
npj | computationalmaterials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01731-1

Acceleration of crystal structure
relaxation with deep reinforcement
learning

Check for updates

Elena Trukhan , EfimMazhnik & Artem R. Oganov

We introduce a Deep Reinforcement Learning (DRL) model for crystal structure relaxation and
compare different types of neural network architectures and reinforcement learning algorithms for this
purpose. Numerical experiments are conducted on Al-Fe structures, with potential energy surfaces
generated using EAM potentials. We examine the influence of parameter settings on model
performance and benchmark the best-performing models against classical optimization algorithms.
Additionally, the model’s capacity to generalize learned interaction patterns from smaller atomic
systems to more complex systems is assessed. The results demonstrate the potential of DRLmodels
to enhance the efficiency of structure relaxation compared to classical optimizers.

Structure relaxation is the optimization of the positions of atoms and the
lattice geometry in theprocess of searching for theminimumof thepotential
energy and interatomic forces, which corresponds to a (meta)stable state. It
is a fundamental part of atomistic and molecular modeling and is used in a
wide range of scientific and engineering tasks to study the properties and
behavior of various materials and systems.

Many structure relaxation algorithms formalize the problem as a
functionminimization task and search for a (meta)stable state iteratively: at
each step, the potential energy, its gradients (forces), and in somemethods,
the Hessian matrix, are evaluated using various techniques, including first-
principles methods like the density functional theory (DFT) and the many-
body perturbation theory (MBPT), as well as empirical potentials, machine
learning potentials, and others. The data obtained from these calculations
are then used in optimization algorithms such as steepest descent1, con-
jugate gradients2, Monte Carlo3,4, and molecular dynamics5. These algo-
rithms guide the shift of atoms toward the direction of minimum energy.

The issue arises when the complexity of the structure increases, such as
with the growth in the number of atoms N in a unit cell or the diversity of
chemical elements. This leads to an increase in the time required for
relaxation, because the computational complexity of calculating the energy
and forces increases withN, starting fromO(N3) forDFT6 up toO(N7)7,8 and
reaching exponential complexityOðe2N Þ with more accurate methods. The
complexity of the potential energy surface (PES) also increases with system
size, resulting in a greater number of local minima that the relaxation
process must navigate9.

DeepReinforcement Learning (DRL) canbe used in this case to predict
themost efficient steps of optimization and toovercome thementioned time
problem by reducing the number of steps. In the field of materials science,
Reinforcement Learning has been used mainly for the design of new

materials10–13, synthesis planning14 and microstructure optimization15 but
relaxation based on RL is promising for several reasons:
• It enables the utilization of experience accumulated over a large

number of optimizations, which are ignored by existing optimization
methods. This is particularly beneficial becausemany tasks involve the
relaxation of structures that have already been optimized, allowing us
to leverage known paths from disturbed to relaxed structures. For
example, studying the catalytic properties of a material involves the
relaxation of structures that differ only in the position of several
molecules on the surface.

• RL addresses the challenge of generating representative datasets, as
agent gathers data directly by interacting with the environment.

• The objective of reducing the number of relaxation steps can be
established both directly by selecting the reward function as a function
of the number of steps and indirectly through the introduction of a
discount parameter.

In this work, we introduce a Deep Reinforcement Learning (DRL)
model for the fixed unit cell crystal structure relaxation process. Previous
studies have applied reinforcement learning (RL) with structure repre-
sentations based on local atomic environment encodings for molecular
geometry optimization16, predicting minimum-energy reaction pathways17

and global energy minimization18. However, to our knowledge, this is the
first work that explicitly focuses on the number of optimization steps to a
particular local minimum of crystal structure—a key factor in reducing
computational costs when using expensive interatomic potentials.

Crystal structures are represented as crystal graphs, following the
methodologyofXie et al. (2018)19. Two typesofneuralnetworks are tested in
this work: Crystal Graph Convolutional Neural Networks (CGCNN)19 and

Material Discovery Laboratory, Skolkovo Institute of Science and Technology, Moscow, Russia. e-mail: Elena.Trukhan@skoltech.ru

npj Computational Materials | (2025) 11:290 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01731-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01731-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01731-1&domain=pdf
mailto:Elena.Trukhan@skoltech.ru
www.nature.com/npjcompumats

E(3)-Equivariant Tensor Field Networks20. CGCNN is a conventional
model for crystal systems that naturally handles periodic connectivity,
capturing local atomic environments through graph convolutions. It has
been applied for material property prediction and serves as a baseline for
other graph neural network (GNN) architectures19,21–23. However, CGCNN
and similar models are not equivariant with respect to rotations and
reflections—a limitation when processing crystal graph features or pre-
dicting outputs (such as atomic shifts in our task) that transform as geo-
metric tensors. In such cases, Tensor Field Networks (TFNs) present a
principled solution, as they rigorously preserve the transformation prop-
erties of tensors under Euclidean symmetries24. TFNs have proven parti-
cularly successful in applications requiring strict geometric consistency,
includingmolecular dynamics (force prediction)25,26 andmaterials property
prediction27–29, wheremaintaining correct tensor transformation behavior is
physically critical. The Twin Delayed Deep Deterministic Policy Gradient
(TD3)30 algorithm is primarily utilized formodel training, as it is a standard
choice for continuous control tasks and taking into account that it employs
deterministic policy, it might be more natural for deterministic environ-
ments like structure relaxation31. However, for comparison, we also tested
algorithm with stochastic policy and selected the Soft Actor-Critic (SAC)32,
because it maximizes both reward and entropy, inherently promoting
exploration. Due to this feature, SAC has been reported to outperformTD3
in some high-dimensional tasks31. Results for this method are presented in
Supplementary Section 7.

We compare different architectures and RL algorithms taking as a
benchmark the Al-Fe system described by EAM potentials33–35 used for the
PES generation. First of all, dependence of the model performance on
parameter settings is studied. Next, we compare the best models with
classical optimizers: Broyden-Fletcher-Goldfarb-Shanno36–39 and conjugate
gradient40. Finally, the model’s ability to generalize learned patterns of
interactions from systemswith a small number of atoms/chemical elements
to systemswith a larger number of atoms/chemical elements is investigated.

