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We compare evolutionary algorithms with minima hopping for global optimization in the field of
cluster structure prediction. We introduce a new average offspring recombination operator and
compare it with previously used operators. Minima hopping is improved with a softening method
and a stronger feedback mechanism. Test systems are atomic clusters with Lennard-Jones
interaction as well as silicon and gold clusters described by force fields. The improved minima
hopping is found to be well-suited to all these homoatomic problems. The evolutionary algorithm is
more efficient for systems with compact and symmetric ground states, including LJ; 5, but it fails for
systems with very complex energy landscapes and asymmetric ground states, such as LJ;5 and
silicon clusters with more than 30 atoms. Both successes and failures of the evolutionary algorithm
suggest ways for its improvement. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3097197]

I. INTRODUCTION

To find the structural ground state of a cluster is a non-
trivial global optimization task. One has to find the global
minimum of the potential energy surface (PES), which is a
function of all the atomic coordinates. Even for a relatively
small cluster of 30 atoms, the configuration space has al-
ready 90 dimensions. Because knowing the structure is a
prerequisite for the study of all other physical and chemical
properties, the problem is of great importance and many al-
gorithms have been developed to solve this global optimiza-
tion problem. We compare evolutionary algorithms (EAs),
which have successfully been used in many diverse fields
with the minima hopping (MH) ' method.

For the prediction of the ground state structure of crys-
tals, the Universal Structure Predictor: Evolutionary
Xtallography*® (USPEX) method turned out to be extremely
powerful and has already allowed material scientists to find
interesting and unexpected new crystal structures.*™® Re-
cently EAs have also been successfully used to predict sur-
face phenomena such as steps on silicon crystals.g’10 A wide-
spread application of global optimization methods is the
prediction of the structure of various clusters. In this field the
majority of the work has been done with genetic or evolu-
tionary methods as well.""™" We note that different EAs de-
veloped for various types of structure prediction problems
(molecules, clusters, and crystals) have significant differ-
ences. Even for the same type of problem (e.g., crystal struc-
ture prediction) the previously proposed algorithms are very
different in their construction and performance. The minima
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hopping method has been successfully applied to benchmark
systems1 as well as to silicon clusters and AFM tips.15

In the presented EA, we employ the ingredients which
turned out to be successful for the crystalline case within
USPEX and which can be transferred to the case of clusters.
The version of minima hopping we are using is based on an
improvement of the two key features of the original minima
hopping method.' The feedback mechanism is enhanced and
the Bell-Evans—Polanyi (BEP) principle'® is exploited in a
more efficient way by moving preferentially along soft direc-
tions in the molecular dynamics (MD) part of the minima
hopping algorithm.

Our comparison of minima hopping and EAs is based on
Lennard-Jones systems, especially the cluster with 55 atoms,
which is an example of an easy one-funnel structure, and the
38-atom system, which is known to have a complicated
double-funnel structure. We also apply the algorithms to
more realistic systems, namely, silicon clusters described by
a force field and gold clusters described by an embedded
atom potential.

This paper is structured as follows: We first introduce the
evolutionary method used. After a quick introduction to
minima hopping and its modifications, we present the results
section containing a comparison between minima hopping
and the EA. Finally we also test different aspects of the EA
and MH.

Il. THE EVOLUTIONARY ALGORITHM

EAs implement a very simple model of biological evo-
lution. They work on a set of samples—a population—which
is gradually improved by selection and reproduction of fit
members of the population—individuals. Each individual is
a solution candidate. A single iteration step leads from a
population to the next and is called a generation. The algo-
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FIG. 1. (Color online) EA: A population i is evolved into the next genera-
tion i+ 1 using mutation and recombination operators. E: elitism (number of
individuals kept from the old generation). O: total number of offspring pro-
duced. P: population size.

rithm optimizes the fitness function—in our context the
negative energy of the configuration. The operators applied
to the population to obtain the next generation are the heart
of the algorithm as they determine its quality and properties.

