^{WF}(\mathbf{k}) = \langle \widetilde{W}_{n\mathbf{k}} | \left( \sum_{i\mathbf{k}'} |\psi_{i\mathbf{k}'}\rangle \epsilon_i(\mathbf{k}') \langle \psi_{i\mathbf{k}'} | \right) | \widetilde{W}_{m\mathbf{k}} \rangle = \sum_{i=N_1}^{N_2} c_{ni}(\mathbf{k}) c_{mi}^{\star}(\mathbf{k}) \epsilon_i(\mathbf{k})$$



LMTO Eigenvectors, Eigenvalues

## Projection results for SrVO3



Eigenvalues of full-orbital and projected Hamiltonians are the same

**Projected** Hamiltonian DOS corresponds to the total DOS of full-orbital Hamiltonian

Matrix of projected Hamiltonian in real space:

$$H_{nm}^{WF} = \langle W_n^{\mathbf{0}} | \left( \sum_{\mathbf{k}} \sum_{i=N_1}^{N_2} |\psi_{i\mathbf{k}}\rangle \epsilon_i(\mathbf{k}) \langle \psi_{i\mathbf{k}} | \right) | W_m^{\mathbf{0}} \rangle = \sum_{\mathbf{k}} \sum_{i=N_1}^{N_2} \bar{c}_{ni}(\mathbf{k}) \bar{c}_{mi}^{\star}(\mathbf{k}) \epsilon_i(\mathbf{k})$$

### **Density matrix operator:**

$$Q_{nm}^{WF} = \langle W_n^{\mathbf{0}} | \left( \sum_{\mathbf{k}} \sum_{i=N_1}^{N_2} |\psi_{i\mathbf{k}}\rangle \theta(\epsilon_i(\mathbf{k}) - E_f) \langle \psi_{i\mathbf{k}} | \right) | W_m^{\mathbf{0}} \rangle = \sum_{\mathbf{k}} \sum_{i=N_1}^{N_2} \bar{c}_{ni}(\mathbf{k}) \bar{c}_{mi}^{\star}(\mathbf{k}) \theta(\epsilon_i(\mathbf{k}) - E_f) \langle \psi_{i\mathbf{k}} | \right) | W_m^{\mathbf{0}} \rangle$$

Energy of *n*-th WF:

Occupation of *n*-th WF:

$$E_n = H_{nn}^{WI}$$

 $Q_n = Q_{nn}^{WF}$ 

### **Coulomb interaction**

$$U \equiv \frac{\partial E_n}{\partial Q_n}$$

DFT+DMFT calculations scheme

function is solved by QMC

### **Local Green function:**

$$G_{n,n'}^{loc}(\varepsilon) = \frac{1}{V_{IBZ}} \int_{IBZ} d\mathbf{k} \left( \left[ (\varepsilon + E_f^{(N)}) 1 - H_0^{WF}(\mathbf{k}) - \Sigma(\varepsilon) \right]^{-1} \right)_{n,n'}$$
Dyson equation defines bath Green function:  

$$\mathcal{G}^{-1} = (G^{loc})^{-1} + \Sigma$$
Self-consistent condition:  

$$G^{loc} = G^{imp} \Rightarrow \Sigma_{new}$$
Impurity problem defined bath Green





V<sup>+4</sup> (d<sup>1</sup>) ion in cubic perovskite crystal structure

One electron in partially filled  $t_{\rm 2g}$  band

I.Nekrasov et al, Phys. Rev. B 72, 155106 (2005), Phys. Rev. B 73, 155112 (2006)

# Strongly correlated metal SrVO3



# Strongly correlated metal SrVO3



# Strongly correlated metal SrVO<sub>3</sub>





Mott insulator  $V_2O_3$ 



intensity (arb. units)

Mott insulator  $V_2O_3$ 



Paramagnetic metal to paramagnetic insulator transition with small change in corundum crystal structure parameters

K.Held et al, Phys. Rev. Lett. 86, 5345 (2001), G.Keller et al, Phys. Rev. B 70, 205116 (2004)





Heavy-fermions without f-electrons: linear specific heat coefficient g=420 mJ/molK<sup>2</sup>, effective electron mass  $m^*/m$  =25 below T<sub>K</sub> ~28 K

