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2.06.1 Thermodynamics of Crystals

Thermodynamics provides the general basis for the
theory of structure and properties of matter. This
chapter presents only as much thermodynamics as
needed for good comprehension of geophysics, and at
a relatively advanced level. For further reading the
reader is referred to Landau and Lifshitz (1980),
Chandler (1987), Wallace (1998), and Bowley and
Sánchez (1999).

2.06.1.1 Thermodynamic Potentials

If one considers some system (e.g., a crystal structure)
at temperature T¼ 0 K and pressure P¼ 0, the equi-
librium state of that system corresponds to the
minimum of the internal energy E:

E ! min ½1�

that is, any changes (e.g., atomic displacements)
would result in an increase of energy. The internal
energy itself is a sum of the potential and kinetic
energies of all the particles (nuclei, electrons) in the
system.

The principle [1] is valid in only two situations:
(1) at T¼ 0 K, P¼ 0, and (2) at constant V (volume)
and S (entropy), that is, if we impose constraints of
constant S,V, the system will adopt the lowest-energy
state. Principle [1] is a special case of a more general
principle that the thermodynamic potential W

describing the system be minimum at equilibrium:

W ! min ½2�

As already mentioned, at constant V,S: WV,S¼ E !
min.
At constant P,S, the appropriate thermodynamic
potential is the enthalpy H:

WP;S ¼ H ¼ E þ PV ! min ½3�

At constant V,T, the Helmholtz free energy F is the
thermodynamic potential:

WV ;T ¼ F ¼ E –TS ! min ½4�

At constant P,T (the most frequent practical situa-
tion), the relevant thermodynamic potential is the
Gibbs free energy G:

WP;T ¼ G ¼ E þ PV –TS ! min ½5�

The minimum condition implies that

qW

qxi

¼ 0 ½6�

However, this condition is also satisfied for maxima
of the thermodynamic potential, and for saddle points
(Figure 1). To exclude saddle points and maxima,
one has to make sure that the matrix of second
derivatives of W with respect to all the degrees of
freedom (in case of a crystal structure, with respect to
atomic coordinates and lattice parameters):

Hij ¼
q2W

qxiqxj

½7�

be positive definite:

det Hij > 0 ½8�

Still, there may be a large (or infinite) number of
minima. The equilibrium state corresponds to the
lowest minimum of W (the global minimum),
whereas all the other minima are called local and
correspond to metastable states. Local minima have
the property of stability to an infinitesimal displace-
ment (after any such displacement the system returns
to the initial state), but one can always find a suffi-
ciently large energy fluctuation that will irreversibly
destroy the metastable state.

2.06.1.2 Differential Relations

From the first law of thermodynamics one has

dE ¼ –P dV þ T dS ½9�

Applying Legendre transformations, the following
relations can be obtained:

dH ¼ V dP þ T dS ½10�

dF ¼ – P dV – S dT ½11�

dG ¼ V dP – S dT ½12�

When there is thermodynamic equilibrium between
two phases (denoted 1 and 2) at given P and T,
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Figure 1 Extrema and saddle points in a one-dimensional
representation of the (free) energy surface.
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G1¼G2. Moving along the two-phase equilibrium
line in P–T space requires dG1¼ dG2, that is,

�V dP – �S dT ¼ 0 ½13�

or, in a different form,

dP

dT
¼ �S

�V
½14�

This is the famous Clausius–Clapeyron equation.
Using eqns [9]–[12], one can express various ther-

modynamic parameters:

P ¼ –
qE

qV

� �
S

¼ –
qF

qV

� �
T

½15�

V ¼ qH

qP

� �
S

¼ qG

qP

� �
T

½16�

T ¼ qE

qS

� �
V

¼ qH

qS

� �
P

½17�

S ¼ –
qF

qV

� �
S

¼ –
qG

qT

� �
P

½18�

Taking second derivatives, Maxwell relations are
obtained (see, e.g., Poirier (2000)):

qS

qP

� �
T

¼ –
qV

qT

� �
P

½19�

qS

qV

� �
T

¼ qP

qT

� �
V

½20�

qT

qP

� �
S

¼ qV

qS

� �
P

½21�

qT

qV

� �
S

¼ –
qP

qS

� �
V

½22�

Using the Maxwell relations, a number of important
thermodynamic relations are derived, for example,

qS

qV

� �
T

¼ �KT ½23�

qS

qV

� �
P

¼ CP

�VT
½24�

qS

qP

� �
T

¼ –�V ½25�

qT

qP

� �
S

¼ �VT

CP

½26�

qV

qT

� �
S

¼ –
CP

�KS T
½27�

qP

qT

� �
V

¼ �KT ½28�

In eqns [23]–[28] we used thermal expansion

� ¼ 1

V

qV

qT

� �
P

½29�

isothermal bulk modulus

KT ¼ –
1

V

qV

qP

� �
S

½30�

and isobaric heat capacity

CP ¼
qE

qT

� �
P

½31�

We note, on passing, that the bulk modulus and the
heat capacity depend on the conditions of measure-
ment. There are general thermodynamic equations
relating the heat capacity at constant pressure (iso-
baric) and constant volume (isochoric):

CP ¼ CV 1þ �
2KT V

CV

� �
½32�

and bulk modulus at constant temperature (isother-
mal) and at constant entropy (adiabatic):

KS ¼ KT 1þ �
2KT V

CP

� �
½33�

The most interesting of eqns [23]–[28] are eqn [26],
describing the increase of the temperature of a body
on adiabatic compression (e.g., in shock waves, and
also inside rapidly convecting parts of planets), and
eqn [28], describing thermal pressure. These equa-
tions are important for thermal equations of state and
for calculating the temperature distributions inside
planets.

2.06.1.3 Partition Function

Let us consider a system with energy levels Ei corre-
sponding to the ground state and all the excited
states. The probability to find the system in the ith
state is proportional to e–�Ei, where � ¼ 1= kBTð Þ
(kB is the Boltzmann constant).

More rigorously, this probability pi is given as

pi ¼
e –�EiP

ie
–�Ei

½34�

The denominator of this equation is called the parti-
tion function Z:

Z ¼
X

i
e –�Ei ½35�

where the summation is carried out over all discrete
energy levels of the system. The partition function is
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much more than a mere normalization factor; it plays
a fundamental role in statistical physics, providing a
link between the microscopic energetics and the
macroscopic thermodynamics. Once Z is known, all
thermodynamic properties can be obtained straight-
forwardly (e.g., Landau and Lifshitz, 1980). For
instance, the internal energy

E ¼
X

i
piEi ¼

P
i Ei e

–�Ei

z
¼ –

1

Z

qZ

q�

� �
V

¼ –
qlnZ

q�

� �
V

½36�

From this one can derive a very important expression
for the Helmholtz free energy

F ¼ –
1

�
ln Z ¼ – kBT ln Z ½37�

entropy

S ¼ KB ln Z –
kB�

Z

qZ

q�

� �
V

½38�

and the heat capacity at constant volume (From eqn
[39] one can derive (see Dove, 2003) the following
important formula: CV ¼ KB�

2ðhE2i– hEi2Þ:):

CV ¼ –
kB�

2

Z2

qZ

q�

� �2

V

þ kB�
2

Z

q2Z

q�2

� �
V

½39�

Unfortunately, in many real-life cases it is
practically impossible to obtain all the energy

levels – neither experimentally nor theoretically,

and therefore the partition function cannot be calcu-

lated exactly. However, for some simplified models it

is possible to find the energy levels and estimate the

partition function, which can then be used to calcu-

late thermodynamic properties.
Below we consider the harmonic approximation,

which plays a key role in the theory of thermody-

namic properties of crystals. It gives a first

approximation to the distribution of the energy levels

Ei, which is usually accurate for the most-populated

lowest excited vibrational levels. The effects not

accounted for by this simplified picture can often be

included as additive corrections to the harmonic

results.

2.06.1.4 Harmonic Approximation

The harmonic oscillator is a simple model system

where the potential energy (U ) is a quadratic

function of the displacement x from equilibrium, for

example, for a simple diatomic molecule

UðxÞ ¼ U0 þ
1

2
kx2 ½40�

where U0 is the reference energy and k is the force
constant.

The energy levels of the harmonic oscillator can
be found by solving the Schrödinger equation with

the harmonic potential [40]; the result is an infinite

set of equi-spaced energy levels:

En ¼
1

2
þ i

� �
h! ½41�

where h is Planck’s constant, ! is the vibrational fre-
quency of the oscillator, and integer i is the quantum
number: i¼ 0 for the ground state, and i� 1 for excited
states. Energy levels in a true vibrational system are
well described by [41] only for the lowest quantum
numbers n, but these represent the most populated, and
thus the most important vibrational excitations.

A very interesting feature of [41] is that even
when i¼ 0, that is, when there are no vibrational

excitations (at 0 K), there is still a vibrational energy

equal to h!=2. This energy is called zero-point

energy and arises from quantum fluctuations related

to the Heisenberg uncertainty principle.
With [41] the partition function for the harmonic

oscillator is rather simple:

Z ¼ 1

1 – e – h!=kBT
½42�

This allows one to calculate thermodynamic func-
tions of a single harmonic oscillator (as was first done
by Einstein):

Evibð!;T Þ ¼
1

2
h!þ h!

expðh!=kBT Þ – 1
½43�

CV ;vibð!;TÞ ¼ kB
h!

kBT

� �2
expðh!=kBTÞ

ðexpðh!=kBTÞ – 1Þ2
½44�

Svibð!;TÞ ¼ – kB ln½1 – expð – h!=kBTÞ�

þ 1

T

h!
expðh!=kBTÞ – 1

½45�

Fvibð!;T Þ ¼
1

2
h!þ kBT ln 1 – exp –

h!
kBT

� �� �
½46�

The first term in [43] is the zero-point energy
originating from quantum motion of atoms discussed

above. The second, temperature-dependent term

gives the thermal energy according to the Bose–

Einstein distribution. The thermal energy (or heat
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content) gives the energy absorbed by the crystal
upon heating from 0 K to the temperature T. In the
harmonic approximation, the isochoric CV and iso-
baric CP heat capacities are equal: CV¼CP.

The number of phonons in a crystal containing N

atoms in the unit cell is 3N (per unit cell). In the
harmonic approximation, lattice vibrations do not inter-
act with each other (in other words, propagation of one
vibration does not change the energy or momentum of
other vibrations), and their contributions to thermody-
namic properties are additive. If all of the phonons had
the same frequency (the assumption of the Einstein
model), then, multiplying the right-hand sides of
[43]–[46] by the total number of vibrations 3N, all
thermodynamic properties would be obtained immedi-
ately. However, normal mode frequencies form a
spectrum (called the phonon spectrum, or phonon den-
sity of states g (!)); and an appropriate generalization
[43]–[46] involves integration over all frequencies:

EvibðT Þ ¼
Z !max

0

Evibð!;T Þgð!Þd!

¼
Z !max

0

1

2
h!þ h!

expðh!=kBT Þ – 1

� �

� gð!Þd! ½47�

CV ;vibðTÞ ¼
Z !max

0

CV ;vibð!;TÞgð!Þd!

¼
Z !max

0

kB
h!

kBT

� �2
expðh!=kBTÞ

ðexpðh!=kBT Þ – 1Þ2

 !

� gð!Þd! ½48�

SvibðT Þ ¼
Z !max

0

Svibð!;TÞgð!Þd!

¼
Z !max

0

– kB ln 1 – exp –
h!

kBT

� �� ��

þ 1

T

h!
expðh!=kBT Þ – 1

�
gð!Þd! ½49�

FvibðTÞ ¼
Z !max

0

Fvibð!;TÞ

¼
Z !max

0

1

2
h!þ kBT ln 1 – exp –

h!
kBT

� �� �� �

� gð!Þd! ½50�

2.06.1.4.1 Debye model

In early works, the phonon density of states g(!) had
often been simplified using the Debye model. For the

acoustic modes the phonon spectrum can be described,

to a first approximation, by a parabolic function:

gð!Þ ¼ 9N
h

kB�D

� �3

!2 ½51�

truncated at the maximum frequency !D ¼
ðkB�DÞ=h, where �D is the Debye temperature.

With this g (!) thermodynamic functions take the
following form:

Evib ¼
9

8
kBN�D þ 3kBNTD

�D

T

� �
½52�

CV ðTÞ ¼
dEvib

dT

� �
V

¼ 3kBN 4D
�D

T

� �
–

3ð�D=T Þ
e�D=T – 1

� �
½53�

SðT Þ ¼
Z T

0

Cp

T
dT ¼ kBN ½4Dð�D=TÞ – 3 lnð1 – e�D=T Þ�

½54�

where

DðxÞ ¼ 3

x3

Z x

0

x3dx

ex – 1
; x ¼ �D

T

The first term in [52] is the zero-point energy in
the Debye model, the second term is the heat content.