In contrast with the original simple genetic algorithm,
modern applications in the field of chemical structure predic-
tion all use real value encoding instead of binary strings and
phenotypical operators acting directly in real space instead of
gene modification.'*!” Also state of the art is the application
of local optimization to each individual thus reducing the
search space to basin bottoms. Local optimization is done
using standard techniques such as steepest descent and con-
jugate gradient methods.

Figure 1 presents an overview of the EA used. It starts
with a randomly initialized population, this is our generation
0. In each generation the algorithm goes through three steps:
selection, application of operators, and acceptance. The step
selection + operator produces new offspring and mutations
and puts them into an intermediate population. In acceptance
the next generation is selected out of all available offspring
together with individuals from the old population.

The algorithm possesses many tunable parameters. The
most important values are population size, the number of
offspring produced, the number of individuals kept from the
last generation (elitism), and the mutation rate (for a com-
plete list see Table I).

TABLE I. Parameters of the EA.
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As is often the case in EAs in this field an energy slot
restriction allows only one candidate per energy interval en-
ergy slot in the population. This method of preventing mul-
tiple copies of the same configuration in the population may
be dangerous for it might reject an important candidate hav-
ing almost the same energy as an individual already known.
Using force fields allow to calculate energy and forces with
very high precision since the numerical noise is extremely
low. It is thus easily possible to identify structures by their
energy.

Recently, a different structure of EA, optimized for par-
allel machines, has been presented.18 Instead of a stepwise
evolution this approach handles a big pool of individuals,
which is subject to continuous application of operators. This
is closer to a biological population without sharply defined
generation gaps and it solves the load balancing problem in
parallel implementations of EA.

A. Operators

Operators are used to evolve a population to a next gen-
eration. We use two different kinds of operators, heredity
operators, which take two individuals as input and produce a
child sharing properties of both parents. The second kind is
an operator applied to a single individual altering its configu-
ration (mutation).

The selection step determines to which individuals the
operators are applied; it is dependent on the operator. For a
heredity operator there are two parents selected whereas for
mutation operators only one individual is chosen. Selection
is done using a linear ranking scheme. Individuals are sorted
with respect to their fitness values and then assigned a prob-
ability depending linearly on the rank i. The probability of
selecting the individual with rank 7 is in this case

Plil=P (-2, (1)
where i is the rank, starting at 1, ¢ is the parameter cutoff,
and P, is the first selection probability determined by nor-
malization constraint. The cutoff value is the last rank with a
selection probability above zero; all following ranks are as-
signed zero selection probability. The same method is also
used in USPEX method.>? It turned out to be more efficient
than Boltzmann selection where the selection probability fol-

Function

Name

Standard value

Population size
Number of offspring produced

Population size

30

Number of individuals taken from former population
Last rank with selection probability >0

Relative rate of offspring produced with average method
Only one individual allowed within this energy interval
Total rate of mutation

Random walk mutations (relative to total mutations)
Strain mutations (relative to total mutations)

Probability of random rotation before recombination
Convergence criterion for force norm in local optimizer

Offspring Population size
Elitism % population size
Cutoff % population size
Avgoffspring 0.50

Energy slot 107*

Mutation rate 0.05

Mutrwalk 0.60

Mutstrain 0.30

Raterndrot 0.90

Fnrmtol 1074
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lows a Boltzmann distribution depending on relative fitness
values. The selection of the same individual serving as both
parents is prevented. Mutation operators are applied ran-
domly to the whole population.

The first heredity operator used is the cut and splice
(cutting-plane) method introduced by Deaven and
co-workers.'""'> Both clusters are centered at their center of
mass (COM). A randomly oriented plane cuts the two clus-
ters apart. The new offspring cluster consists of one half of
the first and the other half of the second cluster. Though we
were able to obtain two offspring by this method, we only
produced one. The plane usually contains COM and its cut
preserves the total number of atoms in the child cluster.

A new way of producing offspring is implemented in the
average offspring method. Both clusters are centered at
COM and for each atom of the first cluster the closest lying
atom of the other cluster is identified. The atom of the child
is now placed randomly on the connecting line of the two
parent atoms. The randomness of this operator is necessary
to prevent producing a lot of identical offspring.

Before application of either heredity operator a random
rotation can be performed on one of the parents. The fre-
quency at which this rotation is used can be adjusted via
raterndrot.