Results
Considering that this is, to our knowledge, the first work where reinforce-
ment learning is applied to the crystal structure relaxation task, we find that
it is important to provide a detailed description of how different model
settings influence the algorithm’s performance for further development of
this approach. Accordingly, this section is structured as follows: first, we
cover the investigation of the method’s technical aspects, while subsequent
sections demonstrate the algorithm’s performance on practical tasks.
Additionally, an analysis of the influence of the discount factor and
exploration level on model performance is provided in Supplementary
Section 8.

The list of structures in all datasets and the corresponding hyper-
parameters are provided in Supplementary Sections 9–10.

Comparison of TFN and CGCNNmodels
For the comparison of two suggested architectures, the TD3 Agent was
trained on CsCl-type structure of AlFe with 5 different random seeds.
Averaged learning curves are presented in Fig. 1.

As can be seen, theCGCNNmodel is ineffective in performing the task
of structure relaxation because it does not reduce themaximum force at the
last step and does not increase the full score, as it should be in the case of
successful training of RL Agent. This may be attributed to the continuous
and high-dimensional nature of the task, both in terms of state and action
spaces. From this perspective, theTFNmodelmanages the task of relaxation
better for two main reasons: firstly, it does not require training on aug-
mented data to navigate through crystal structures differing only in rota-
tions; secondly, the TFNmodel predicts actions not from thewhole space of
all possible atomic shifts, as in the case of CGCNN, but from a subspace of
shifts restrictedby the symmetry of the structure. It has beenproven that any
E(3)-equivariant model obeys Curie’s principle27, so the symmetry of the
output can only be of equal or higher symmetry than the input. As a result,
reducing the action space allows the model to quickly find the optimal
policy. The drawback is that this feature limits ourmodel becausewe cannot
guarantee that geodesic path in the action space to theminimumalways has
higher symmetry than the symmetry of the structure. However, the inves-
tigation of this question is beyond the scope of this work.

As a result of the presented comparison, we further tested only TFN
models.

Comparison of reward functions and sensitivity issues
TheTD3Agentwas trainedwithdifferent reward functions, outlined inEqs.
(2)–(4) onCsCl-type structure ofAlFe. The results are depicted inFig. 2a, b).
We also compare the performance of the best trainedmodels with BFGS on
relaxation up to higher values of the force threshold ϵ1 (see Fig. 2c).

First of all, one can see from Fig. 2c) that our models effectively relax
CsCl-type structure of AlFe up to ϵ1 = 0.1 eV/A; however, reducing the
forces further is challenging. This issue may stem from insufficient model
sensitivity near theminimum, as the differences innode and edge features of
crystal structures approach the numerical error limits of TFN models, and
the spatial and angular resolution of the model architecture might be
insufficient to distinguish them (see further discussions in Supplementary
Section 4). Consequently, adopting a log force reward function has led to a
reduction in the number of steps required for relaxation, indicating
increased sensitivity for at least the reward function in the vicinity of the
minimum.

Fig. 1 | Learning curves of TD3 Agents with
CGCNN and TFN architectures, trained on CsCl-
type structure of AlFe. Curves are averaged over 5
trials with different random seeds, with the shaded
area representing half a standard deviation.

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 2

www.nature.com/npjcompumats

Secondly, it can be noticed that usage of the step reward function does
not provide better performance in terms of the number of steps required for
relaxation, while from the definition of this reward function in Eq. (3), it
should optimize this value directly. This may be explained by a piecewise-
constant nature of the action-value function which causes the Agent to
adopt a suboptimal policy if theAgent does not face the terminal steps at the
beginning of training (for the detailed discussion of this effect see Supple-
mentary Section 3).

To address this issue we tested an approach where the Agent firstly is
pretrained with more smooth functions, for example, hybrid reward with
ŵ1 ¼ 1, ŵ2 ¼ 0, ŵ3 ¼ 0:5 and then the reward function is switched to step
with consistently reducing ϵ1 in Eq. (6) during training. Each stage ofmodel
training continued until the Agent reached a predetermined limit on the
number of steps on relaxation.

In Fig. 3, a comparison is presented between the performance of a
model trained exclusively on the smooth reward function and one trained
on the step reward function after pretraining. This comparison is made for
two cases: (1) when the Agent is trained on a single structure (the hypo-
thetical I4/mmm structure of Al) and (2) when it is trained on a set of
multiple structures simultaneously (a dataset of single-element Al and Fe
structures). During training with the step reward function, the parameter ϵ1
was gradually reduced—from0.1 eV/Å to 0.01 eV/Å for the hypothetical I4/

mmm structure of Al, and from 0.1 eV/Å to 0.05 eV/Å for the dataset of
single-element Al and Fe structures.

As shown in the Results Section, this approach enables the model to
achieve performance comparable to CG when the Agent is trained on a
single structure. Furthermore, Fig. 3a) demonstrates the model’s ability to
extrapolate its experience to higher distortions. Despite being trained with a
distortion parameter β = 0.5, the model successfully relaxes structures with
higher β values during testing. However, as illustrated in Fig. 3b), this
method does not guarantee improved results across all structures when the
model is trained on a diverse dataset of different configurations.

Comparison with classical optimizers
We compare the performance of the algorithms trained on structures with
different numbers of atoms per unit cell N using the sequential approach
described in the previous section. ForN = 2 we use results on the CsCl-type
structure of AlFe (see Supplementary Fig. S5a), and for N = 4—the results
for hypothetical I4/mmm structure of Al (see Fig. 3a). ForN = 8, 10, 20 the
structures are generated using USPEX code41. For each N the models are
trained on a single structure and tested to perform the relaxation of the same
structure but randomly distorted at the beginning of the testing episode, as
described in the Methods section. In the case of N = 2−8 the relaxation
during training of the models and further comparison with classical

Fig. 2 | Comparison of TD3 Agents trained with different reward functions on
CsCl-typeAlFe. a, b Learning curves of TD3Agents with different reward functions,
given by Eqs. (2)–(4). Curves are averaged over 5 seeds, with the shaded area
representing the standard deviation. Circlesmark the lowest average relaxation steps

and maximum force at the last step. c Performance of the Agents, corresponding to
the models with the best results with respect to relaxation steps (corresponds to the
circles on (b)). The plot shows themedian value with an interdecile range of a sample
of 50 relaxation episodes.