The Debye temperature is determined by the elastic

properties of the solid or, more precisely, its average

sound velocity hvi:

�D ¼
h
kB

6�2N

V

� �1=3

hvi ½55�

The mean sound velocity can be accurately cal-
culated from the elastic constants tensor (Robie and

Edwards, 1966). Usually, however, an approximate

formula is used:

hvi ¼ 1

v3
P

þ 2

v3
S

� � – 1=3

½56�

where vP and vS are the longitudinal and transverse
sound velocities, respectively. Later in this chapter
we shall see as to how to calculate these velocities.
The advantages of the Debye model are its relative
simplicity and correct low- and high-temperature lim-
its for all thermodynamic properties. The crucial
disadvantage is that it is hardly capable of giving accu-
rate entropies for anything other than monatomic
lattices. Deep theoretical analyses of this model and its
critique can be found in Seitz (1949) and Kieffer (1979).
In Figure 2 we compare the phonon spectra and CV

obtained in the Debye model and in full-phonon har-
monic calculations done with the same model
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interatomic potential (see Oganov et al. (2000)). The
phonon spectra are very different, but heat capacities
are reasonably close (only below�500 K, the disagree-
ment is appreciable).

2.06.1.4.2 General harmonic potential

Let us now come back to the general harmonic case.
First of all, the potential [40] describing a simple
elastic spring or a diatomic molecule can be general-
ized to the case of three-dimensional structures. One
can expand the crystal potential energy U around the
equilibrium configuration in terms of displacements

ui
aðlÞ of ith atoms in the lth unit cell along each �th

coordinate (Cartesian) axis:

U ¼U0 þ
X
l ;i;�

�i
�ðlÞui

�ðlÞ

þ 1

2!

X
l<l9;i<j ;a;b

�ij
��ðll9Þui

�ðlÞui
�ðl9Þ

þ 1

3!

X
l<l9<l0;j<j<k;�;�;�

�ijk
���ðll9l0Þui

�ðlÞu
j
�ðl9Þuk

�ðl0Þ

þ � � � ½57�

where

�i
�ðlÞ¼

qU

qui
�ðlÞ

�ij
��ðll9Þ¼

q2U

qui
�ðlÞqu

j
�ðl9Þ

�ijk
���ðll9l0Þ¼

q3U

qui
�ðlÞqu

j
�ðl9Þquk

�ðl0Þ

½58�

At equilibrium �i
�ðlÞ ¼ 0, so neglecting third-

and higher-order terms (called anharmonic terms),
we obtain the harmonic expansion of the potential
energy:

U ¼ U0 þ
1

2

X
l<l9;i<j ;a;b

�ij
��ðll9Þui

�ðlÞui
�ðl9Þ ½59�

The generalized harmonic potential [59] includes
noncentral forces, due to which directions of the
displacement and force may differ. In spite of the
complicated mathematical form of [59], it is really
analogous to [40]. It also corresponds to a set of
phonons, which are again noninteracting and have
the same quantization as given by [41]. For each
vibrational mode, the partition function is expressed
as [42], and thermodynamic properties are described
by [47]–[50].

The use of the harmonic approximation, neglect-
ing third- and higher-order terms in the interatomic
potential, leads to a number of fundamental errors.
The phonon frequencies in this approximation do
not depend on temperature or volume, and are
noninteracting. This leads to a simple interpretation
of experimentally observed vibrational spectra and
greatly simplifies the calculation of thermodynamic
properties [47]–[50], but noninteracting phonons
can freely travel within the crystal, leading to an
infinite thermal conductivity of the harmonic crystal.
In a real crystal, thermal conductivity is, of course,
finite due to phonon–phonon collisions, scattering
on defects, and finite crystal size. In the harmonic
approximation, the energy needed to remove
an atom from the crystal is infinite – therefore,
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Figure 2 Phonon density of state (a) and heat capacity CV of MgSiO3 perovskite. Reproduced from Oganov AR, Brodholt

JP, and Price GD (2000) Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model in

application to MgSiO3 perovskite. Physics of the Earth and Planetary Interiors 122: 277–288, with permission from Elsevier.
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diffusion and melting cannot be explained within
this approximation. The same can be said about

displacive phase transitions – even though the
harmonic approximation can indicate such a transi-

tion by showing imaginary phonon frequencies,
calculation of properties of the high-temperature

dynamically disordered phase is out of reach of the
harmonic approximation. In the harmonic approxi-
mation there is no thermal expansion, which

obviously contradicts experiment. Related to this is
the equality CV¼CP, whereas experiment indicates

CV < CP (see [32]). In a harmonic crystal, at high
temperatures CV tends exactly to the Dulong–Petit

limit of 3NkB, whereas for anharmonic crystals this is
not the case (see Section 2.06.1.8 for more details on

anharmonicity).
The first approximation correcting many of these

drawbacks, the quasiharmonic approximation, as well

as methods to account for higher-order anharmoni-
city will be discussed later in this chapter, but now let

us explore some more fundamental aspects of
thermodynamics.

2.06.1.5 Quantum Effects in
Thermodynamics

Quantum effects are of fundamental importance for

thermodynamic properties. Insufficiency of classical
mechanics is apparent in any experimental determi-

nations of the heat capacity at low temperatures.
According to classical mechanics, every structural

degree of freedom has (kBT )/2 worth of kinetic
energy. In a harmonic solid, there is an equal amount
of potential energy, so the total vibrational energy

equals 3NRT, and the heat capacity CV is then 3NR. In
a stark contrast, experiment shows CV going to zero as

T 3 at low temperatures. Similarly, thermal expansion
goes to zero at low temperatures – in contrast to

classical theory, predicting a finite value. A very
important consequence is for the entropy: if, as the

classical approximation claims, CV¼ 3NR at all tem-
peratures, then the entropy ðS ¼

R T

0 ðCV=T ÞdT Þ is
infinite.

The partition function [35] includes the relevant
quantum effects, and so do harmonic expression

[43]–[50] for thermodynamic functions. In the clas-
sical approximation, the partition function is

Zclass ¼
1

N !�3N

Z Z
e –�½UðrÞþEkinð pÞ�dr dp ½60�

The denominator in this definition already
accounts for some quantum effects. There, one has

N ! to account for indistinguishability of same-type

particles, and �3N that takes into account the fact

that quantum states are discrete and very small

differences in coordinates/momenta of particles

may correspond to the same quantum state.

Nevertheless, this definition is classical – since it

involves integration in the phase space, rather than

summation over discrete quantum states and since

some essentially quantum effects (such as exchange)

are not present in [60].
According to the uncertainty principle, quantum

particles are never at rest and there is quantum motion

of atoms even at 0 K (zero-point motion). The corre-

sponding energy, arising from quantum motion in a

potential field, is called the zero-point energy, which

we already encountered in harmonic expressions [43],

[46], [47], and [50]. The magnitude of zero-point

motion is significant – it can contribute more than

50% of the total experimentally observed atomic

mean-square displacements at room temperature.
It is important that at temperatures significantly

exceeding the characteristic temperatures � of all the

vibrational modes ð� ¼ ðh!=kBÞÞ, classical expres-

sions will be correct. This circumstance justifies the

application of methods based on classical mechanics

(molecular dynamics, Monte Carlo, etc.) in simula-

tions of materials at high temperatures. At low

temperatures, where quantum effects dominate, one

could use the harmonic approximation (or, better, the

quasiharmonic approximation – see below) or

include quantum corrections to classical results.
The classical free energy can be calculated as

Fclass ¼ E0 – kBT lnZclass ½61�

where E0 is the internal energy of a static crystal
structure. The quantum correction to [61] per atom
in the lowest order is (Landau and Lifshitz, 1980)

�F ¼ F – Fclass ¼
h2

24k2
BT 2

X
i

ðriUÞ2

mi

* +

¼ h2

24kBT

X
i

r2
i U

mi

* +
½62�

where is r2
i is the Laplacian with respect to the

coordinates of the ith atom. Higher-order (h3 and
higher) corrections are needed only at temperatures
below �ð�D=2Þ. Quantum corrections to other prop-
erties can be worked out by differentiating [62] (see
Matsui (1989) and Figure 3).
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Other possibilities to incorporate quantum correc-
tions into classical results can be done using (1) path

integral formalism (see Allen and Tildesley, 1987),

(2) phonon density of states g (!), which can be cal-

culated classically, and quasiharmonic formulas.

Montroll (1942, 1943) has formulated a method of

calculating thermodynamic properties of a solid

without the knowledge of g (!) but using moments

of the frequency distribution instead.
Defining the moments as

�2k ¼
1

3N

Z 1
0

!2kgð!Þ d! ½63�

when T > h!max=kB one can write

EðTÞ ¼3NkBT – 3NkBT

�
X1
n¼1

ð – 1ÞnBn

ð2nÞ!
h

2kBT

� �2n

�2n ½64�

CV ðTÞ ¼ 3NkB – 3NkB

�
X1
n¼1

ð – 1ÞnBnð1 – 2nÞ
ð2nÞ!

h
2kBT

� �2n

�2n ½65�

where Bn are Bernoulli numbers. First terms in [64]
and [65] are classical contributions, the second terms
(sums) can be considered as quantum corrections.
Taking only the first few terms, [65] takes the follow-
ing form:

CV ðT Þ � 3NkB 1 –
h

kBT

� �2�2

12
þ h

kBT

� �4 �4

240

"

–
h

kBT

� �6 �6

6048
þ � � �

#
½66�

The lowest-order quantum term is, as expected, of
order h2.

2.06.1.6 Thermodynamic Perturbation
Theory

It can be demonstrated (Landau and Lifshitz, 1980)
that by modifying the potential energy of the system
from U0 to U1 so that V ¼ U1 –U0 is a small pertur-
bation, to first order the free energy becomes

F1 ¼ F0 þ hV i0 ½67�

where subscript ‘0’ means that averaging is performed
over the configurations of the unperturbed system.
This means that the free energy of a system with the
potential U1 can be found by thermodynamic inte-
gration from (any) system U0, the free energy of
which is known:

F1 ¼ F0 þ
Z 1

�¼0

U� d� ½68�

where U�¼ (1 –�)U0þ�U1. The same ideas can be
used to calculate the free energy profile along the
chemical reaction coordinate, or generally the free
energy surface – as done in metadynamics simula-
tions (Laio and Parrinello, 2002; Iannuzzi et al., 2003).

To second order, we have

F1 ¼ F0 þ hV i0 –
1

2kBT
hðV –V Þ2i0 ½69�

where V is the averaged perturbing potential. Note
that the expressions [67] and [69] are classical, but
quantum extensions are available (Landau and
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Lifshitz, 1980). Thermodynamic perturbation theory
plays an important role in methods to calculating free
energies.

2.06.1.7 Quasiharmonic Approximation

In this approximation, it is assumed that the solid
behaves like a harmonic solid at any volume, but
the phonon frequencies depend on volume. It is
assumed that they depend only on volume – that is,
heating at constant volume does not change them.

In the quasiharmonic approximation (QHA) pho-
nons are still independent and noninteracting.
Thermodynamic functions at constant volume, as
before, are given by [47]–[50], CV still cannot exceed
3NR. Melting, diffusion, and dynamically disordered
phases are beyond the scope of this approximation,
which breaks down at high temperatures. Thermal
conductivity is still infinite.

However crude, this approximation heals the
biggest errors of the harmonic approximation.
Introducing a volume dependence of the frequencies
is enough to create nonzero thermal expansion and
account for CV < CP [32]. Thermal pressure contri-
butes to all constant-pressure thermodynamic
functions (enthalpy H, Gibbs free energy G, isobaric
heat capacity CP, etc.). This is the first approximation
to the thermal equation of state of solids, which can
be effectively used in conjunction with realistic
interatomic potentials (Parker and Price, 1989;
Kantorovich, 1995; Gale, 1998) or quantum-mechan-
ical approaches such as density-functional
perturbation theory (Baroni et al., 1987, 2001). For
instance, using the QHA and calculating phonon
frequencies using density-functional theory, Karki
and co-authors calculated high-pressure thermal
expansion and elastic constants of MgO (Karki et al.,
1999) and thermal expansion of MgSiO3 perovskite
(Karki et al., 2000). Using similar methodology,
Oganov and colleagues calculated a number of
mineral phase diagrams – MgO, SiO2, MgSiO3,
Al2O3. They found that MgO retains the NaCl-type
structure at all conditions of the Earth’s mantle
(Oganov et al., 2003) and that phase transitions of
SiO2 do not correspond to any observed seismic
discontinuities in the mantle (Oganov et al., 2005a).
For MgSiO3 (Oganov and Ono, 2004) and Al2O3

(Oganov and Ono, 2005), new high-pressure ‘post-
perovskite’ phases with the CaIrO3-type structure
were found to be stable, and their P–T stability
fields were predicted and, in the same papers,
experimentally verified. Also using the QHA and

density-functional perturbation theory, Tsuchiya
et al. (2004) studied stability of MgSiO3 post-perovs-
kite and confirmed previous experimental (Murakami
et al., 2004; Oganov and Ono, 2004) and theoretical
(Oganov and Ono, 2004) findings. Oganov and Price
(2005) confirmed that MgSiO3 perovskite and post-
perovskite remain stable against decomposition at all
conditions of the Earth’s mantle, but their decomposi-
tion into MgO and SiO2 was predicted to occur at
conditions of cores of extraterrestrial giant planets
(Umemoto et al., 2006).