Mutations are introduced to keep the diversity of the
population high and prevent premature convergence. Three
different methods are used. The easiest of those is the ran-
dom walk mutation where atoms are randomly displaced.
The displacement is approximately normal distributed with a
mean displacement in the order of the two-body potential
equilibrium distance (bond length). A strain mutation applies
a geometrical deformation to the whole cluster, inspired by
mechanical stress. The deformations include (anisotropic)
compression and shear. Such strain transformations gave in-
creased efficiency in the USPEX method. If the compression
is high this method relates to the big-bang algorithm, where
configurations are relaxed from very high compressions.19
We only apply a moderate compression. In a third type of
mutation the cluster is cut into two pieces similar to the
plane-cutting method. One of the pieces is rotated around an
axis perpendicular to the cutting plane by a random angle.
This method was introduced as rwinning mutation.”

Since our operators are able to produce configurations
with atoms lying very close to each other we use a prerelax-
ation method, which is essentially a steepest descent with a
very small step size. After a few steps the real self-adjusting
steepest descent is started until a nearly quadratic region
around the local minimum is reached. The final minimization
is then carried out by a conjugate gradient method.

If an intermediate set of offspring has been created the
accepting step is triggered. In this step it is decided whether
an offspring is accepted into the new population or is dis-
carded. The algorithm first accepts the best individuals from
the former population (elitism). The number of individuals
chosen that way is given by elitism. In a second step the
individual with the worst fitness value is replaced by the best
offspring if energy slot constraints are fulfilled. This is re-
peated until all offspring are processed or the population is
complete.

J. Chem. Phys. 130, 144108 (2009)

The algorithm is left running until a given limit of gen-
erations has been reached or the (known13) global minimum
has been found.

lll. MINIMA HOPPING

Minima hopping is a recently developed global optimi-
zation algorithm,l which makes use of a BEP principle for
MD tlrajectories.16 The BEP principle states that low energy
MD trajectories are more likely to enter the basin of a lower
lying adjacent minimum than high energy trajectories. The
algorithm also incorporates a history to repel it from previ-
ously visited regions. Using local optimization and MD
simulation, it jumps between basins of attraction. The kinetic
energy is kept as low as possible to escape the local mini-
mum, but is increased if this minimum has already been
visited before.

Minima hopping works with two self-adapting param-
eters, the kinetic energy of a MD escape step E;, and an
acceptance threshold Egyr for new minima to introduce a
further downward preference. Starting from a local minimum
a MD escape trial is started with kinetic energy E;,. After a
few steps it is stopped and the configuration locally opti-
mized again. If escaped the new minimum is only accepted
when the new energy lies at maximum Eg; higher than that
of the previous minimum.

Minima hopping is adjusted by tuning five feedback pa-
rameters: «; decreases Eg; when a new minimum is ac-
cepted, whereas «, increases the threshold on rejection, [,
increases the kinetic energy when a MD escape trial fails, 3,
increases Ey;, when the new minimum is already known, and
B decreases the kinetic energy if the minimum is unknown.
Each visited minimum is added to a history list and marked
as known. The algorithm currently uses the energy value to
identify different minima. For more details we refer to the
original paper.'

Minima hopping was used with the standard parameter
set presented in the original paper: a;=1/1.05, a,=1.05 and
Bi1,B>=1.05, B3=1/1.05. The algorithm is efficient since it
inhibits revisiting the same configuration many times, which
is likely to be the case in thermodynamically inspired meth-
ods such as simulated annealing.

We present two modifications of the original algorithm.
The initial velocity vector of a MD escape trial is moved
toward a direction with low curvature (softening)'® and a
stronger feedback (enhanced feedback) mechanism is used.

Softening. MD escape trials in the MH algorithm need an
initial velocity distribution, which is then rescaled to fit the
desired kinetic energy. The velocities are randomly directed
for each atom with Gaussian distributed magnitudes. Regard-
less of the actual distribution chosen, it proved very useful to
use softening to choose velocities along low-curvature direc-
tions. In this way one can typically find MD trajectories with
a relatively small energy that cross rapidly into another basin
of attraction. In the original MH method low kinetic energy
trajectories could only be obtained by using large values for
md,;,, which results in long trajectories. A direction of low
curvature is found using a modified iterative dimer method,
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which only uses gradients; no second derivatives need to be
calculated.”’