Fig. 3 | Comparison of classical algorithms and TD3 Agents trained with and
without switching to the step reward after pertaining. aWith hybrid reward
function (ŵ1 ¼ 1; ŵ2 ¼ 0; ŵ3 ¼ 0:5) on hypothetical I4/mmm structure of Al (b)
with force reward function on the set of single-element Al and Fe structures (the
description of the set is presented in Supplementary Table S2). All models were

trained with β = 0.5. For Al the model is tested for relaxation over a range of dis-
tortion parameter values β, displayed on the x-axis. For each point on the plots
relaxation was conducted 50 times. The solid line indicates themedian value with an
interdecile range, while the dashed line represents the mean value.

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 3

www.nature.com/npjcompumats

algorithms are conducted up to ϵ1 = 0.01 eV/A, while forN = 10 andN = 20
it was conducted up to ϵ1 = 0.2 eV/A and ϵ1 = 0.25 eV/A, correspondingly
due to the sensitivity issuesmentioned earlier. As one can see in Fig. 4a), the
results of our algorithms are similar to classical optimizers for a small
number of atoms N, while for higher values of N it starts to outper-
form them.

Generalizability of the model from simple to complex structures
An important aspect of the model that we wanted to investigate was its
ability to generalize interaction patterns from small systems to more com-
plex ones. From a physical point of view, the ordering of atoms in crystal
structures is mainly conditioned by local interactions with the closest
neighbors. Therefore, we can expect that an RLAgent based on GCNNwill
be able to extrapolate its experience from small structures to more complex
ones, as themain ideaof convolution is tofind the correlationbetween target
properties and local interactions. We can expect this ability to be present in
two cases:
• Thenumberof atomsperunit cell is increased. In this case, the ability to

extrapolate means that the model effectively selects the subspace of
atoms that strongly influence the position of the target node in the unit
cell and accounts for the fact that, in a large structure distant atoms
weakly influence each other.

• The chemical diversity is increased. Increasing chemical diversity leads
to new types of interactions that the model needs to account for, but it

can generalize these patterns from its experience with other types of
interactions.

To investigate the ability of ourmodel to extrapolate to higher chemical
diversity, the model was trained on a set of single-element Al and Fe
structures. During testing the model performed a relaxation of CsCl-type
and simplehexagonal structures ofAlFewithout being trainedon them.The
results are presented in Fig. 4b, c).

As one can see, there is a strong correlation between the results forAlFe
and the set of single-element structures, indicating that the model is able to
generalizeAl-Al andFe-Fe interactions to the case ofAl-Fe interactions. The
best result for the model, presented in Fig. 4c), in the case of CsCl-type
structure of AlFe relaxation is 11.3 ± 7.6 steps, which is close to the best
results of themodel trained solely on this configuration (see Supplementary
Fig. S5a).

To investigate the ability of ourmodel to extrapolate to a largernumber
of atoms per unit cell, we test how the models trained on single structures
with different number of atoms per unit cell relax the corresponding
supercells 2 × 1 × 1 and 2 × 2 × 1without being trained on them.The results
are presented in Fig. 5.

As expected, increasing the number of atoms in the structures in the
training dataset led to better extrapolation to larger configurations. Con-
sequently, we can anticipate that at some point, the model will be able to
relax large structures without being pretrained on them. This is because the

Fig. 4 | A comparison of the model with classical optimizers and learning curves.
aComparison of TD3model and classical optimizers in relaxation of structures with
different number of atoms N in the unit cell. For N = 2−8 the relaxation was con-
ducted up to ϵ1 = 0.01 eV/A, while for N = 10 and N = 20 up to ϵ1 = 0.2 eV/A and
ϵ1 = 0.25 eV/A correspondingly. For each point on the plot, relaxation was con-
ducted 50 times. The solid line indicates the median value with an interdecile range,

while the dashed line represents the mean value. b, c Learning curve of the TD3
model, trained on the set of single-element Al and Fe structures with force reward
function (black) and its performance on CsCl-type (red) and simple hexagonal
(blue) structures of AlFe during test. The shaded region represents a standard
deviation of the average evaluation over 2 trials.

Fig. 5 | Number of steps required for relaxation of supercells by TD3 Agents
trained on structures with different number of atoms N in the unit cell. Perfor-
mance is measured for different ϵ1 values, displayed on the x-axis. The y-axis
represents the number of steps taken by the optimizer for the relaxation of the

structure, averaged over 50 runs. The solid line indicates the median value with an
interdecile range, while the dashed line represents the mean value.It should be
noticed that in the case ofN = 20 the model was trained to perform the relaxation up
to ϵ1 = 0.25 eV/A, and for N = 10 up to ϵ1 = 0.2 eV/A.

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 4

www.nature.com/npjcompumats

Agent will be capable of selecting the corresponding subspace for each atom
and predicting its atomic shift based on the experience gained from relaxing
smaller structures.

Finally, we assess the cumulative generalizability of the model and the
applicability of algorithms formore practical tasks. Specifically, we focus on
training the model on simpler structures and subsequently use it to relax
more complex structures, which are larger and have new types of chemi-
cal bonds.

We use three datasets of Al-Fe structures with varying compositions
generated using USPEX software. The first dataset consists of 20 structures,
each containing 2–3 atoms per unit cell, and it is used to train the model.
During the training process, we apply a sequential decrease of the ϵ1 para-
meter, as described above, along with a hybrid reward function. The other
two datasets, each comprising 50 structures with 4 and 5 atoms per unit cell,
are used to validate the model’s generalizability. In each testing episode, we
relax these structures without incorporating them into the training dataset.
The corresponding training curve is presented in Fig. 6 and the number of
relaxation steps at the end of training in Table 1.