2.06.1.8 Beyond the QHA

At temperatures roughly below one-half to two-
thirds of the melting temperature, QHA is quite
accurate. Only at higher temperatures do its errors
become significant. All the effects beyond the QHA
are known as ‘intrinsic anharmonicity’. For instance,
phonon–phonon interactions, displacive phase tran-
sitions, and explicit temperature dependence of the
vibrational frequencies (which is experimentally
measurable) are intrinsic anharmonic phenomena.
Here we focus on the role of intrinsic anharmonicity
in thermodynamics and equations of state of solids,
rather than on aspects related to thermal conductiv-
ity and phonon–phonon interactions.

This simplest way of treating intrinsic anharmo-
nicity takes advantage of the fact that in the high-
temperature expansion of the anharmonic free
energy, the lowest-order term is quadratic ( Landau
and Lifshitz, 1980; Zharkov and Kalinin, 1971; Gillet
et al., 1999). Explicit molecular dynamics simulations
for MgO (Figure 4) show that third- and fourth-
order terms still play some role, but overall the
T 2-term dominates. Limiting ourselves to this term,
we write

FanhðV ;TÞ
3NkB

¼ 1

2
aT 2 ½70�

where a is intrinsic anharmonicity parameter, usually
of order 10 – 5 K – 1. Equation [70] assumes that intrin-
sic anharmonic contributions from different modes
are additive. This is clearly a simplification, but it
finds some justification in the arguments of Wallace
(1998). Intrinsic anharmonicity normally decreases
with pressure, which can be accounted for by a sim-
ple volume dependence (Zharkov and Kalinin, 1971):

a ¼ a0
V

V0

� �m

½71�
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where a0 is the intrinsic anharmonicity parameter at
standard conditions, and m ¼ ðd ln a=d ln V Þ is a

constant.
One can easily find other anharmonic thermody-

namic properties, such as the entropy, energy,
isochoric heat capacity, thermal pressure, and bulk
modulus:

Sanh

3NkB
¼ – aT ;

Eanh

3NkB
¼ –

1

2
aT 2

CV anh

3NkB
¼ – aT ;

Panh

3NkB
¼ –

1

2
a

m

V
T 2

KTa ¼ Pað1 –mÞ

½72�

This model works well at high temperatures.
However, at low temperatures there are problems:
linear anharmonic heat capacity [72] overwhelms the
harmonic term, leading to large errors in the thermal
expansion coefficient below �100 K. The problem is
that [70] and [72] are classical equations and com-
pletely ignore quantum vibrational effects, which
determine low-temperature thermodynamics.

Wallace (1998) has shown that in the first approx-
imation intrinsic anharmonic effects can be
incorporated by using the true (i.e., temperature-
dependent) vibrational frequencies ! (or character-
istic temperatures � ¼ h!=kB) and substituting them
into the (quasi)harmonic expression for the entropy
for a harmonic oscillator [45]. The result will contain
both quasiharmonic and intrinsic anharmonic contri-
butions. We follow Gillet et al. (1999) and define the
temperature-dependent characteristic temperature
as

UVT ¼ � expðaTÞ ½73�

where � is the quasiharmonic (only volume-depen-
dent) characteristic temperature. Equation [73] thus
defines the physical meaning of this parameter as the
logarithmic derivative of the vibrational frequency
(or characteristic temperature) with respect to
volume:

a ¼ q ln!VT

qT

� �
V

¼ q ln UVT

qT

� �
V

½74�

In the classical limit ðUVT=T ! 0Þ eqns [70] and
[72] are easily derived from [74].

Another approach to include quantum corrections
in anharmonic properties is offered by thermody-
namic perturbation theory of an anharmonic
oscillator (see Oganov and Dorogokupets (2004)).
Consider a general anharmonic potential

U1 ¼
1

2
kx2 þ a3x3 þ a4x4 þ � � � ½75�

with k > 0.
As a reference system we take a harmonic

oscillator

U0 ¼
1

2
kx2 ½76�

Using first-order thermodynamic perturbation the-
ory [69] anharmonic free energy can be calculated as
follows:

Fanh ¼ hU –U0i0 ¼ ha3x3 þ a4x4 þ � � �i0
¼ a4hx4i0 þ a6hx6i0 þ a8hx8i0
þ � � � ½77�

This expression is remarkable in that the moments of
atomic displacements used are those of a harmonic
oscillator, and can be easily calculated. Since the
harmonic reference potential is symmetric, only
even-order terms are retained in [77]. Truncating at
the hx4i0 term, Oganov and Dorogokupets (2004)
found

Fanh

3n
¼ a

6kB
½hEi2 þ 2kBCV T 2� ½78�

Other thermodynamic functions are easy to derive
from Fanh by differentiation. From [78], one trivially
obtains anharmonic zero-point energy:

E
z:p:
anh

3n
¼ a

24
kB�

2 ½79�

For typical values of parameters (a¼ 2� 10–5 K–1,
�¼ 1000 K), this value amounts to only 0.17% of the
harmonic zero-point energy. For more details on this
formalism, see Oganov and Dorogokupets (2004).
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Computationally, intrinsic anharmonic effects can
be fully accounted for by the use of Monte Carlo or
molecular dynamics simulations (Allen and
Tildesley, 1987): these methods involve a full sam-
pling of the potential hypersurface without any
assumptions regarding its shape or the magnitude of
atomic vibrations; these methods are also applicable
to liquids and gases. Free energies of significantly
anharmonic systems can be calculated using thermo-
dynamic integration technique (e.g., Allen and
Tildesley, 1987). For example, using this technique
Alfè et al. (1999) calculated the melting curve of Fe at
conditions of the Earth’s core and provided first-
order estimates of core temperatures (more accurate
estimates were later obtained taking into account the
effects of alloying elements, see Alfè et al. (2002)).

2.06.2 Equations of State and
Elasticity

Equations of state (EOSs) (i.e., the P–V–T relation-
ships) of Earth-forming minerals are of special
interest – indeed, accurate EOSs of minerals are
necessary for the interpretation of seismological
observations. The importance of the elastic constants
for Earth sciences springs from the fact that most of
the information about the deep Earth is obtained
seismologically, by measuring the velocities of seis-
mic waves passing through the Earth. Seismic wave
velocities, in turn, are related to the elastic constants
of Earth-forming rocks and minerals. Acoustic aniso-
tropy of the Earth, measurable seismologically, is
related to the elastic anisotropy of Earth-forming
minerals and the degree of their alignment.

2.06.2.1 Equations of State

Generally, thermodynamics gives

P ¼ –
qF

qV

� �
T

and V ¼ qG

qP

� �
T

ðIsothermal EOSÞ

T ¼ qH

qS

� �
P

and S ¼ –
qG

qT

� �
P

ðIsobaric EOSÞ

P ¼ –
qE

qV

� �
S

and V ¼ –
qH

qP

� �
S

ðAdiabatic EOSÞ

An explicit analytical EOS can only be written for an
ideal gas (where interatomic interactions are absent;
in the case, there are no problems in the analytical
representation of the interatomic potential, and
entropy can be easily and exactly calculated using

the Sackur–Tetrode relation). For solids and liquids
interatomic interactions are essential, and all existing
analytical EOSs are by necessity approximate. Even
worse, interactions between atoms make phase tran-
sitions possible, and EOS becomes discontinuous (i.e.,
nonanalytical) at phase transitions. All the approxi-
mate EOS formulations are valid only for one phase
(though for a phase transition involving only small
structural changes it is possible to formulate a single
EOS describing two or more phases – see, e.g.,
Tröster et al. (2002)), and generally the accuracy of
the EOS is best at conditions far from phase
transitions.

2.06.2.1.1 Mie–Grüneisen EOS

To advance further, consider the isothermal EOS
P ¼ – qF=qVð ÞT , taking the QHA as the starting

point. Using indices i and k to denote the number
of the phonon branch and the wave vector k, we can
write a formula analogous to [50]:

F Tð Þ ¼E0 þ
1

2

X
i;k

h!ik

þ kBT
X

i;k

ln 1 – exp –
h!ik

kBT

� �� �
½80�

From this, we have

PðV ;TÞ ¼PstðV Þ þ
1

2

X
i;k

h
�ik!ik

V

þ
X

i;k

�ik

V

h!ik

expðh!ik=kBTÞ – 1
½81�

where PstðV Þ is the static pressure, and the mode
Grüneisen parameter �ik is defined as

�ik ¼ –
q ln!

q ln V

� �
T

½82�

In the QHA, the Grüneisen parameter is temperature
independent.
At high temperatures or when all �ik are equal, [81]
can be simplified:

PðV ;T Þ ¼ PstðV Þ þ �
EvibðV ;TÞ

V
½83�

where

� ¼ h�iki ½84�

Equation [83] is the famous Mie–Grüneisen ther-
mal EOS. It should be noted that in the classical
approximation, which is put in the basis of the
standard molecular dynamics and Monte Carlo simu-
lations, the thermodynamic Grüneisen parameter
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will always be close to <�ik> (Welch et al., 1978), but

it will also include a temperature-dependent correc-

tion due to intrinsic anharmonic effects.
As shown by Holzapfel (2001), the three common

definitions of the Grüneisen parameter (via the ther-

mal pressure, thermal expansion, and volume

derivatives of the phonon frequencies)

�PðV ;T Þ ¼
Pvib

Evib
V ½85a�

��ðV ;TÞ ¼ �
KT V

CV

½85b�

�qhðV Þ ¼
– d ln!i

d ln V

� 	
½85c�

are all identical for a classical quasiharmonic solid,
and all different for a system with intrinsic anharmo-
nicity. Very roughly, �P(V, T) is halfway between
�qhðV Þ and ��ðV ;T Þ, that is, anharmonic effects are

much pronounced in thermal expansion than in ther-
mal pressure. We stress that care must be taken as to
which definition of the Grüneisen parameter is used
when analyzing experimental and theoretical results.
Figure 5 shows the different definitions of the
Grüneisen parameter and that the differences are
small at low temperatures, but significantly increase
with temperature; also shown is the volume depen-
dence of the parameter q:

q ¼
�
q ln �

q ln V

�
T

½86�

Often, the volume dependence of � is described
by a power law:

�ðV Þ ¼ �0
V

V0

� �q

½87�

where parameter q is usually assumed to be constant.
However, this form becomes poor at high compres-
sion. A much better function was proposed by
Al’tshuler et al. (1987) (see also Vorobev (1996)):

� ¼ �1 þ ð�0 – �1Þ
V

V0

� ��
½88�

where �0 and �1 are Grüneisen parameters at V¼V0

and at infinite compression (V¼ 0), respectively.

2.06.2.1.2 Analytical static EOS

Good discussions of this issue can be found in many

sources, including Holzapfel (1996, 2001), Sutton

(1993), Hama and Suito (1996), Cohen et al. (2000),

Poirier (2000), and Vinet et al. (1986, 1989). Over the

decades, many different EOS forms have been gen-

erated, but here we discuss only the ones that are

most interesting from the theoretical and practical

points of view.
The simplest approach is based on elasticity the-

ory. Assuming that the bulk modulus K varies linearly

with pressure and denoting K09 ¼ qK=qPð ÞP¼0, we

obtain the Murnaghan EOS:

P ¼ K0

K09

V

V0

� � –K09

– 1

" #
½89�
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This simple EOS works reasonably well only in a
very limited compression range. A better approach
(in terms of the accuracy relative to the number of
parameters of the mathematical formulation) is pro-
vided by the effective potential methods, where an
approximate model for the energy as a function of
x ¼ V=V0, or some other measure of strain, is used.