Starting at a local minimum x with an escape direction
N, the method calculates a second point y=x+dN at a dis-
tance d along the escape direction. The forces are evaluated
at y and the point is moved along a force component F*

perpendicular to N,

FL=F-(F-N)N,

y =y+aF",
o y —x
ly" =x|

After a few steps the iteration is stopped before a locally
optimal lowest curvature mode is found. Initial velocities for
the MD escape are then chosen along the final escape direc-
tion N.

If the softening procedure is executed until it converges,
the performance drops again. It is important not to overdo
softening. Always escaping into the same soft mode direction
of a given minimum reduces the possibilities of different
escape directions and therefore weakens the method. A good
indicator was the mean kinetic energy during a run. For a
few softening iterations the value decreases whereas it starts
to increase again at a certain number of softening iterations.
We set the iteration count to the value where the mean ki-
netic energy was minimal. Typically 40 iterations are done
with a step size a and a dimer length of d=0.01. Using
softening as described above typically increases the minima
hopping performance by a factor of 2 or more (see Table IV)

Enhanced feedback. In the original MH E,;, is increased
by a factor (3, if the current minimum has already been vis-
ited before, regardless of the number of previous visits. An
enhanced feedback method uses a value of 3, depending on
the previous visits according to

By=B(1 +clogN), )

where ,3(2) is the original value of 1.05 and N is the number of
previous visits to this minimum. The parameter ¢ has been
set to 0.1 after tests on bigger Lennard-Jones clusters and
gold systems. This feedback mechanism reacts slightly stron-
ger if the minimum is visited many times. If the system has
only one energy funnel, this enhanced feedback can even be
slightly disadvantageous since it increases the kinetic energy
too much and thus weakens the BEP effect of MD. The in-
creased feedback mechanism improves the efficiency consid-
erably for large systems where the system can be trapped in
huge structural funnels. If a cluster has for instance both low
energy icosahedral and fcc structures, it takes a very long
time for the MH algorithm without enhanced feedback to
switch from one structure to the other. Such a system is for
instance the LJy, cluster of Table IV where the enhanced
feedback doubles the performance.

In contrast with the basin hopping method,” minima
hopping is not a thermodynamic algorithm that creates some
probability distribution. As a matter of fact after having
found the global minimum, the system will visit higher and
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higher energy regions in very long minima hopping runs and
finally explode. It maps thus out all low energy configura-
tions and gives the configurational density of states reliably
up to some upper limit, which increases with increasing
computer time. Even though minima hopping uses, like
Monte Carlo methods, an acceptance rejectance step, the ac-
ceptance rejectance is not based on the metropolis algorithm
for sampling a thermodynamic distribution. As a conse-
quence there is no temperature parameter in the minima hop-
ping algorithm.

Minima hopping can be transformed into basin hopping
by the following steps. The numbers listed in the following
comparison were obtained by tests with a LJ5, cluster.

* The thresholding in the acceptance rejectance step has
to be replaced by a metropolis acceptance rejectance
step with a Boltzmann factor. For the temperature
(=energy) parameter E in the Boltzmann factor of the
metropolis step, we can in principle use the same feed-
back mechanism that we use for the Egy;; parameter in
the thresholding step of the minima hopping method." If
this is done the efficiency of the resulting method is
roughly equal to the one of the original minima hop-
ping. The average value found by the feedback mecha-
nism for Eg; and the temperature E (expressed in units
of energy) is also virtually identical in both cases and
has the value of .28. If, however, one switches off the
feedback mechanism for E=FEg; and fixes the value at
.28 the performance in terms of the number of geometry
optimization degrades by a factor of 3. The reason for
this is that small values of E are optimal to go down in
a funnel, but much larger values are needed to jump out
of a wrong funnel. With the feedback mechanism of
minima hopping, the values for Egy are adjusted ac-
cording to the circumstances and take on the optimal
values for whatever situation is encountered. By choos-
ing other constant values of E, the overall performance
could be improved somewhat, but it is clear that with a
constant value one can never reach the performance of a
flexible value.