Cubic spinel crystal structure with local trigonal symmetry



Sharp quasiparticle peak above the Fermi for T=0 limit (PQMC)

R.Arita et al, Phys. Rev. Lett. 98, 166402 (2007)



A. Shimoyamada, et al, Phys. Rev. Lett. 96, 026403 (2006)

## Charge transfer insulator NiO



Charge transfer insulator in paramagnetic phase. Ni<sup>+2</sup> (d<sup>8</sup>) ion in cubic rock salt crystal structure

J. Kuneš, et al, Phys. Rev. B 75, 165115 (2007)

## Charge transfer insulator NiO



# Charge transfer insulator NiO





Metal-insulator transition (paramagnetic insulator to paramagnetic metal) with pressure in MnO accompanied with high-spin to low-spin state transition.

J. Kunes et al, Nature Materials 7, 198 (2008)





Decreasing volume with pressure increases crystal field spliting  $\Delta_{cf}$  competing with exchange energy J that results in HS  $\rightarrow$  LS transition with volume collapse. 36 out of 46 Correlated covalent insulators FeSi and FeSb<sub>2</sub>



Transition from non-magnetic semiconductor to paramagnetic metal with temperature increase in FeSi and FeSb<sub>2</sub>. Electron doping in  $Fe_{1-x}Co_xSi$  results in ferromagnetic metallic state.

## 37 out of 46 Correlated covalent insulators FeSi and FeSb<sub>2</sub>



Effective one-orbital per Fe ion model corresponding to covalent insulator

J. Kunes et al, Phys.Rev. B 78, 033109 (2008)

## 38 out of 46 Correlated covalent insulators FeSi and FeSb<sub>2</sub>



Temperature increase results in transition from honmagnetic covalent insulator to bad metal with local moments. Electron doping leads to divergence of susceptibility for low T indicating ferromagnetic instability



### Tc=26K for F content ~11%

Y. Kanamura et al. J. Am. Chem. Soc. 130, 3296 (2008)]

Pnictide superconductor LaOFeAs





DMFT results for Hamiltonian and Coulomb interaction parameters calculated with Wannier functions for Fe3d bands only U=0.8 eV J=0.5 eV

Weakly correlated regime!

Pnictide superconductor LaOFeAs



DMFT results for Hamiltonian and Coulomb interaction parameters calculated with Wannier functions for all bands (O2p,As4p,Fe3d) U=3.5 eV J=0.8 eV

Weakly correlated regime!

43 out of 46 Correlations and lattice distortion: KCuF<sub>3</sub>

### KCuF<sub>3</sub>: a prototype $e_a$ (3d<sup>9</sup>) Jahn-Teller system

Crystal structure and Orbital order (OO):



- pseudo cubic perovskite I4/mcm
- cooperative JT distortion below 1000 K
- Neel temperature ~38 K
- $d_{x^2 y^2}$  hole antiferroorbital ordering



GGA (Cu 3d) density of state:



metallic solution -> inconsistent with exp

Correlations and lattice distortion: KCuF<sub>3</sub>

## KCuF<sub>3</sub>: GGA+DMFT results

### Total energy:

44 out of 46





Leonov et al., cond-mat/0804.1093, accepted to PRL

### GGA:

- metallic solution
- total energy almost const for JT distortion < 4 %</li>

*U* = 7.0 eV, *J* = 0.9 eV

- no JT distortion (orbital order) for T > 100 K !
- $\rightarrow$  inconsistent with experiment

### GGA+DMFT:

- paramagnetic insulator
- energy gain of ~ 175 meV
- antiferro-orbital order
- optimal JT distortion at 4.2 %
- JT distortion persists up to 1000 K (melting tem-re)
- → in good agreement with exp

### f-electrons localization in Ce



M.B. Zoelfl et al, Phys. Rev. Lett. 87, 276403 (2001)

- Dynamical mean-field theory (DMFT) is a powerful tool to study correlation effects
- *Ab-initio* definition of correlated orbitals and interaction strength (U) between them based on Wannier functions formalism results in "firstprinciples" DFT+DMFT calculations scheme
- DFT+DMFT method was successful in describing paramagnetic Mott insulators, correlated metals, charge transfer insulators, metal-insulator transitions with pressure and temperature, cooperative Jahn-Teller lattice distortions