For example, starting from a polynomial

E ¼ E0 þ af 2 þ bf 3 þ cf 4 þ � � � ½90�

in terms of the Eulerian strain fE : fE ¼
ð1=2Þ½x – 2=3 – 1�, one arrives at the family of Birch–
Murnaghan EOSs. (It is advantageous to use the
Eulerian finite strain rather than the Lagrangian
strain fL ¼ 1=2ð Þ½1 – x2=3�, because the Eulerian
strain leads to a better description of the correct
E(V) dependence with fewer terms in the expansion
[90]. At infinite pressure, Eulerian strain is infinite,
whereas Lagrangian strain remains finite and will
require an infinite-order expansion. However, for
infinitesimal strains both definitions become equiva-
lent.) The often used third-order Birch–Murnaghan
EOS is

P ¼ 3

2
K0 x – 7=3 – x – 5=3
h i

1þ 	 x – 2=3 – 1
h in o

½91�

E ¼ E0 þ
3

2
K0V0

3

2
ð	 – 1Þx – 2=3 þ 3

4
ð1 – 2	Þx – 4=3

�

þ 1

2
	x – 6=3 –

2	 – 3

4

�
½92�

where 	¼ (3/4) (K09 – 4).
It is possible to derive systematically higher-order

BM EOSs, but this appears to be of little use since the

number of parameters involved becomes too large;

only the fourth-order BM EOS

P ¼3K0fEð1þ 2fEÞ5=2 1þ 3

2
ðK09 – 4ÞfE

�

þ 3

2
K0K00þ ðK09 – 4ÞðK09 – 3Þ þ 35

9

� �
f 2
E

�
½93�

is sometimes used when ultrahigh pressures are
studied.

The Vinet EOS (Vinet et al., 1986, 1989) is some-
times considered as one of the most impressive recent

achievements in solid-state physics (Sutton, 1993). In

fact, this is a whole family of EOSs of different orders.

The most remarkable feature is its very fast conver-

gence with respect to the order of EOS – one seldom

needs to use beyond the third-order Vinet EOS.

This EOS is based on a universal scaled binding
energy curve

E ¼ E0ð1þ aÞ expð – aÞ ½94�

where E0 is the bond energy at equilibrium, a ¼ ðR –

R0Þ=l ; l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=ðq2E=qR2Þ

q
being a scaling length

roughly measuring the width of the potential well,
and R the Wigner–Seitz radius (the average radius of
a sphere in the solid containing one atom). The
potential [94] was invented and first used by
Rydberg (1932) for fitting potential curves of mole-
cules and obtaining their anharmonic coefficients; it
turned out (Vinet et al., 1986) that it describes very
accurately systems with different types of chemical
bonding in solids, molecules, adsorbates, etc.

The third-order Vinet EOS is (Vinet et al., 1989;
Hama and Suito, 1996)

P ¼ 3K0
1 – x1=3

x2=3
exp½
ð1 – x1=3Þ� ½95�

EðV Þ ¼ EðV0Þ þ
9K0V0


2

n
1 – ½1 – 
ð1 – x1=3Þ�

� exp½
ð1 – x1=3Þ�
o

½96�

where 
 ¼ ð3=2ÞðK 9
0 – 1Þ. The resulting expression

for the bulk modulus is

K ¼ K0

x2=3
½1þ ð1þ 
x1=3Þð1 – x1=3Þ� exp½
ð1 – x1=3Þ� ½97�

From this one has (Vinet et al., 1989)

K00 ¼ –
1

K0

K 9
0

2

� �2

þ K 9
0

2

� �
–

19

36

" #
½98�

The Vinet EOS proved to be very accurate for fitting
EOS of solid hydrogen ( Loubeyre et al., 1996;Cohen
et al., 2000) throughout the whole experimentally
studied pressure range 0–120 GPa, roughly to the
eightfold compression.

In very rare cases a higher-order Vinet EOS may
be needed; such higher-order versions of the Vinet
EOS already exist (Vinet et al., 1989):

P ¼ 3K0

x2=3
ð1 – x1=3Þ exp½
ð1 – x1=3Þ þ �ð1 – x1=3Þ2

þ �ð1 – x1=3Þ3 þ � � � ½99�

and the fourth-order Vinet EOS, where � ¼ ð1=24Þ
ð36K0K 0þ 9K09

2 þ 18K09 – 19Þ and � ¼ 0, has been
successfully applied to solid H2 at extreme compres-
sions (Cohen et al., 2000) and has led to significant
improvements of the description of experimental
PV-data.
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In the limit of extreme compressions ðx ! 0Þ the
Vinet EOS fails to reproduce the correct free-electron

limit and gives a finite (rather than positive infinite)

energy equal to ð9K0V0=

2Þ½1 – ð1 – 
Þexpð
Þ� (we do

not consider here nuclear forces, which become

important at densities �1015 g cm–3 (P � 1020 GPa

corresponding to x < 10–12 (Holzapfel, 2001)). EOSs,

manifesting the correct Thomas–Fermi behavior at

extreme compressions, have been developed and dis-

cussed in detail by Holzapfel (1996, 2001) and Hama

and Suito (1996).
Holzapfel (1996, 2001) has modified the Vinet

EOS so as to make it satisfy the electron-gas limit at

extreme compressions. His APL EOS (also a family

of Lth-order EOSs) is as follows (Holzapfel, 2001):

P ¼ 3K0

x – 5=3
ð1 – x1=3Þexp½c0ð1 – x1=3Þ�

� 1þ x1=3
XL

k¼2

ckð1 – x1=3Þk – 1

( )
½100�

where c0 ¼ – lnð3K0=PFG0Þ; PFG0 ¼ aFGðZ=V0Þ5=3,
aFG¼0.02337 GPa Å5, and Z the total number of elec-
trons per volume V0 .

This EOS correctly predicts that at infinite com-
pression K19 ¼ 5=3 (while at x¼ 1 K09 ¼ 3þ
ð3=2Þðc0 þ c2Þ), but becomes very similar to the

Vinet EOS at moderate compressions. The mathe-

matical similarity between [99] and [100] is obvious,

and it is easy to generalize these EOSs into one

family. For a third-order generalized Vinet–

Holzapfel EOS, one has (Kunc et al., 2003)

P ¼ 3K0

xn=3
ð1 – x1=3Þexp½
ð1 – x1=3Þ� ½101�

where 
 ¼ ð3K09=2Þ þ ð1=2Þ – n. The Vinet EOS is
recovered when n¼ 2, and the Holzapfel EOS is
obtained when n¼ 5. Kunc et al. (2003) found that
theoretical EOS of diamond is best represented by
the EOS [101] with an intermediate value n ¼ 7=2.
In this case, the energy can be expressed analytically:

EðV Þ ¼ EðV0Þ þ 9K0V0½ f ðV Þ – f ðV0Þ�
expð
Þffiffiffi



p ½102�

where

f ðV Þ ¼
ffiffiffi
�
p
ð2
 þ 1Þerf ð ffiffiffi
p x2=3Þ þ

2
ffiffiffi


p

expð – 
x1=3Þ
� �

x2=3

However, it remains to be seen how accurate [102] is
for other materials.

2.06.2.1.3 Anharmonicity in static EOS

Since both K9 and � come from anharmonic interac-
tions, an intriguing possibility arises to establish a
general relation between these parameters. This
possibility has been widely discussed since 1939,
when J. Slater suggested the first solution of the
problem:

�s ¼
1

2
K 9 –

1

6
½103�

Later approaches resulted in very similar equa-
tions, the difference being in the value of the constant
subtracted from ð1=2ÞK 9:1=2; 5=6, or 0.95. If any of
the relations of the type [103] were accurate, it would
greatly simplify the construction of thermal EOS.
Although some linear correlation between � and K 9

does exist, the correlation is too poor to be useful
(Wallace, 1998; Vočadlo et al., 2000).

2.06.2.1.4 EOS, internal strain, and phase
transitions

All the EOSs discussed in the previous section impli-
citly assumed that crystal structures compress
uniformly, and there is no relaxation of the unit cell
shape or of the atomic positions. For some solids (e.g.,
MgO) this is definitely true. For most crystals and all
glasses, however, this is an approximation, sometimes
crude. Classical EOSs are less successful for crystals
with internal degrees of freedom and perform parti-
cularly poorly in the vicinity of phase transitions. In
the simplest harmonic model, Oganov (2002)
obtained the following formula:

PðV Þ ¼ PunrelaxedðV Þ þ
X

i

m2
i ðV –V0Þ ½104�

with parameters mi . Punrelaxed is well described by the
conventional EOSs, for example, Vinet EOS, whereas
the total EOS is not necessarily so (see line 2 in
Figure 6). The bulk modulus is always lowered by the
relaxation effects, in the simplest approximation [104]:

K ðV Þ ¼ KunrelaxedðV Þ –
X

i

m2
i V ½105�

which implies the tendency of K 9 to be higher than
the corresponding unrelaxed value:

K 9ðV Þ ¼ K 9unrelaxedðV Þ þ
X

i

m2
i

V

K
½106�

This simple model explains qualitatively correctly
the real effects of internal strain. Complex structures
are usually relatively ‘soft’ and usually have large K09
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(often significantly exceeding ‘normal’ K09¼ 4), in

agreement with the prediction [106]. For example,

quartz SiO2, although consisting of extremely rigid

SiO2 tetrahedra, has a very low bulk modulus

K0¼ 37.12 GPa and high K09¼ 5.99 (Angel et al.,

1997): its structure is very flexible due to relaxation

of the internal degrees of freedom. Perhaps, the high-

est known K09¼ 13 was found in amphibole grunerite

(Zhang et al., 1992) with a very complicated structure

having many degrees of freedom.
As an illustration, consider two series of ab initio

calculations on sillimanite, Al2SiO5 (based on results

from Oganov et al. (2001b)). In one series all struc-

tural parameters were optimized, while in the other

series the zero-pressure structure was compressed

homogeneously (i.e., without any relaxation).

Results are shown in Figure 6, where a very large

relaxation effect can be seen.
It is well known that internal strains always soften

the elastic constants (e.g., Catti, 1989). In extreme

cases, the softening can be complete, leading to a

phase transition. In such cases, the simplified model

[104] is not sufficient. To study EOS in the vicinity of

the phase transition, one needs to go beyond the

harmonic approximation built in this model. This

can be done using the Landau expansion of the inter-

nal energy in powers of Q including the full elastic

constants tensor and allowed couplings of the order

parameter and lattice strains (see, e.g., Tröster et al.

(2002)).

2.06.2.2 Elastic Constants

A number of excellent books and reviews exist, espe-
cially, Nye (1998), Sirotin and Shaskolskaya (1975),
Wallace (1998), Alexandrov and Prodaivoda (1993),
Born and Huang (1954), Belikov et al. (1970),
Barron and Klein (1965), and Fedorov (1968).
Elastic constants characterize the ability of a material
to deform under small stresses. They can be
described by a fourth-rank tensor Cijkl, relating the
second-rank stress tensor �ij to the (also second-rank)
strain tensor ekl via the generalized Hooke’s law:

�ij ¼ Cijkl ekl ½107�

where multiplication follows the rules of tensor mul-
tiplication (see Nye, 1998). Equation [107] can be
simplified using the Voigt notation (Nye, 1998),
which represents the fourth-rank tensor Cijkl by a
symmetric 6� 6 matrix Cij . In these notations,
indices ‘11’, ‘22’, ‘33’, ‘12’, ‘13’, ‘23’ are represented
by only one symbol – 1, 2, 3, 6, 5, and 4, respectively.
So we write instead of [107]

�i ¼ Cij ej ½108�

Note that infinitesimal strains are being used; in
this limit, all definitions of strain (e.g., Eulerian,
Lagrangian, Hencky, etc.) become equivalent.
Under a small strain, each lattice vector aij9 of the
strained crystal is obtained from the old lattice vector
aij

0 and the strain tensor eij using the relation

aij
9 ¼ ð�ij þ eij Þaij

0 ½109�

In the original tensor notation and in the Voigt
notation (Nye, 1998), the ð�ij þ eij Þ matrix is repre-
sented as follows:

1þ e11 e12 e13

e12 1þ e22 e23

e13 e23 1þ e33

2
664

3
775 ¼

1þ e1 e6=2 e5=2

e6=2 1þ e2 e4=2

e5=2 e4=2 1þ e3

2
664

3
775

½110�

Voigt notation is sufficient in most situations; only in
rare situations such as a general transformation of the
coordinate system, the full fourth-rank tensor repre-
sentation must be used to derive the transformed
elastic constants.

The number of components of a fourth-rank ten-
sor is 81; the Voigt notation reduces this to 36. The
thermodynamic equality Cij ¼ Cji makes the 6� 6
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Figure 6 Effects of internal strains on equation of state. At

the highest pressures shown, the structure is on the verge of

an isosymmetric phase transition. 1, unrelaxed EOS; 2,

correct EOS including relaxation; 3, the difference caused
by relaxation. Note that in the pretransition region the full

EOS is poorly fit, while the unrelaxed EOS is very well

represented by analytical EOSs (in this case BM3).

Thermodynamics, Equations of State, Elasticity, and Phase Transitions 135

Treatise on Geophysics, vol. 2, pp. 121-152



Author's personal copy

matrix of elastic constants symmetric, reducing the
number of independent constants to the well-known
maximum number of 21, possessed by triclinic crys-
tals. Crystal symmetry results in further reductions of
this number: 13 for monoclinic, 9 for orthorhombic, 6
or 7 (depending on the point group symmetry) for
trigonal and tetragonal, 5 for hexagonal, and 3 for
cubic crystals; for isotropic (amorphous) solids there
are only two independent elastic constants.