To evaluate changes in the quality of the model’s performance for
different values of ϵ1, we use a concept of normalized last step, where the
number of relaxation steps is multiplied by the force threshold to com-
pensate for the increased difficulty as epsilondecreases. It allows to show the
overall improvement of the relaxation algorithm and to compare the values
between different ϵ1-regions.

In themiddle plot of Fig. 6, we observe that, on average, the normalized
last step slightly changes after ϵ1 = 0.3 eV/A. This could be related to
instability in the RLmodel, which is also reflected in the maximum force at
the last step, as shown in the left plot of Fig. 6. Themaximumforce gradually
decreases with the reduction of ϵ1, approaching ϵ1 as training progresses
until it reaches ϵ1 = 0.2 eV/A. At this point, sharp peaks are observed,
indicating possible instability due to a low sensitivity near the minimum
discussed earlier. Because of this issue, switching to the step reward function,
as discussed above, did not improve themodel, and thus, we do not provide
the results for this reward function here.

Regarding the model’s generalizability, there is a strong correlation
between the results for N = 2–3 and N = 4–5 as shown in Fig. 6. This indi-
cates that our model can be applied to relax more complex structures
without pre-training on them.

To further investigate this, we compare the structural diversity of the
test and training datasets using two criteria: coordination number (CN) of
atoms in the structures and the presence of structural prototypes from the
training dataset for structures in the test datasets. Detailed results are pro-
vided in Supplementary Section 9. Our analysis reveals significant differ-
ences between the test and training datasets. Many coordination
environments present in the test data were absent during training, and a
substantial portion of test structures lack matching prototypes in the
training dataset. Thesefindings demonstrate that ourmodel generalizeswell
to structurally diverse configurations.

As seen, the fraction of relaxed structures for reasonable values of ϵ1
(~0.1 eV/A) ranges from 0.1 to 0.4, which is not a sufficient outcome. There
are two primary reasons for this. The first reason is that the model needs to
be trained on larger structures to efficiently identify the subspaceof themost
important neighbors for a given atom. The second reason is that not all
interaction and symmetry patterns in structureswith 4–5 atomsper unit cell
are present in structures with N = 2–3 atoms per unit cell. A possible
solution would be to incorporate an active learning approach, sequentially
adding structures with higher N until the model is sufficiently trained to
relax large structures. However, this approach is outside the scope of this
study due to computational costs andmay be considered in future research.
Finally, we observed that despite additional greedy exploration (see Meth-
ods Section), the model tends to get stuck and oscillates between the same
configurations near the local minimum in some test structures, failing to
shift them further towards a minimum. This may be caused by the sensi-
tivity issues discussed earlier and suggests the need for further technical
development of the architecture. Specifically, the model should account for
varying scales of characteristic differences (node and edge features) to

Fig. 6 | Learning curve of the TD3 model, trained on random Al and Fe config-
urations with N = 2–3 (black line) and validated on configurations with N= 4
(red dots) andN= 5 (blue triangles).We implemented a sequential decrease of the
ϵ1 parameter along with a hybrid reward function. The corresponding ϵ1 values are
shown on the upper axis. In every testing episode, the model was validated on
datasets containing structures with N = 4 and N = 5 atoms per unit cell. For each
structure, we performed 5 relaxation episodes, each starting with different initial
distortions from the minimum. There were 50 structures for each N (refer to

Supplementary Section 9). In the left plot, the maximum force at the last step,
averaged over 20 relaxation episodes (1 per structure in the training dataset), is
presented. The shaded area represents the standard deviation. The middle plot
shows the normalized last step value n ⋅ ϵ1 for both training and validation datasets,
averaged over 20 relaxation episodes for the training dataset (1 per structure) and
250 episodes for each validation dataset (5 episodes per structure). The right plot
illustrates the fraction of successful relaxation episodes out of the total number of
relaxation episodes.

Table1 |Numberof relaxation stepsup to forces0.2 eV/A in the
end of model training in Fig. 6

N = 2−3 N = 4 N = 5

Relaxation steps 17.3 ± 5.8 73.1 ± 39.5 97.3 ± 12.8

In the table, mean valueswith standard deviation are presented. ForN = 2− 3 the sample consisted
of 20 relaxation episodes (1 per structure), for N = 4 and N = 5 it consisted of 250 episodes for each
validation dataset (5 episodes per structure).

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 5

www.nature.com/npjcompumats

accurately predict both large atomic shifts for states far from minima and
small shifts close to the minimum. This issue will be addressed in
future work.

Discussion
It has been demonstrated that the TD3 model, when trained on a single
structure, performs comparably or even better than classical algorithms
such as BFGS and CG, especially in the range of force convergence up to
approximately ϵ1 ~ 10−1− 10−2 eV/Å. However, achieving convergence to
lower force values or training on several structures simultaneously remains
challenging due to the sensitivity issues of the TFN model near minima.
Despite this, relaxation to forces below 10−1− 10−2 eV/Å is not critically
problematic in practice. A hybrid approach can be employed: after reaching
this force range, one can switch to classical algorithms, which can quickly
reach a minimum since the potential energy surface (PES) in this region is
close to a parabolic function. Also as the results show, training the model
requires approximately 100,000-1,000,000 steps, depending on the dataset
size. This can be computationally expensive, particularly when using DFT
for energy and force calculations. Nevertheless, we believe that training the
optimizer initially on empirical potentials (e.g., EAM) or machine-learning
interatomic potentials could facilitate subsequent DFT-based optimization.