* In the standard version of basin hopping the moves are
done with random displacements instead of MD.
Choosing a step size for the random displacements of
+.38 allows to leave the current local minimum in half
of all cases. This is only slightly worse than the 30%
change of not being able to leave the current minimum
in a single escape trial step of the minima hopping
method. If one wants to accept also half of the new
configurations, one has to choose a value of E of 10 in
the metropolis acceptance/rejectance step. With such a
large value it is virtually impossible to find the global
minimum of a large system such as the LJ;s, cluster
because one will sample mainly the astronomically
large number of high energy structures. In minima hop-
ping one chooses actually typically first a much smaller
temperature £ and adjusts then the step size such that
half of all configurations are accepted. The resulting
step size is also close to the value of. 38 because in a
first approximation all the escapes that lead out of the

Downloaded 09 Apr 2009 to 129.132.128.136. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



144108-5 Minima hopping and evolutionary algorithms

current minimum are rejected whereas the unsuccessful
escapes that lead back to the current minimum are ac-
cepted. This is again very inefficient since one is not
able to escape from a current minimum during many
trial escape steps while one has to perform many geom-
etry optimizations just to find the same local minimum
again and again. Because of these problems, the basin
hopping method using random displacements is not
very efficient for large clusters. We started 20 runs at
two temperatures of £=10 and E=1 and none of these
runs were able to locate the global minimum within a
run time, which was 10 times longer than the average
run time of minima hopping. In the MD based escape
trials of the minima hopping method, one can achieve
both a high escape probability and a high acceptance
probability of new local minima configurations since
the local minima found by low energy MD trajectories
have on average much lower energy than the minima
found by random displacements.16 The problems of ba-
sin hopping are less severe for small systems where the
basin hopping method allows to find global minima®

Parallel minima hopping. Parallelizing minima hopping
is straightforward. On each processor an own MH process is
started, all sharing the same history list. Only energy values
of visited minima have to be shared. Due to the feedback
mechanism and the common history list, overlap of search
areas is penalized in this parallel setup and running on sev-
eral processors can thus yield an almost linear speedup in
runtime. A further effect can be exploited in parallel runs. A
single run might easily get trapped in a metastable funnel
with high escape time, but the probability of all processors
getting trapped in this local minimum is exponentially re-
duced with the number of processors running in parallel. The
total expected runtime until success is therefore less influ-
enced by the long escape times of relatively stable local
minima in parallel runs. On the other hand there is a minimal
number of local minima that has to be visited before the
global optimum can be found. This minimal number of hops
renders the use of too many processors less efficient again
leading to an optimal number of processors depending on the
structure of the PES. The idea of parallel sampling is known
to have a positive effect.*

IV. COMPUTATIONAL EXPERIMENTS ON CLUSTERS

Atomic clusters are an ensemble of bound atoms, bigger
than a dimer but smaller than bulk matter. They show inter-
esting properties in the transition region of single atoms to
bulk matter. From a global optimization point of view they
are complicated multidimensional systems usually difficult
to optimize since they contain a lot of local minima. There-
fore they are of interest to test the capabilities of an optimi-
zation algorithm.

A simple model of chemical interaction of two non-
charged atoms is the Lennard-Jones potential. The potential
well depth and the equilibrium distance are the only param-
eters; both are set to 1.

Such models represent rare-gas clusters reasonably well.
Lennard-Jones clusters are thoroughly studied model sys-
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FIG. 2. (Color online) Sis, ground state with EDIP.

tems with well-known global minima up to 1000 atoms.
Some of those clusters have a nontrivial multifunnel PES
where the global minimum is not easily found. The use of the
Lennard-Jones two-body potential is fast compared to more
accurate potentials or even density functional theory (DFT)
calculations. For these reasons they are well suited to test
global optimization methods. Our algorithms are applied to
Lennard-Jones systems consisting of 38, 55, 75, 100, and
150 atoms. All clusters chosen show different aspects: Llss is
a very easy system, LJ;3 has a double funnel structure, LJ;5
is a very hard double-funnel system, and LJ,q and LJ,5, are
examples of bigger clusters. Additionally, we perform single
runs on LJsg, LI, and Llgg to find the ground state motif
dependence of the algorithms. For these additional clusters
we have pairs of similar-sized clusters with very different
ground state geometries.