One can define the inverse tensor Sijkl (or, in the
Voigt notation, Sij), often called the elastic compli-
ance tensor:

Sijkl


 �
¼ Cijkl


 � – 1
or Sij


 �
¼ Cij


 � – 1 ½111�

(Note that in Voigt notation Cijkl¼Cmn, but Sijkl¼ Smn

only when m and n¼ 1,2, or 3; when either m or
n¼ 4,5, or 6 : 2Sijkl¼ Smn; when both m and n¼ 4,5,
or 6: 4Sijkl¼ Smn (Nye, 1998).) The Sij tensor can be
defined via the generalized Hooke’s law in its equiva-
lent formulation:

ei ¼ Sij�j ½112�

Linear compressibilities can be easily derived
from the Sij tensor. Full expressions for an arbitrary
direction can be found in Nye (1998); along the
coordinate axes, the linear compressibilities are

�x ¼ –
1

lx

qlx

qP

� �
T

¼
X3

j¼1

S1j ¼ S11 þ S12 þ S13

�y ¼ –
1

ly

qly

qP

� �
T

¼
X3

j¼1

S2j ¼ S12 þ S22 þ S23 ½113�

�z ¼ –
1

lz

qlz

qP

� �
T

¼
X3

j¼1

S3j ¼ S13 þ S23 þ S33

where lx ; ly; lz are linear dimensions along the axes of
the coordinate system. (These axes may not coincide
with the lattice vectors for nonorthogonal crystal
systems. Coordinate systems used in crystal physics
are always orthogonal.) For the bulk compressibility,
we have

� ¼ –
1

V

qV

qP

� �
T

¼ �x þ �y þ �z ¼
X3

i¼1

X3

j¼1

Sij

¼ S11 þ S22 þ S33 þ 2ðS12 þ S13 þ S23Þ ½114�

The values of the elastic constants depend on the
orientation of the coordinate system. There are two
particularly important invariants of the elastic con-
stants tensor – bulk modulus K and shear modulus G,

obtained by special averaging of the individual elastic

constants. There are several different schemes of

such averaging. Reuss averaging is based on the

assumption of a homogeneous stress throughout the

crystal, leading to the Reuss bulk modulus:

KR ¼
1

S11 þ S22 þ S33 þ 2ðS12 þ S13 þ S23Þ
¼ 1

�
½115�

and shear modulus:

GR ¼
15

4ðS11 þ S22 þ S33Þ–4ðS12 þ S13 þ S23Þ þ 3ðS44þ S55þ S66Þ
½116�

It is important to realize that it is the Reuss bulk
modulus, explicitly related to compressibility, that
is used in constructing EOSs and appears in all ther-
modynamic equations involving the bulk modulus.

Another popular scheme of averaging is due to
Voigt. It is based on the assumption of a spatially

homogeneous strain, and leads to the following

expressions for the Voigt bulk and shear moduli:

KV ¼
C11 þ C22 þ C33 þ 2ðC12 þ C13 þ C23Þ

9
½117�

GV ¼
C11þC22þC33–ðC12þC13þC23Þþ3ðC44þC55þC66Þ

15

½118�

For an isotropic polycrystalline aggregate the Voigt
moduli give upper and the Reuss moduli lower bounds
for the corresponding moduli. More accurate estimates
can be obtained from Voigt–Reuss–Hill averages:

KVRH ¼
KV þ KR

2
; GVRH ¼

GV þ GR

2
½119�

The most accurate results (and tighter bounds) are
given by the Hashin–Shtrikman variational scheme,
which is much more complicated, but leads to results
similar to the Voigt–Reuss–Hill scheme (see Watt
et al. (1976) for more details).

There are two groups of experimental methods
for measuring the elastic constants: (1) static and

low-frequency methods (based on determination of

stress–strain relations for static stresses) and (2) high-

frequency or dynamic methods (e.g., ultrasonic

methods and Brillouin spectroscopy). High-

frequency methods generally enable much higher

accuracy. Static measurements yield isothermal elas-

tic constants (the timescale of the experiment allows

thermal equilibrium to be attained within the sam-

ple); high-frequency measurements give adiabatic
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constants (Belikov et al., 1970). The difference, which

is entirely due to anharmonic effects (see below),

vanishes at 0 K. Adiabatic Cij are larger, usually by a

few percent. The following thermodynamic equation

gives the difference in terms of thermal pressure

tensor bij (Wallace, 1998):

CS
ijkl ¼ CT

ijkl þ
TV

CV

bij bkl ½120�

where bij ¼ q�ij =qT
� �

V
is related to the thermal

expansion tensor. Equation [120] implies, for the
bulk moduli, the already-mentioned formula [33]:

KS ¼ KT ð1þ ��TÞ ¼ KT 1þ �
2KT V

CV

� �

where � and � are the thermal expansion and
Grüneisen parameter, respectively. Adiabatic and
isothermal shear moduli are strictly equal for cubic
crystals and usually practically indistinguishable for
crystals of other symmetries.

Acoustic wave velocities measured in seismologi-
cal experiments and ultrasonic determinations of

elastic constants are related to the adiabatic elastic

constants. Isothermal constants, on the other hand,

are related to the compressibility and EOS.
The general equation for the calculation of velo-

cities of acoustic waves with an arbitrary propagation

direction, the Christoffel equation (Sirotin and

Shaskolskaya, 1975), is

Cijkl
S mj mkp1 ¼ 
v2pi ½121�

where 
 is the polarization vector of the wave (of unit
length), m the unit vector parallel to the wave vector,
and 
 the density of the crystal. It can also be repre-
sented in the form of a secular equation:

detjjCijkl
S mj mk – 
v2�il jj ¼ 0 ½122�

This equation has three solutions, one of which cor-
responds to a longitudinal, and the other two to
transverse waves (see, e.g., Figure 7). For example,
one can obtain the following velocities for a cubic
crystal along high-symmetry directions:

ðaÞ m ¼ ½100�: v1 ¼
ffiffiffiffiffiffiffi
C11




s
ðp ¼ ½100�Þ

v2 ¼
ffiffiffiffiffiffiffi
C44




s
ðp ¼ ½010�Þ

v3 ¼
ffiffiffiffiffiffiffi
C44




s
ðp ¼ ½001�Þ

ðbÞ m ¼ ½110� : v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 þ C12 þ 2C44

2


s
ðp ¼ ½110�Þ

v2 ¼
ffiffiffiffiffiffiffi
C44




s
ðp ¼ ½001�Þ

v3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 –C12




s
ðp ¼ ½1�10�Þ

The average velocities are given by famous equa-
tions (Belikov et al., 1970)

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K þ 4G

3


s
½123�

and

vS ¼
ffiffiffiffi
G




s
½124�

where the adiabatic Voigt–Reuss–Hill (or Hashin–
Shtrikman) values are used for the bulk and shear
moduli.

At constant P,T, the elastic constants describing
stress–strain relations [107] are given by

CT
ijkl ¼

1

V

q2G

qeij qekl

� �
T

½125�

while at constant P,S, they are

CS
ijkl ¼

1

V

q2H

qeij qekl

� �
S

½126�
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Figure 7 Acoustic velocities as a function of the

propagation direction in lawsonite CaAl2(Si2O7)(OH)2
�H2O.

Solid squares, at 21	C; open circles, 450	C. Reproduced

from Schilling FR, Sinogeikin SV, and Bass JD (2003) Single-
crystal elastic properties of lawsonite and their variation with

temperature. Physics of the Earth and Planetary Interiors

136: 107–118, with permission from Elsevier.
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Now let us derive from [125] an expression for the
elastic constants in terms of the second derivatives of

the internal energy; in this derivation, we follow

Ackland and Reed (2003). The unit cell of a crystal

can be represented by a matrix V
$ ¼ ða1; a2; a3Þ, and

the volume of the equilibrium unit cell is then

V0¼ det V
$

. Using [109], for the volume V of a

strained cell we obtain

V

V0
¼ det V

$

det V
$ ¼1þ e1 þ e2 þ e3 þ e1e2 þ e2e3

þ e1e3 –
e2
4

4
–

e2
5

4
–

e2
6

4

þ e1e2e3 –
e1e2

4

4
–

e2e2
5

4

–
e3e2

6

4
þ e4e5e6

4
½127�

Then one has in the standard tensor notation

�V

V0
¼ eii þ

1

4
2�ij �kl – �ik�jl – �il�jk

� �
eij ekl þ Oðe3Þ ½128�

Then, the change of the Gibbs free energy associated
with strain is, to the second order,

�G ¼ �F þ Peii þ
PV

4
ð2�ij �kl – �ik�jl – �il�jkÞeij ekl

½129�

From this one has

CT
ijkl ¼

1

V

q2F

qeij qekl

� �
T

þ P

2
ð2�ij �kl – �il�jk – �jl�ikÞ ½130a�

and, by analogy,

CS
ijkl ¼

1

V

q2F

qeij qekl

� �
S

þ P

2
ð2�ij �kl – �il�jk – �jl�ikÞ ½130b�

It is well known ( Barron and Klein, 1965;Wallace,
1998) that under nonzero stresses there can be several

different definitions of elastic constants. The con-

stants CT
ijkl and CS

ijkl defined by eqns [130a] and

[130b] are those appearing in stress–strain relations

and in the conditions of mechanical stability of crys-

tals (see below), whereas the long-wavelength limit

of lattice dynamics is controlled by

1

V

q2E

qeij qekl

� �
S

These two definitions (via stress–strain relations and
from long-wavelength lattice dynamics) become
identical at zero pressure.

Calculating the second derivatives with respect to
the finite Lagrangian strains 
ij , different equations

are obtained (Wallace, 1998) for the case of hydro-
static pressure:

Cijkl
S ¼ 1

V

q2E

q
ij q
kl

� �
S

þP �ij �kl – �il�jk – �jl�ik

� �
½131a�

Cijkl
T ¼ 1

V

q2F

q
ij q
kl

� �
T

þP �ij �kl – �il�jk – �jl�ik

� �
½131b�

For a general stress the analogous equations are

Cijkl
S ¼ 1

V

q2E

q
ij q
kl

� �
S

–
1

2
2�ij �kl – �ik�jl – �il�jk –�jl�ik –�jk�il

� �
½132a�

Cijkl
T ¼ 1

V

q2F

q
ij q
kl

� �
T

–
1

2
2�ij �kl – �ik�jl –�il�jk –�jl�ik –�jk�il

� �
½132b�

Cauchy relations, originally derived with the defi-
nition via the energy density, can be elegantly
formulated in this definition as well (see below).
Note, however, that the elastic constants Cijkl, defined
from stress–strain relations, have the full Voigt sym-
metry only at hydrostatic pressure. It is essential to
distinguish between different definitions of elastic
constants under pressure.

2.06.2.2.1 Cauchy relations

For crystals where all atoms occupy centrosymmetric
positions, and where all interatomic interactions are
central and pairwise (i.e., depend only on the distances
between atoms, and not on angles), in the static limit
Cauchy relations (Born and Huang, 1954; but take into
account eqns [130a] and [130b] hold:

C23 –C44 ¼ 2P; C31 –C55 ¼ 2P; C12 –C66 ¼ 2P

C14 –C56 ¼ 0; C25 –C64 ¼ 0; C36 –C45 ¼ 0
½133�

These relations would reduce the maximum number
of independent elastic constants to 15; however, they
never hold exactly because there are always noncentral
and many-body contributions to crystal energy.
Violations of the Cauchy relations can serve as a useful
indicator of the importance of such interactions. While
for many alkali halides Cauchy relations hold reason-
ably well, for alkali earth oxides (e.g., MgO) they are
grossly violated. This is because the free O2– ion is
unstable and can exist only in the crystalline environ-
ment due to the stabilizing Madelung potential created
by all atoms in the crystal; the charge density around
O2– is thus very susceptible to the changes of structure,
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including strains. Consequently, interactions of the O2–

ion with any other ion depend on the volume of the
crystal and location of all other ions; this is a major
source of many-body effects in ionic solids. This point
of view is strongly supported by the success of poten-
tial induced breathing (PIB; see Bukowinski (1994) and
references therein) and similar models in reproducing
the observed Cauchy violations. In these models,
the size of an O2– ion (more precisely, the radius of
the Watson sphere stabilizing the O2–) depends on the
classical electrostatic potential induced by other ions.