The presented method can be used as a universal optimizer - once
trained on a large number of structures and optimization paths, it can be
applied to sufficiently similar structures without further training. This offers
significant practical benefits even without strong model generalizability, as
many structures are typically optimized from scratch without leveraging
prior knowledge. Such a model could provide “compressed knowledge” of
common optimization pathways. The algorithm might serve as a baseline
optimizer for commonly used systems or for relaxing identical structures
from different unstable initial configurations, e.g., in catalytic studies.
Nevertheless, potential energy surfaces of molecular adsorption typically
exhibit subtle differences and multiple local minima, so model’s ability to
identify physically meaningful minima in such scenarios requires further
study. Also, our results demonstrate the efficacy of themethod forAl andFe,
suggestingpotential applicability to othermetallic systems.However, further
investigation is required to validate the algorithm’s applicability across a
broader range of elements.

We also explored the model’s generalization capabilities from simple to
complex structures. We assessed the model’s performance as the number of
atoms per unit cell increased. Results indicated that the model effectively
relaxes supercells of similar structures,withperformance improvingas the size
of the input structure in the training dataset increases. We anticipate that the
model will eventually be capable of relaxing large structures without prior
training on them, as the Agent will identify relevant subspaces for each atom
and predict their atomic shifts based on experience gained from smaller
structures. In addition,we found that themodel can extrapolate its experience
to cases where the complexity of chemical bonds increases.

These findings illustrate the potential for crystal structure relaxation
using deep reinforcement learning. Overcoming the mentioned challenges
could lead to a universal structure optimizer that is faster for large config-
urations than traditional optimizers. Nonetheless, achieving this goal
requires further development and additional computational resources for
model training.

Our work underscores several critical aspects of reinforcement learn-
ing. Firstly, we highlight the importance of symmetry preservation in the
action space for effective model training.We show that TFNmodel is more
suitable to structure relaxation tasks compared to CGCNN, as it limits
predicted actions to spaceswith the sameor higher symmetry than the input
structure. Secondly,wepoint out the limitationsof trainingwith apiecewise-
constant action-value function using a step reward function. Direct opti-
mization of the number of steps with this function is challenging, as the
model may converge to a suboptimal policy due to a feedback loop of Critic
and Actor convergence caused by the piecewise-constant nature of the true
Q-function. However, pretraining the agent on smoother reward functions,
such as force or hybrid, canmitigate this issue by increasing the likelihood of

reaching terminal states early in training, a crucial condition for converging
to an optimal policy.

Our study extensively examines the space of model hyperpara-
meters and their impact on performance with detailed results presented
in Supplementary Information. First, we determined that simultaneous
tuning of the discount factor and noise level enables theAgent to explore
efficiently while balancing short- and long-term rewards to develop an
optimal policy. Higher noise increases value estimate variance,
requiring a higher discount factor to prioritize long-term rewards and
stabilize convergence. Conversely, low-noise settings benefit from a
lower discount factor, as rewards stem primarily from the policy’s
immediate actions. Second, we show that the choice of exploration
strategy significantly influences model performance. For equivariant
models, adding random noise into the state during exploration—rather
than the action—yields superior results because this approach follows
symmetry restrictions of the environment. Introducing additional
exploration with high noise, which we labeled as “greedy”, allows to
mitigate Agent stagnation in local optima, effectively preventing
oscillations around suboptimal state-action regions. Finally, we inves-
tigated the influence of different reward functions. While the “log force”
reward function enhances sensitivity near energy minima, according to
our observation, it does not substantially improve performance in terms
of relaxation steps for large systems. As evidenced by our tests on Al
structures, presented in Supplementary Information, the “hybrid”
reward function with weights w1 = 1, w2 = 0, w3 = 0.5 outperforms the
standard “force” reward function. Furthermore, as mentioned above,
switching to the “step” reward function further minimizes the number
of relaxation steps.

We compared various RL algorithms and found that TD3 is more
efficient than SAC for structure relaxation tasks. However, this efficiency
might be linked to exploration limitations in our SAC implementation.
Future research will continue comparing different architectures and
implementations of SAC and TD3 policies.

We also would like to highlight that the presented approach can be
straightforwardly extended to variable-cell relaxation. To achieve this, three
vectors representing changes in the cell vectors can be incorporated into the
action at. This is a natural continuation of the current work and will be
explored in future studies.

We hope our findings lay a foundation for further advancements in
using reinforcement learning for structure relaxation tasks.

Methods
Preliminary of reinforcement learning
Reinforcement learning (RL) is a field of machine learning applied to
decision-making problems, where an Agent learns to behave in a specific
Environment by performing actions and observing the outcomes. It is most
commonly formulated in the form of Markov Decision Processes (MDPs).
In this framework, the Agent, at a given time t in state st, selects an action at.
This action transitions the system to the next state st+1, with this transition
determined by the internal dynamics of the Environment, denoted as
f ðs0js; aÞ, which is also called transition law, so st+1 ~ f(⋅ ∣st, at). The next
state st+1 depends solely on the current state and action, thus satisfying
the Markov property. Upon transitioning, the Agent receives a reward
rt = R(st, st+1, at)

31,42,43.
The decision regardingwhich action to take is governed by theAgent’s

policy, denoted here as π. The main goal of RL is to find such a policy π*,
which is called optimal, that maximizes an objective function

JðπÞ ¼ Eτ�π;f ½RðτÞ� ¼ Eτ�π;f ½
PT

t¼0 γ
trt�, where γ ∈ [0, 1] is the discount

factor and τ = (s0, a0, s1, a1, …) is the MDP trajectory, which ends at the
terminal step T. The initial state s0 is selected randomly according to a
starting distribution ρ0(⋅). The expected value is taken over the probability
distribution PðτjπÞ ¼ ρ0ðs0Þ

QT�1
t¼0 f ðstþ1jst ; atÞπðat jstÞ.