2.06.2.2.2 Mechanical stability

One of the most common types of instabilities occur-
ring in crystals is the so-called mechanical instability,
when some of the elastic constants (or their special
combinations) become zero or negative. The condi-
tion of mechanical stability is the positive
definiteness of the elastic constants matrix:

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

This is equivalent to positiveness of all the principal
minors of this matrix (principal minors are square
submatrices symmetrical with respect to the
main diagonal – they are indicated by dashed lines
in the scheme above). All diagonal elastic constants
Cii are principal minors, and, therefore, must be posi-
tive for all stable crystals. Mechanical stability
criteria were first suggested by Max Born (Born and
Huang, 1954) and are sometimes called Born condi-
tions. In general form, they are analyzed in detail in
Sirotin and Shaskolskaya (1982) and Fedorov (1968),
and cases of different symmetries have been thor-
oughly analyzed by Cowley (1976) and by Terhune
et al. (1985). Mechanical stability criteria for crystals
under stress must employ the Cij derived from the
stress–strain relations (Wang et al., 1993, 1995; Karki,
1997). Violation of any of the mechanical stability
conditions leads to softening of an acoustic mode in
the vicinity of the �-point, inducing a phase
transition.

2.06.2.2.3 Birch’s law and effects of

temperature on the elastic constants

The famous Birch’s law (Birch, 1952, 1961; Poirier,

2000) states that compressional sound velocities

depend only on the composition and density of the

material:

vP ¼ að �MÞ þ bð �MÞ
 ½134�

where �M is the average atomic mass, a and b con-
stants, 
 the density. Thus, for the mantle materials
(average atomic mass between 20 and 22),

vP ¼ – 1:87þ 3:05
 ½135�

Similar relations hold for the bulk sound velocity

v� ¼
ffiffiffiffiffiffiffiffiffi
K=


p
; for mantle compositions

v� ¼ – 1:75þ 2:36
 ½136�

Birch’s law implies that for a given material at
constant volume, the elastic constants are tempera-
ture independent. This can be accepted only as a
first (strictly harmonic) approximation. Thermal
contributions to the bulk modulus can be represented
as additive corrections to the zero-temperature
result:

K T ðV ;TÞ ¼ K0 KðV Þ þ�K T
qhaðV ;TÞ

þ�K T
aðV ;TÞ ½137�

�K T
qhaðV ;TÞ ¼ pth;qhað1þ � – qÞ – �2TCV=V ½138�

�K T
aðV ;T Þ ¼ pað1þ �a – qaÞ ½139�

where

pa ¼ �aEa=V ; �a ¼ –
qln a

qln V

� �
T

; qa ¼
qln �a

qln V

� �
T

For the adiabatic bulk modulus

K SðV ;TÞ ¼K0 KðV Þ þ pth;qhað1þ � – qÞ
þ pað1þ �a – qaÞ ½140�

These results can be generalized for the individual
elastic constants. Garber and Granato (1975), differ-
entiating the free energy, expressed in the QHA as a
sum of mode contributions over the whole Brillouin
zone:

F ¼ Est þ
1

2

X
i;k

h!ik þ
X

i;k

kBT ln 1 – exp –
h!ik

kBT

� �� �
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and obtained the following result, which can be used
in calculations of the elastic constants at finite
temperatures:

1

V

�
q2F

q
ij q
kl

�
V

¼ 1

V

�
q2Est

q
ij q
kl

�
v

þ 1

V

X
i;k

�
��
�ik

ij �
ik
kl –

q�ij

q
kl

�
Evib;ik –�

ik
ij �

ik
kl CV;ikT

�

½141�

2.06.2.2.4 Elastic anisotropy in

the Earth’s interior

While most of the lower mantle and the entire outer
core are elastically isotropic, seismological studies
have indicated seismic anisotropy amounting to a
few percent in the upper mantle, lowermost mantle
(D0 layer), and in the inner core. This anisotropy can
be due to lattice-preferred orientation (e.g., appear-
ing due to plastic flow orienting crystallites in a rock),
or due to their reasons such as shape-preferred orien-
tation or macroscopic-scale ordered arrangements of
crystals of different minerals and/or molten rock.
The most directly testable case is lattice-preferred
orientation. Elastic anisotropy causes splitting of seis-
mic waves – much akin to birefringence of light
waves in anisotropic crystals. For an overview, see
Anderson (1989).

One would expect that crystals will orient their
easiest plastic slip planes parallel to the direction of
the plastic flow (e.g., in convective streams). The selec-
tion of a single dominant slip plane is, of course, a
simplification – which, however, leads to a most useful
model of a transversely isotropic aggregate (where
crystallites have parallel slip planes, but within the
slip plane their orientations are random). For the case
of a transversely isotropic aggregate with a small degree
of anisotropy, Montagner and Nataf (1986) considered
the following parameters (the unique axis of the trans-
versely isotropic aggregates is set to be c-axis):

A ¼ 3

8
ðC11 þ C22Þ þ

1

4
C12 þ

1

2
C66

C ¼ C33

F ¼ 1

2
ðC13 þ C23Þ

L ¼ 1

2
ðC44 þ C55Þ

N ¼ 1

8
ðC11 þ C22Þ –

1

4
C12 þ

1

2
C66

½142�

From these, they derived the velocities of the shear
vertically (vSV) and horizontally (vSH), and

compressional vertically (vPV) and horizontally
(vPH) polarized waves:

vPH ¼
ffiffiffi
A




s
; vPV ¼

ffiffiffi
C




s

vSH ¼
ffiffiffiffi
N




s
; vSV ¼

ffiffiffi
L




s ½143�

What determines the dominant slip system?
Strictly speaking, the dislocations – their number
and the activation energy for their migration – should
be the smallest for the best slip system. However, on
the example of h.c.p.-metals, Legrand (1984) has
demonstrated that a simplified criterion works very
well. The product of the stacking fault enthalpy �
calculated per area Ssf � ¼ �Hsf=Ssfð Þ and the shear
elastic constant relevant for the motion of this stack-
ing fault is smallest for the preferred slip plane. For
example, comparing basal {0001} and prismatic
{10�10} slip for h.c.p.-metals, the ratio

R ¼ �0001C44

�10�10C66
½144�

is greater than 1 in cases of prismatic slip and smaller
than 1 for materials with basal slip. This criterion was
used by Poirier and Price (1999) in their study of the
anisotropy of the inner core and, in an extended
form, by Oganov et al. (2005b) in their revision of
the nature of seismic anisotropy of the Earth’s D0

layer (see also Section 2.06.4.2).

2.06.3 Phase Transitions of Crystals

The study of phase transitions is of central importance
to modern crystallography, condensed matter physics,
and chemistry. Phase transitions are a major factor deter-
mining the seismic structure of the Earth and thus play
a special role in geophysics (e.g., Ringwood, 1991).

2.06.3.1 Classifications of Phase
Transitions

A popular classification of phase transitions was pro-
posed by Ehrenfest in 1933 (for a historical and
scientific discussion, see Jaeger (1998)), distinguishing
between first-, second-, and higher-order phase transi-
tions. For the ‘first-order’ transitions the ‘first’ derivatives
of the free energy with respect to P and T (i.e., volume
and entropy) are discontinuous at the transition point;
for ‘second-order’ transitions the ‘second’ derivatives
(compressibility, heat capacity, and thermal expansion)
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are discontinuous, and so forth. In some cases, the order
of the same phase transition is different at different P–T

conditions: isosymmetric transitions must be first order,
but become completely continuous (infinite-order)
transitions at and above the critical temperature. Some
transitions change under pressure/temperature from
first to second order; the crossover point is called the
tricritical point. Among the examples of systems with
tricritical crossover are NH4Cl (Garland and Weiner,
1971), zone-center cubic-tetragonal transition in
BaTiO3 perovskite, possibly the transition from calcite
to metastable calcite (II) in CaCO3 (see Hatch and
Merrill (1981)) and, possibly the�–� transition in quartz
(SiO2). For example, the order–disorder transition in
NH4Cl from a phase with a complete orientational
disordering of the NH4-group ðPm�3mÞ to an ordered
phase ðP4 �3mÞ is first order at 1 atm and 242 K, but
becomes second order at the tricritical point, 0.15 GPa
and 256 K. Therefore, the order of the transition is not
something fundamentally inherent to the transition.

The first structural classification was due to Buerger
(1961), who distinguished two main types of phase
transitions – those with and without changes of the
first coordination number, respectively. Each of these
types was further classified into reconstructive (i.e.,
requiring formation/breaking of bonds), displacive,
order–disorder, electronic, etc., transitions.

Even though Buerger’s classification is purely
structural, it naturally gives some insight into ther-
modynamics and kinetics of phase transitions. For
instance, reconstructive transitions are first order
and require activation (and, hence, are kinetically
controlled) (Polymorphs of carbon (graphite, dia-
mond) and Al2SiO5 (minerals kyanite, andalusite,
and sillimanite, see Kerrick (1990)) are classical
examples. All the transitions between these minerals
are first-order reconstructive and require substantial
activation energies to proceed; therefore, all the three
minerals can coexist at not very high temperatures
for millions of years in nature.) Also, as recognized by
L. D. Landau in 1937 (see Landau and Lifshitz, 1980),
for a second-order transition the two phases must be
structurally related, and their symmetry groups must
conform to certain group–subgroup relations.

2.06.3.2 First-Order Phase Transitions

Thermodynamics of first-order transitions are based
on the Clausius–Clapeyron relation:

dP

dT
¼ �S

�V
½145�

where �S and �V are the entropy and volume
differences, respectively, between the phases. Using
[145] one can calculate the slopes of the equilibrium
lines of phase coexistence. This relation is valid only
for first-order transitions, because for second-order
transitions both �V and �S are equal to zero. The
transition temperatures and pressures can be found
from accurate atomistic or quantum-mechanical total
energy calculations (e.g., Alfè et al., 1999; Oganov
et al., 2003, 2005a; Oganov and Ono, 2004, 2005;
Umemoto et al., 2006). Only when the two phases
are structurally similar can one apply approximate
analytical theories, such as Landau theory (which was
initially devised to study second-order phase
transitions).

A relation, analogous to [145], for second-order
transitions was derived by Ehrenfest:

dP

dT
¼ �CP

TV ��
½146�

where �CP and �� are the jumps of the heat
capacity and thermal expansion at the transition.
However, precise experiments, computer simula-
tions, and accurate theories indicate a qualitatively
different behavior of the heat capacity – instead of
having a finite jump, it logarithmically diverges to
infinity on both sides of the transition. This ‘�-beha-
vior’ invalidates the Ehrenfest relation.

2.06.3.3 Landau Theory of First- and
Second-Order Transitions

When the structural changes occurring upon transi-
tion are small, it is usually possible to define an
order parameter (or several order parameters),
whose continuous change describes all the intermedi-
ate structures on the transition pathway. The
simplest expression for the free energy is the
Landau potential

GðQ Þ ¼G0 þ
1

2
AðT –TCÞQ 2

þ 1

3
BQ 3 þ 1

4
CQ 4 þ � � � ½147�

where TC is the critical temperature, and G0

the free energy of the phase with Q¼ 0 (e.g., high-
temperature high-symmetry disordered phase).
Landau’s assumption that the second term of [147] is
simply proportional to (T–TC) was analyzed and justi-
fied mathematically by Sposito (1974). The entropy
as a function of the order parameter is simply
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S(Q)¼ –qG(Q)/qT¼ S0– (1/2)AQ 2. This dependence
of the entropy on the order parameter is most appro-
priate for displacive phase transitions. (For order–
disorder transitions, the entropy is more accurately
expressed as S(Q)¼ S0–R[(1þQ)ln(1þQ)þ (1–Q)
(Q)¼ S0–R[(1þQ)ln(1þQ)þ (1–Q) ln (1–Q)].)
The internal energy is then E(Q)¼ E0– (1/
2)ATCQ 2þ (1/3)BQ 3þ (1/4)CQ 4þ� � �. In the case
A > 0, B > 0, C > 0, this corresponds to a double-
well potential E(Q). (More than two minima can exist
for higher-order polynomials [147].) For second-order
transitions the odd-order terms in [147] must be zero,
making the double well symmetric. (This is only
one of the necessary conditions. Other necessary condi-
tions were formulated by Birman (1966) using group
theory.)

Consider a second-order transition

GðQ Þ ¼ G0 þ
1

2
AðT –TCÞQ 2 þ 1

4
CQ 4 þ � � � ½148�

One can observe that at the transition point (T¼TC,
Q¼ 0) the second derivative of F with respect to Q

changes sign, corresponding to freezing in of a soft
mode below TC and a corresponding structural dis-
tortion. For first-order transitions, complete mode
softening does not occur at T¼TC.

Second-order phase transitions are always char-
acterized by group–subgroup relations: the symmetry

group of one (‘ordered’, usually low-temperature)

phase is a subgroup of the symmetry group of the

other (‘disordered’, usually high-temperature) phase.

The two symmetrically equivalent minima then cor-

respond to the same ordered phase, and can be

considered as ‘twin domains’, related by a symmetry

element present in the disordered phase, but absent

in the ordered one (Figure 8).
The potential [147] is often complicated by the

coupling of the order parameter to lattice strains. In

such cases, the potential will be

GðQ Þ ¼
�

G0þ
1

2
AðT –TCÞQ 2þ 1

3
BQ 3þ 1

4
CQ 4þ �� �

�

þ a1Q "þ a2Q "2 þ a3Q 2"þ 1

2
C"2þ �� � ½149�

where a1, a2, a3 are coupling coefficients, and C is an
elastic constant. Coupling of the order parameter to
strains can cause a first-order behavior even for a
symmetric E(Q).

In some cases, more than one order parameter is
required to describe a phase transition. Then, for the

case of two order parameters, the Landau potential
looks like

GðQ Þ ¼GðQ 1Þ þ GðQ 2Þ þ 	1Q 1Q 2

þ 	2Q 1
2Q 2 þ 	3Q 1Q 2

2 þ � � � ½150�

where 	1, 	2, and 	3 are coupling coefficients for the
Q 1–Q 2 coupling. In cases where odd-order terms of
the kind 	Q 1Q 2Q 3 are present, the transition must
be first order. For a detailed general account of
Landau theory, see Landau and Lifshitz (1980),
Dove (1993, 1997), Carpenter et al. (1998), and
Carpenter and Salje (1998, 2000).

2.06.3.4 Shortcomings of Landau Theory

Landau theory belongs to a class of approximate
theories known as mean-field theories. Mean-field
treatment is a common way of approximately solving
complex physical problems in many areas of science.
The main drawback of these methods is the neglect
of short-range fluctuations (in Landau theory, the
local structure and fluctuations of the order para-
meter are neglected). In other words, Landau

–1 0

0

F
re

e 
en

er
gy

Order parameter

1

Figure 8 Symmetric Landau potential at T < TC. The two

distorted perovskite-type structures shown on the bottom

are equivalent (they are mirror reflections of each other);
arrows show the directions of octahedral rotations away from

the cubic structure. The undistorted structure is shown in the

center. At temperatures higher than TC, the stable structure

will be locally distorted, but on average will have the symmetry
of the undistorted phase. From Oganov AR, Brodholt JP, and

Price GD (2002) Ab initio theory of thermoelasticity and phase

transitions in minerals. In: Gramaccioli CM (ed.) EMU Notes in

Mineralogy, Vol. 4: Energy Modeling in Minerals, pp. 83–170.
Bolin: Springer.
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theory assumes that all the neighboring unit cells
have the same configuration; therefore, domain
structures and fluctuations of the order parameter
in space and time are not treated. This problem
becomes severe in the vicinity of TC (in the so-called
Ginzburg interval). For second-order transitions
Landau theory predicts Q� (TC–T )1/2, while experi-
ments indicate Q � (TC–T )1/3. The critical exponent
of 1/3 has been confirmed many times by numerical
computer simulations and could be explained only with
the advent of renormalization group theory. (In fact,
experiments give mean-field critical exponents far from
TC, but nearer TC there is crossover from the mean-
field to critical behavior, where the critical exponents
depart significantly from mean-field predictions.)
Landau theory cannot explain the logarithmic diver-
gence of the heat capacity near the critical point –
instead, it yields a finite jump. Finally, Landau theory
does not consider quantum effects at low temperatures.
As a consequence, it does not reproduce experimentally
observed order parameter saturation at low tempera-
tures; instead, it predicts a steady increase of the order
parameter with decreasing temperature.

2.06.3.5 Ginzburg–Landau Theory

In 1950, V. L. Ginzburg and L. D. Landau (see
Landau and Lifshitz (1980) and Bowley and
Sánchez (1999)) considered the case of an order
parameter slowly varying in space. This leads to
the simplest theory beyond the mean field. The
free energy becomes a ‘functional’ of the order
parameter, and an additional term proportional to
the square of the gradient of the order parameter
appears:

F ½Q ðrÞ� ¼
Z

f ðQ ðrÞÞ þ 1

2
�½rQ ðrÞ�2

� �
dr ½151�

with the stiffness parameter �> 0. For example, for a
second-order transition

F ½Q ðrÞ� ¼
Z

1

2
aðT –TCÞQ 2ðrÞ

�

þ 1

4
bQ 4ðrÞ þ 1

2
�½rQ ðrÞ�2

�
dr ½152�

The order parameter is then expressed as a sum of
a constant term (the average order parameter) and
fluctuations, given by a Fourier series:

Q ðrÞ ¼ �Q þ
X

k

Qkeikr ½153�

Equation [152] can be rewritten as

F ½Q ðrÞ� ¼
Z �

f ð �Q Þ þ Q1ðrÞf 9

þ 1

2
Q 2

1 ðrÞf 0þ � � � þ 1

2
�½rQ ðrÞ�2

�
dr

¼V f ðQ
–
Þ þ 1

2

X
k

jQ kj2ðf 0þ �k2Þ þ � � �
( )

½154�

Let us consider the case f 0< 0. In this case, the
system is unstable against all fluctuations whose wave
vectors satisfy f 0þ�k2 > 0. Hence, the maximum
unstable wave vector is kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
f 0j=�j

p
. The correla-

tion length 	 is

	 ¼ kc
– 1 ¼

ffiffiffiffiffiffiffiffiffi
�

f 0jj

s
½155�

Ginzburg and Landau have proposed a criterion
of the validity of Landau theory, defining the follow-
ing value:

rðTÞ ¼ fm	
3

kBT
½156�

where fm is the difference of energies at the energy
maximum and minimum. If r (T )>1, fluctuations are
not important, and Landau theory is valid. When
r (T ) < 1, fluctuations are essential and Landau the-
ory is invalid; this occurs in the vicinity of TC (in the
temperature region called Ginzburg interval).
Ginzburg intervals are usually quite narrow (of the
order of �10 K).

For second-order transitions, fm ¼ a2ðT –TCÞ=4b

and

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2aðTC –T Þ

s
½157�

Ginzburg–Landau theory is still approximate and
does not reproduce experimental critical exponents.
Renormalization group theory overcomes all these
difficulties and serves as the modern basis of theory
of critical phenomena; it goes beyond the mean-field
approximation and fully treats all possible fluctua-
tions of the order parameter. Introductory texts on
this theory can be found in Chandler (1987), Rao and
Rao (1978), and Wilson (1983); the latter reference is
the Nobel lecture of Kenneth Wilson, one of its main
inventors. This theory has led to the prediction of
new physical phenomena, for example, continuous
lattice melting, experimentally found in Na2CO3

(Harris and Dove, 1995).
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2.06.3.6 Ising Spin Model

This model is widely used to describe magnetic and

atomic ordering processes in materials. In this model,

a spin þ1 or –1 is associated with each lattice site,

depending on whether the magnetic moment on the

site is ‘up’ or ‘down’, or whether the atom occupying

the site is of the type ‘A’ or ‘B’.
The total energy of the system is

U ¼ U0 – J
X

i;j

Si Sj – H
X

i

Si ½158�

where U0 is the reference energy, and J the interac-
tion parameter between the sites: if J < 0, unlike spins
prefer to group together, and there is a tendency to
ordering at low temperatures; if J > 0, unmixing will
occur at low temperatures. Complete disorder,
although unfavorable energetically, will be stabilized
by the entropy at high temperatures. An external
field H leads to a preferred orientation of the spins.
The Ising model can be analytically solved only in
one and two dimensions; for three dimensions it is
solved numerically, usually by the Monte Carlo
method. One-dimensional Ising model exhibits no
phase transitions, and at all temperatures above 0 K
yields the disordered state.

Ising-like models provide an interesting route for
theoretical studies of polytypism and polysomatism

(see, e.g., Price (1983), Price and Yeomans (1984) and

references therein). The crucial observation is the

mathematical similarity between polytypic

sequences (e.g., Figure 9) and one-dimensional

Ising models.
The Ising model is also very attractive for studies of

ordering processes; for a review the reader is referred

to Warren et al. (2001), and can be generalized for the

case of more than two spins (see Yeomans, 1992) – such

variants will be applicable to ordering in multicompo-

nent solid solutions and polytypic (polysomatic)

systems with more than two types of layers.
The conventional Ising models assume that spins

can be only ‘up’ or ‘down’, and therefore these models

cannot be applied to noncollinear magnetic materials.

For these cases, various Heisenberg models are

appropriate, which take into account the orientations

of the spins. The simplest of these models is based on

the following Hamiltonian:

U ¼ U0 – J
X

i;j

SiSj – H
X

i

Sz
i ½159�

involving spin vectors Si and Sj. By analogy with the
one-dimensional Ising model, the Heisenberg model

(a) (b)

[001]

[110]
Spinel

[110]

[001]

[010][100]
β-Spinel

Figure 9 Polytypism in spinelloids. Structures of (a) spinel, (b) wadsleyite (�-spinel). Black circles are Si atoms (tetrahedrally

coordinated), gray circles Mg atoms (octahedrally coordinated), and empty circles are O atoms. Layers of different

orientations are shown by ‘up’ and ‘down’ arrows highlighting the similarity with the one-dimensional Ising spin lattice.
Spinelloids are interesting for Earth sciences, because of the phases of Mg2SiO4 – ringwoodite (spinel-like phase) and

wadsleyite (�-spinel phase), which are the major constituents of the transition zone of the Earth’s mantle.
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has no phase transitions for one- and two-dimen-
sional systems.

2.06.3.7 Mean-Field Treatment of
Order–Disorder Phenomena

The Bragg–Williams model is the simplest mean-
field approach applicable to ordering phenomena.
The free energy of the alloy as a function of tem-
perature and order parameter is

G ¼G0 –
Nz

4
JQ 2 þ NkBT ½ð1þ Q Þlnð1þ Q Þ

þ ð1 –Q Þlnð1 –Q Þ� ½160�

where G0 is the free energy of the fully
disordered state, N is the number of sites
where disordering occurs, the order parameter
Q ¼ XA;� –XA;� ¼ XB;� –XB;� ¼ 2XA;� – 1, and the

exchange energy J ¼ EAA þ EBB – 2EAB.
The expression [160] is analogous to the Landau

potential [148] and yields the same critical expo-
nents. In three dimensions, this model gives
qualitatively reasonable results; however, even with
accurate exchange energies J, the predicted transi-
tion temperatures are usually a few times higher than
the experimental ones (Redfern, 2000).

Drawbacks of the Bragg–Williams model can be
corrected by explicitly considering short-range
order. In the Bethe model (see Rao and Rao (1978)),
apart from the long-range order parameter Q , one or
more short-range order parameters are considered.
These additional parameters describe the distribu-
tion of neighbors of both kinds in the nearest
proximity of each atom. The resulting critical expo-
nents and transition temperatures are much more
realistic than mean-field predictions.

In the following, we discuss features of different
types of phase transitions, classified by their symme-
try. This gives a new viewpoint on the variety of
phenomena associated with phase transitions in
solids.

2.06.3.8 Isosymmetric Transitions

Using Landau theory, it is easy to show that
isosymmetric transitions must be first order, but
can disappear (i.e., become fully continuous, infinite-
order transitions) above the critical temperature
( Bruce and Cowley, 1981; Christy, 1995). There is a
complete analogy here with the liquid–gas and liquid–
liquid transitions (which are also isosymmetric). All

liquid, gaseous, and conventional amorphous phases

are isosymmetric, having spherical point-group sym-

metry. At supercritical temperatures there are

generally rapid, but continuous changes in all proper-

ties along any P–T path going above the critical point

(Angel, 1996).
Increasingly, many crystals are now known to

exhibit isosymmetric phase transitions (i.e., those for

which both phases have the same space group with

the same number of atoms in the unit cell, with atoms

occupying the same Wyckoff positions). Such transi-

tions can be electronic (where the electronic

structure changes, e.g., Ce and SmS), structural

(where the coordination or ordering of the atomic

species change discontinuously, e.g., KTiOPO4), or

intermediate (both electronic and structural changes

are involved, e.g., Na3MnF6). Metallic Ce undergoes

an isosymmetric phase transition Ce(I)–Ce(IV) (see

Liu and Bassett (1986) and references therein), pre-

sumably due to 6s–4f (or 5d) electronic transition.

Both Ce(I) and Ce(IV) have the f.c.c. structure (space

group Fm �3 m). The volume change at the transition is

very large (13%) at room temperature, but it rapidly

decreases along the Ce(I)–Ce(IV) equilibrium line

until it disappears at the critical point (2.15 GPa

and 613 K). Another famous example of an electronic

transition is SmS, which transforms from the low-

pressure insulating phase to the high-pressure metal-

lic phase; both phases have an NaCl-type structure.

Figure 10 explains this transition.