In the context of algorithms used in thiswork theAgentmaximizes not
theobjective J(π), but the action-value functionQπ� ðs; aÞ. In the caseofTwin

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 6

www.nature.com/npjcompumats

DelayedDDPG (TD3) the policy π is deterministic andQπ� ðs; aÞ is given by
the formula:

Qπ� ðs; aÞ ¼ Es0�Pðτjπ�Þ Rðs; s0; aÞ þ γmax
a0

Qπ� ðs0; a0Þ� �� �
ð1Þ

In TD3 two classes of deep learning models are introduced. The
first one, called Actor, denoted as πθ(s) with tunable parameters θ, is
used to approximate the optimal policy π*. Another one, called Critic
and denoted as Qϕ(s, a) with tunable parameters ϕ approximates the
optimal action-value function Qπ� ðs; aÞ. One can find more details
regarding corresponding loss functions in Supplementary Section 2 and
Section 7.

Crystal structure relaxation as a Markov decision process
The structure relaxation operates within a framework of Markov
decision process MDP(S,A,R), where we define each term in what
follows:
• S is the state space: each st∈ S is a crystal graph19 of the corresponding

structure at time step t. In this graph, each node i represents an atom in
the given unit cell and contains a node feature vector vi. The k-th edge
between two nodes (i, j)k corresponds to the bond between the i-th
atom and the k-th image of its j-th neighbor and contains an edge
feature vector uði;jÞk .

• A is the action space: each at ∈ A is a graph in which each node i
corresponds to the node i in st and contains the vector Δ r!i, repre-
senting the atomic shift: at ¼ fΔ r!1;Δ r!2; . . . ;Δ r!Ng, N is the
number of atoms in a unit cell of the structure.

• R is the reward function. Fouroptions are considered in the givenwork.
Thefirst one, labeled “force”, optimizes atomic forces,which is anatural
choice as it allows direct navigation to the energy minimum:

R1ðst; s0t ; atÞ ¼ � max
n2½1;N�

j f!nðs0tÞj; ð2Þ

where f
!

n is the force acting on the n-th atom. The second option,
labeled “step”, optimizes the number of steps directly, which aligns
with the main objective of this work:

R2ðst ; s0t ; atÞ ¼
�1; if dt ¼ False

0; otherwise

�
ð3Þ

where dt is a “done” flag, which is “True” when the step t is terminal
and “False” otherwise. The third option, called “log force”, is more
sensitive to the change of atomic forces in close vicinity to the local
minimum:

R3ðst ; s0t ; atÞ ¼ �log10 max
n2½1;N�

j f!nðs0tÞj
� �

ð4Þ

The last one, labeled “hybrid”, is a composition of all functions above
with some weights {w1, w2, w3}, allowing prioritization of the
described reward functions in varying proportions:

R4ðst ; s0t ; atÞ ¼
X3
i¼1

wiRiðst ; s0t; atÞ ð5Þ

In this work, we do not employ an energy-based reward function
(which is used, for example, in18), as this would bias theAgent toward
searching specifically for the global minimum rather than any local
one. This approach differs from our study’s goal because crystal
structures typically have relatively few energyminima,most of which
are reasonably stable. We are interested in finding all of them rather
than focusing solely on the global minimum.

• In this work, the “done” criterion for dt aligns with those commonly
used in the classical algorithms:

dt ¼ max
n2½1;N�

j f!nðs0tÞj≤ ϵ1; ð6Þ

where ϵ1 is the force threshold, provided by the user.

Agent model implementation
The models for Actor and Critic were implemented using two types of
networks: 1) Crystal Graph Convolutional Neural Networks (CGCNN)19

and 2) E(3)-Equivariant Tensor-Field Neural Networks (TFN) for point
clouds20,25. Both architectures handle graph-structured data using con-
volutional operations to aggregate information from neighboring nodes,
capturing the correlation between target values and local interactions.

The main difference between them is that in CGCNN both node and
edge feature vectors are treated as arrays of numbers, without distinguishing
them by geometric characteristics. Consequently, it can be translation-
invariant if node and edge features do not depend on absolute atomic
positions and invariant to the O(3) group only if all features are scalars;
otherwise, invariance and equivariance are not guaranteed.

In contrast, TFN is designed to maintain equivariance with respect to
the whole E(3) group. All data in this model are treated as geometrical
tensors,whicharedecomposed into irreducible representations ofO(3).The
convolutional layer is implemented as the direct product of irreducible
representations, which guarantees equivariance of the architecture44.
Additional information about the neural networks and graph construction
can be found in Supplementary Section 1.

Implementation of exploration
Exploration in RL is the strategy by which an Agent discovers new
knowledge about its Environment, choosing actions that may not yield
immediate rewards but improve future decision-making. The challenge is
balancing exploration with exploitation, which involves making decisions
based on the current policy.

In our work, we implement exploration in TD3 using the adding noise
to state approach to preserve the symmetry of the system (a detailed dis-
cussion of the importance of this aspect in the context of RL-based structure
relaxation is provided inSupplementary Section5). For this purpose, vectors
of forces in each node are rotated around randomly generated axes n! to a
random angle ϕ, and the lengths of forces are modified to small values:

f
!

i ! ð1þ ξÞ � ðOð n!; ϕÞ f!i Þ, where ξ ~ U(− λ, λ). Here λ denotes the
hyperparameter called noise level. It is important to note that forces in each
node are altered with the same rotation and lengthening/shortening. Two
settings for the noise parameter λ are utilized. In the first case λ is constant
(λ = c), while in the second case, λ varies during the training episode
according to the formula λ(t) = (c2− c1)(t/L)+ c1, where L is themaximum
number of steps per episode (λ ∈ [c1, c2]).

During training it was observed that the TD3 algorithm with
exploration, described above, tends to get stuck in states with low forces,
failing to shift structures further towards a minimum (see Supplementary
Fig. S3, black trajectory). The Agent converges to a policy that predicts
infinitesimally small actions for such states and relaxation oscillates between
the same configurations. To address this issue, we proposed to include
additional greedy exploration.

In this approach, greedy actions are introduced by adding noise to a
state with a very high λ, to facilitate relevant exploration for the Agent.

Greedy actions are sampled if maxn2½1;N� j f
!

nðs0tÞj > fmax and

maxn2½1;N� jΔr
!

nj<Δrmax forNgr steps during training, whereNgr,Δrmax, and
fmax are tunable parameters. A more detailed comparison of Agents with
and without greedy exploration is provided in Supplementary Section 6.

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 7

www.nature.com/npjcompumats

Algorithm workflow
The class for the Environment is implemented according to the standards of
Gym45 Python library and constructed with Python Materials Genomics
(pymatgen)46 and Atomic Simulation Environment (ASE)47 libraries.

The training loop of the RL algorithm used for structure relaxation is
illustrated in Fig. 7. Before initiating the training of the Agent, the structures
in the provided dataset undergo relaxation with a classical algorithm, such
as BFGS.

The Agent undergoes training across Mtrain episodes, each of which
lasts a maximum of Ntrain steps. At the beginning of each episode, a crystal
structure is selected from the data set and disturbed from equilibrium by
introducing random distortions into the atomic coordinates:

r!nðs0Þ ¼ r!�
n þ β � ξ

!
n, where ð ξ

!
nÞi � Uð�1; 1Þ, r!�

n are the coordinates
of the n-th atom in equilibrium. Here, β is referred to as the distortion
parameter. This distorted state serves as the initial point in the trajectory.
Then, at each step the Agent takes actions, shifts atoms in the structure, gets
the next state s0t and “done” flag dt, stores this transition in the storage called
Replay Buffer, and, if there are enough transitions in the Replay Buffer,
updates Actor andCriticmodels. The episode ends when “done” criterion is
met or when the time limit Ntrain is reached.

Every N1 time steps training is paused to conduct Mtest test episodes,
each lasting maximum Ntest steps. The testing episodes are similar to the
training ones, the only difference is that themodels are not updated and the
transitions are not stored in the Replay Buffer. During testing, the following
metrics are measured and averaged over all episodes:
• Cumulative discounted score RðτÞ ¼ PT

t¼0 γ
trt ;

• Cumulative full score R̂ðτÞ ¼ PT
t¼0 rt ;

• Maximum force at the last step maxn2½1;N� j f
!

nðsT Þj (further referred
asmaximum force);

• Number of relaxation steps (further referred as relaxation steps).

The corresponding averages over Mtest episodes are denoted as 〈R〉,
hR̂i, 〈fmax〉, 〈L〉.

In this work,N1 = 1000,Ntest = 100,Ntrain = 1000, but these parameters
can be changed by the user.

Data availability
Ciffiles for structures generatedwithUSPEX can be found and downloaded
at: https://github.com/ElenaTrukhan/RL_structure_relaxation.

Code availability
The code that was used in the findings of this study is available fromhttps://
github.com/ElenaTrukhan/RL_structure_relaxation.

Received: 28 December 2024; Accepted: 3 July 2025;

References
1. Pulay, P. Convergence acceleration of iterative sequences. the case

of SCF iteration. Chem. Phys. Lett. 73, 393–398 (1980).
2. Press, W. H., Flannery, B., Teukolsky, S. & Vetterling, W. Numerical

recipices, the art of scientific computing (Cambridge U. Press,
Cambridge, MA, 1986).

3. Banadaki, A. D., Tschopp, M. A. & Patala, S. An efficient Monte Carlo
algorithm for determining the minimum energy structures of metallic
grain boundaries. Comput. Mater. Sci. 155, 466–475 (2018).

4. Pillardy, J., Arnautova, Y. A., Czaplewski, C., Gibson, K. D. &
Scheraga, H. A. Conformation-family Monte Carlo: a new method for
crystal structure prediction. Proc. Natl. Acad. Sci. USA 98,
12351–12356 (2001).

5. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a
molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

6. Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R.
Accelerating crystal structure prediction by machine-learning
interatomic potentials with active learning. Phys. Rev. B. 99, 064114
(2019).

7. Foerster, D. & Gueddida, S. A low resources space time approach to
the GW approximation. Comput. Mater. Sci. 187, 110078 (2021).

8. Strout, D. L. & Scuseria, G. E. A quantitative study of the scaling
properties of the Hartree-Fock method. J. Chem. Phys. 102,
8448–8452 (1995).

9. Lenz,M.-O. et al. Parametrically constrained geometry relaxations for
high-throughput materials science. npj Comput. Mater. 5, 123 (2019).

10. Pan, E., Karpovich, C. & Olivetti, E. Deep reinforcement learning for
inverse inorganicmaterials design.npjComput.Mater.10, 287 (2024).

11. Sui, F., Guo, R., Zhang, Z., Gu, G. X. & Lin, L. Deep reinforcement
learning for digital materials design. ACS Mater. Lett. 3, 1433–1439
(2021).

12. Manna, S. et al. Learning in continuous action space for developing high
dimensional potential energy models. Nat. Commun. 13, 368 (2022).

13. Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of
molecules via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).

14. Wang, X. et al. Towards efficient discovery of green synthetic
pathways with Monte Carlo tree search and reinforcement learning.
Chem. Sci. 11, 10959–10972 (2020).

15. Vasudevan, R. K., Orozco, E. & Kalinin, S. V. Discoveringmechanisms
formaterialsmicrostructure optimization via reinforcement learning of
a generative model.Mach. Learn. Sci. Technol. 3, 04LT03 (2022).

Fig. 7 | Workflow of the reinforcement learning algorithm used for structure relaxation.

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 8

https://github.com/ElenaTrukhan/RL_structure_relaxation
https://github.com/ElenaTrukhan/RL_structure_relaxation
https://github.com/ElenaTrukhan/RL_structure_relaxation
www.nature.com/npjcompumats

16. Modee, R., Mehta, S., Laghuvarapu, S. & Priyakumar, U. D. MolOpt:
autonomous molecular geometry optimization using multiagent
reinforcement learning. J. Phys. Chem. B. 127, 10295–10303
(2023).

17. Barrett, R. & Westermayr, J. Reinforcement learning for traversing
chemical structure space: optimizing transition states and
minimum energy paths of molecules. J. Phys. Chem. Lett. 15,
349–356 (2024).