Sm–S distance
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n–1d1
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n–1d1f 
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Figure 10 Illustration of the isosymmetric metal–insulator
transition in SmS. Mixing of two configurations (metallic

fn–1d and insulating fn) produces a double-well energy curve

for the ground state, where the minimum with a smaller

interatomic distance corresponds to a metal. Compression
triggers the insulator–metal transition. Adapted from

Burdett JK (1995) Chemical Bonding in Solids, 319 pp. New

York: Oxford University Press.
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Structural isosymmetric transitions do not involve
any drastic changes in the electronic structure, but
are purely atomistic. KTiOPO4 (KTP) is known to
undergo a phase transition at 5.8 GPa with a volume
decrease of 2.7% with preservation of space group
Pna21 (Allan and Nelmes, 1996). Large cages, occu-
pied by K, lose 12% of their volume upon transition.
KNO3(II)–KNO3(IV) phase transition, which occurs
at 0.3 GPa and is accompanied by a volume decrease
of 11.5%, does not alter the space group (Pnma)
(Adams et al., 1988), while for potassium atoms the
coordination number changes from 9 to 11. An iso-
symmetric (space group Pnam) phase change has
been observed at 9.8 GPa for PbF2 (Haines et al.,
1998) and involves a change of the coordination
number of Pb atoms from 9 to 10. Na3MnF6 (space
group P21/n) is an example of a phase transition with
a simultaneous change in the atomic and electronic
structure. At 2.2 GPa this compound undergoes a
first-order isosymmetric phase transformation,
which is associated with a change of orientation of
the Jahn–Teller elongation of MnF6 octahedra
(Carlson et al., 1998).

2.06.3.9 Transitions with Group–Subgroup
Relations

There are several possibilities here, stemming from
different types of subgroups/supergroups of crystal
symmetry. Examples are �!� quartz, P21/c-C2/c

pyroxenes (see very interesting papers by Arlt and
Angel (2000) and Arlt et al. (1998)), and Pbnm!Pm�3m

transitions in perovskites.
The second type of transitions with group–sub-

group transitions involve indirect symmetry relations
between two phases via an intermediate archetypal
phase of a higher symmetry, which is a supergroup
for symmetries of both phases. An example is
BaTiO3, where the transition between the rhombo-
hedral and tetragonal phases can be described with
reference to the higher-symmetry cubic phase. Such
transitions are usually weakly first order.

The third possibility involved a transition state of
lower symmetry, which is a common subgroup of the
symmetries of both phases. These transitions are
usually strongly first order; often they can be
described as reconstructive (see Christy (1993)).
The f.c.c.!b.c.c. transition in Fe can be described
with reference to lower-symmetry tetragonal or
rhombohedral configurations, whose symmetries are
common subgroups of both symmetry groups of the
b.c.c. and f.c.c. phases.

2.06.3.10 Pressure-Induced Amorphization

This phenomenon, discovered in 1984 in experi-
ments on compression of ice (Mishima et al., 1984)
to 1 GPa at 77 K, is still poorly understood. For
detailed reviews, see excellent papers ( Sharma and
Sikka, 1996; Richet and Gillet, 1997).

A great number of crystals undergoing pressure-
induced amorphization are known (e.g., Quartz
SiO2, coesite SiO2, berlinite AlPO4, GeO2, zeolites
scolecite Ca8Al16Si24O80

�24H2O and mesolite
Na16Ca16Al48Si72O240

�64H2O, anorthite CaAl2Si2O8,
wollastonite CaSiO3, enstatite MgSiO3, muscovite
KAl3Si3O10(OH)2, serpentine Mg3Si2O5(OH)4, portlan-
dite Ca(OH)2), as well as a few substances undergoing
pressure-release amorphization, whereby high-pressure
phases, when decompressed to pressures well below
their stability fields, become dynamically unstable and
amorphize. (This happens to the perovskite-type mod-
ification of CaSiO3, one of the main minerals of the
Earth’s lower mantle, which at ambient conditions turns
to a glass within a few hours.)

Pressure-induced amorphization is always a meta-
stable first-order transition. It occurs in the limit of
dynamical stability of the crystal. Behavior of pres-
sure-induced amorphous phases on decompression
can be very different: some compounds (e.g.,
Ca(OH)2) recrystallize, others (e.g., SiO2, ice) remain
amorphous. Elastic anisotropy was found in pressure-
amorphized quartz by Brillouin spectroscopy
(McNeil and Grimsditch, 1991) and molecular
dynamics simulations (Tse and Klug, 1993). The
latter study found no structural relationships
between pressure-amorphized quartz and silica glass.

The mechanisms driving pressure-induced amor-
phization are still not quite clear. The necessary
conditions are (1) higher density of the amorphous
phase relative to the crystal and (2) presence of soft
modes in the crystalline phase. Softening of a vibra-
tional mode at a single point of the Brillouin zone
should drive a transition to a crystalline (if the soft
wave vector is rational) or incommensurate (if the
wave vector is irrational) phase. Simultaneous or
nearly simultaneous softening of a phonon branch at
a range of k-vectors could produce an amorphous
phase (Keskar et al., 1994; Binggeli et al., 1994;
Hemmati et al., 1995). Any atomic displacement,
expressible as a combination of soft modes, lowers
the energy; the multitude of possible combinations
gives rise to the disorder. However, a large degree of
order should remain because the displacements are
expected to be small and because only displacements
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related to the softening phonon branch are allowed to
freeze in. Simultaneous softening of a phonon branch
along a direction in the Brillouin zone implies weak
dispersion of this branch, which is most naturally
achieved when the unit cell is large. Indeed, crystals
with complicated open structures and large unit cells
are more prone to pressure-induced amorphization.

2.06.4 A Few Examples of
the Discussed Concepts

Very briefly, we will discuss some recent results
illustrating the use of the notions and theories dis-
cussed above. These include the calculation of the
temperature profile of the Earth’s lower mantle and
core, polytypism of MgSiO3 post-perovskite and
seismic anisotropy of the Earth’s D0 layer, and spin
transition in (Mg, Fe)O magnesiowüstite.

2.06.4.1 Temperature Profile of the Earth’s
Lower Mantle and Core

Equation [26] can be rewritten, taking into account
eqn [85b], as follows:

q ln T

q


� �
S

¼ �� ½161�

This formula describes adiabatic change of tempera-
ture upon compression and is relevant for first-order
estimates of the average temperature distribution in
convecting mantle (where superadiabatic effects
might be non-negligible) and outer core (which is
very closely adiabatic). Ab initio calculations of Alfè
et al. (2002) produced an estimate of the temperature
at the inner–outer core boundary (5150 km depth) of
5600 K. This was calculated from the melting curve
of iron, taking into account the effect of impurities
(Si, S, O). While within the solid inner core the
temperature is likely to be constant, the temperature
distribution in the liquid and rapidly convecting
outer core is adiabatic [161]. With their estimates of
the Grüneisen parameter of liquid iron at relevant
pressures and temperatures, Alfè et al. (2002) calcu-
lated the temperature distribution in the outer core.
In particular, the core temperature at the boundary
with the mantle was estimated to be in the range
4000–4300 K.

Phase-equilibrium experiments of Ito and Katsura
(1989) produced another ‘anchor’ point for the calcu-
lation of the geotherm – 1873 K at the depth of

670 km (top of the lower mantle). Taking into
account the Grüneisen parameters of MgSiO3 per-
ovskite and MgO periclase obtained in their ab initio

simulations. Oganov et al. (2002) have calculated the
adiabatic geotherm of the lower mantle. The result-
ing mantle temperature at the boundary with the
core (2891 km depth) is 2700 K, indicating a strong
thermal boundary layer with large temperature var-
iations at the bottom of the mantle. Lateral
temperature variations in the lower mantle have
been estimated (Oganov et al., 2001a) by combining
seismic tomography images and computed elastic
constants of MgSiO3 perovskite as a function of
pressure and temperature (Oganov et al., 2001a).
These variations were found to increase from 800 K
at the depth of 1000 km to �2000 K close to the
bottom of the lower mantle.

2.06.4.2 Polytypism of MgSiO3

Post-Perovskite and Anisotropy of
the Earth’s D0 layer

The original findings of the post-perovskite phase of
MgSiO3 (Murakami et al., 2004; Oganov and Ono,
2004) came as a big surprise. The unusual crystal
structure of post-perovskite and its elastic properties
naturally explained most of the anomalies of the D0

layer – the D0 discontinuity and its variable depth,
the anticorrelation of shear and bulk sound velocities
and seismic anisotropy of the D0 layer (see Oganov
and Ono (2004), Murakami et al. (2004), and Oganov
et al. (2005b)).

Recently, Oganov et al. (2005b) found that
MgSiO3 perovskite and post-perovskite can be con-
sidered as end members of an infinite polytypic series
(Figure 11) – this is a case of nontraditional
polytypism (for another illustration, see Figure 9),
since the ‘layers’, whose shifting produces all the
structures in the polytypic series, are not weakly
bound and are not even immediately obvious in the
structure. All these structures are energetically very
similar, and since intermediate structures have only
marginally higher enthalpies than perovskite or post-
perovskite, these phases could be stabilized by tem-
perature and/or impurities in the Earth’s lowermost
mantle. This polytypism with low-energy stacking
faults has interesting implications for plasticity of
MgSiO3 post-perovskite and for seismic anisotropy
of the D0 layer.

Initially, {010} slip planes parallel to the silicate
sheets of the post-perovskite structure were expected
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to be dominant in post-perovskite. However, ab initio

simulations (Oganov et al., 2005b) found that the
{110} slip planes are much more favorable. In parti-
cular, this conclusion was supported by applying
Legrand’s criterion – generalization of eqn [144].
With these slip planes and using the method of
Montagner and Nataf (1986), eqns [142] and [143],
one obtains a more consistent interpretation of seis-
mic anisotropy of the D0 layer than with the {010}
slip planes. In particular, much smaller degrees of
lattice-preferred orientation are needed to explain
the observed seismic anisotropy and there is now a
possibility to explain the observed (Garnero et al.,
2004; Wookey et al., 2005) inclined character of ani-
sotropy. Subsequent radial diffraction experiments
on analog MgGeO3 post-perovskite (Merkel, perso-
nal communication) have confirmed the prediction of
Oganov et al. (2005b) on the dominant role of the
{110} slip planes in MgSiO3 post-perovskite.
Furthermore, recent seismological studies (Wookey,
personal communication) found that only {110} slip
is consistent with observations.

2.06.4.3 Spin Transition in (Mg, Fe)O
Magnesiowüstite

Iron impurities play a large role in determining the

properties of Earth-forming minerals. One particular

complication arising from the presence of these

impurities is the possible pressure-induced transition

of Fe2þ (or Fe3þ) impurities from the high-spin into

the low-spin state. Typically, crystal fields induced

by the O2– ions at low pressures are weak, and transi-

tion metal ions prefer to adopt the high-spin

configurations (like in free ions). However, under

pressure the increasing crystal field and the addi-

tional PV term in the free energy prompt these ions

to adopt much more compact low-spin forms (it is

well documented that ionic radii are much larger for

high-spin ions than for low-spin ones – for example,

Shannon and Prewitt (1969). Recent studies of such a

transition in (Mg, Fe)O magnesiowüstite (Badro et al.,

2003; Lin et al., 2005) demonstrated that this transi-

tion might have large effects on physical properties of

minerals.

Figure 11 MgSiO3 polytypes: (a) Perovskite (space group Pbnm); (b) and (c) intermediate structures 2�2 (Pbnm) and
3� 1 (P21/m), respectively and (d) post-perovskite (Cmcm). Only silicate octahedra are shown; Mg atoms are omitted for

clarity. Arrows indicate the predicated slip planes in these structures. From Oganov AR, Martoňák R, Laio A, Raiteri P,

and Parrinello M (2005b) Anisotropy of Earth’s D0 layer and stacking faults in the MgSiO3 post-perovskite phase. Nature
438: 1142–1144.
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This spin transition is isosymmetric, and as such
it must (see Section 2.06.3) be first -order at low
temperatures and fully continuous above some criti-
cal temperature Tcr. While at 0 K the low-pressure
phase will contain only high-spin Fe2þ ions, and only
low-spin ions will be present in the high-pressure
phase, on increasing temperature there will be an
increased degree of coexistence of the two spin states
in the same phase – as a consequence, the first-order
character of the transition decreases with tempera-
ture. At Tcr the miscibility of high- and low-spin ions
become complete and the transition becomes fully
continuous (infinite order, rather than first or second
order); Tcr is proportional to the enthalpy that arises
from the deformation of the structure due to
insertion of a ‘wrong’-spin ion. While quantitative
aspects of this transition are actively studied by sev-
eral groups, the most important qualitative features
(in addition to those mentioned above) are immedi-
ately clear:

1. Large positive Clapeyron slope (since at high
temperatures magnetic entropy is large for high-
spin Fe2þ and zero for low-spin Fe2þ).

2. Low Tcr, perhaps several hundred kelvin, since for
relevant compositions (e.g. Mg0.8Fe0.2O) the ener-
getic effects of Fe incorporation and the enthalpy
of ‘spin mixing’ will be rather small.

At lower-mantle temperatures the transition is likely
to be continuous. A schematic phase diagram is

shown in Figure 12. Simplified theory of the spin
transition in (Mg, Fe)O was developed by Sturhahn
et al. (2005).
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