18. Bihani, V., Manchanda, S., Sastry, S., Ranu, S. & Krishnan, N. M. A.
StriderNet: A Graph Reinforcement Learning Approach to Optimize
Atomic Structures on Rough Energy Landscapes. In Proceedings of
the 40th International Conference on Machine Learning, Vol. 202,
2431–2451 (PMLR, 2023).

19. Xie, T. &Grossman, J. C. Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties.
Phys. Rev. Lett. 120, 145301 (2018).

20. Thomas, N. et al. Tensor field networks: Rotation- and translation-
equivariant neural networks for 3d point clouds. Preprint at https://
arxiv.org/abs/1802.08219 (2018).

21. Park, C. W. & Wolverton, C. Developing an improved crystal graph
convolutional neural network framework for accelerated materials
discovery. Phys. Rev. Mater. 4, 063801 (2020).

22. Laugier, L. et al. Predicting thermoelectric properties from crystal
graphs and material descriptors - first application for functional
materials. Preprint at https://arxiv.org/abs/1811.06219 (2018).

23. Deng, B. et al. CHGNet as a pretrained universal neural network
potential for charge-informedatomisticmodelling.Nat.Mach. Intell.5,
1031–1041 (2023).

24. Gong, S. et al. Examining graph neural networks for crystal structures:
limitations and opportunities for capturing periodicity. Sci. Adv. 9,
eadi3245 (2023).

25. Batzner, S. et al. E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials.Nat. Commun. 13, 2453
(2022).

26. Batatia, I., Kovacs, D. P., Simm, G. N. C., Ortner, C. & Csanyi, G.
MACE: higher order equivariantmessage passing neural networks for
fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35,
11423–11436 (2022).

27. Smidt, T. E.,Geiger,M.&Miller, B.K. Findingsymmetrybreakingorder
parameters with Euclidean neural networks. Phys. Rev. Res. 3
L012002 (2021).

28. Chen, Z. et al. Direct prediction of phonon density of states with
Euclidean neural networks. Adv. Sci. 8, e2004214 (2021).

29. Koker, T., Quigley, K., Taw, E., Tibbetts, K. & Li, L. Higher-order
equivariant neural networks for charge density prediction inmaterials.
Npj Comput. Mater. 10, 161 (2024).

30. Fujimoto, S., van Hoof, H., Meger, D. Addressing Function
Approximation Error in Actor-Critic Methods. In Proceedings of the
35th International Conference on Machine Learning, Vol. 80,
1587–1596 (PMLR, 2018).

31. Winder, P.Reinforcement Learning: Industrial Applications of
Intelligent Agents (O’Reilly Media, Inc., 2021).

32. Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the 35th International Conference
on Machine Learning, Vol. 80, 1861–1870 (PMLR, 2018).

33. Ackland, G. J., Bacon, D. J., Calder, A. F. & Harry, T. Computer
simulationofpoint defect properties indiluteFe-Cualloy usingamany-
body interatomic potential. Philos. Mag. A. 75, 713–732 (1997).

34. Mendelev, M., Srolovitz, D., Ackland, G. & Han, S. Effect of Fe
segregation on the migration of a non-symmetric Σ5 tilt grain
boundary in Al. J. Mater. Res. 20, 208–218 (2005).

35. Zope, R. R. & Mishin, Y. Interatomic potentials for atomistic
simulations of the Ti-Al system. Phys. Rev. B. 68, 024102 (2003).

36. Broyden, C. G. The convergence of a class of double-rank
minimization algorithms1.General considerations. IMAJ. Appl.Math.
6, 76–90 (1970).

37. Fletcher, R. A new approach to variablemetric algorithms.Comput. J.
13, 317–322 (1970).

38. Goldfarb,D.A family of variable-metricmethodsderivedby variational
means.Math. Comput. 24, 23–23 (1970).

39. Shanno, D. F. Conditioning of quasi-Newton methods for function
minimization. Math. Comput. 24, 647–656 (1970).

40. Hestenes, M. R. & Stiefel, E. Methods of conjugate gradients for
solving linear systems. J. Res. Natl Bur. Stand. 49, 409 (1952).

41. Glass, C. W., Oganov, A. R. & Hansen, N. USPEX-evolutionary
crystal structure prediction.Comput. Phys. Commun. 175, 713–720
(2006).

42. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction
(Cambridge U. Press, 1986).

43. Achiam, J. Spinning up in deep reinforcement learning. https://
spinningup.openai.com/en/latest/ (2018).

44. Geiger, M. et al. Euclidean neural networks: e3nn (2022).
45. Brockman, G. et al. OpenAI Gym. Preprint at https://arxiv.org/abs/

1606.01540 (2016).
46. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust,

open-source Python library for materials analysis. Comput. Mater.
Sci. 68, 314–319 (2013).

47. Larsen, A. H. et al. The atomic simulation environment-A Python library
for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

Acknowledgements
Thisworkwas supportedby theRussianScience Foundation (grant #19-72-
30043). The calculations were performed on the Zhores cluster at the
Skolkovo Institute of Science and Technology.

Author contributions
E.T. implemented the code, trained the reinforcement learning (RL) models,
analyzed the experimental results, and wrote the manuscript; E.M.
contributed to the code implementation; A.O. andE.M. supervised thework;
all authors discussed the results and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-025-01731-1.

Correspondence and requests for materials should be addressed to
Elena Trukhan.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 9

https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1811.06219
https://arxiv.org/abs/1811.06219
https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://doi.org/10.1038/s41524-025-01731-1
http://www.nature.com/reprints
www.nature.com/npjcompumats

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41524-025-01731-1 Article

npj Computational Materials | (2025) 11:290 10

http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcompumats

	Acceleration of crystal structure relaxation with deep reinforcement learning
	Results
	Comparison of TFN and CGCNN models
	Comparison of reward functions and sensitivity issues
	Comparison with classical optimizers
	Generalizability of the model from simple to complex structures

	Discussion
	Methods
	Preliminary of reinforcement learning
	Crystal structure relaxation as a Markov decision process
	Agent model implementation
	Implementation of exploration
	Algorithm workflow

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