Silicon clusters are of more practical interest as silicon is
so widely used in research and technology. To obtain realistic
results usable in those fields, it would be necessary to calcu-
late energies using at least DFT methods. However those
methods are consuming a lot of CPU time and one should
highly optimize the algorithms applying DFT. Especially in
the field of global optimization it is of importance to use an
algorithm which is efficient to save computing time. To in-
vestigate the behavior of the presented algorithm, we use
only a force field to evaluate the energy of a configuration.
Silicon systems are chosen as model systems since they pos-
sess directed bonds and show frustrated behavior. They have
nontrivial minimum structures which are in general neither
compact nor spherically symmetric. Silicon systems contain-
ing 18, 22, 30, and 60 atoms are explored. The force field
used is Bazant and co-workers’>> %’ environment-dependent
interatomic potential (EDIP).?® This force field has been cho-
sen because it tends to elongated minimal structures, which
are not spherical (Fig. 2). There exist other force fields pre-
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ferring spherical ground states. However the performance
with spherical ground states is already investigated in
Lennard-Jones and gold systems. Such highly elongated
structures might not be very realistic as more accurate DFT
calculation suggests only slightly elongated ground state
configurations.

In gold systems different configurations can have very
similar energy and the global optimum is often only very
slightly lower than the next-best solution. This leads to a
situation where the global geometry of the gold cluster can
change completely by adding only a single atom. The ener-
gies of gold clusters are calculated using an empirical many-
body potential by Rosato, Guillope, and Legrand.29 Gold
clusters with 28, 76, and 102 atoms are investigated. Addi-
tionally, Auyg and Au,q; are added to the test set in order to
have different ground state geometries at similar sizes.

To compare different algorithms we measure two quan-
tities, the total number of calls to the function calculating
energy and forces and the total number of local geometry
optimizations. The local optimization is the most expensive
step in both algorithms and the speed is mainly determined
by its number. To obtain meaningful numbers, we performed
between 20 and 100 runs on each problem. The numerical
convergence criterion for local optimizations is |[F[|<10~*
for the total Euclidean force norm, which leads to an energy
precision of almost ~1078,

V. RESULTS

We gathered results for total performance on the inves-
tigated systems. Additionally, we also did comparative runs
concerning the new modifications mentioned above. The nu-
merical results of the different performance runs can be
found in Table III, whereas special test cases are addressed
later. The table shows the results obtained using the best
parameter set known to us. Those values are usually a com-
bination of both heredity methods and all mutations. Minima
hopping found the global minimum in all problems investi-
gated, whereas the EA could not find the global minima for
LJ;s, Llog, Sizg, Sigp, Ausg, and Auygp,.

A. General performance

The comparison shows a good applicability of minima
hopping in all problems. The EA is capable of finding most
of the ground states but fails in some cases. Where it is
successful it can even outperform MH. Problematic for the
EA are the nonicosahedral ground states, such as LJ;s, Llog,
and the elongated silicon clusters.

The failure of the EA to find the elongated ground state
structure of silicon systems shows a clear advantage of
minima hopping; it is not geometry dependent as the current
EAs are. Moving via MD it is applicable to any system for
which forces are available. In the past there have been ap-
proaches inspired by genetic algorithms which used standard
crossover and in the beginning even binary strings as coor-
dinate representation. Those ideas seem to be a bit less ge-
ometry dependent than the nowadays applied heredity meth-

J. Chem. Phys. 130, 144108 (2009)

TABLE II. Performance of the EA depends on the motif of the ground state
configuration. Finding nonicosahedral ground states in systems bigger than
38 atoms is problematic with current EA. Minima hopping was able to find
all of the listed configurations. A no means failure to find the ground state
structure within 100 000 local optimizations.

System Structure Success
L3 Icosahedron yes
Llsg Fce yes
Ll Icosahedron yes
L5 Marks decahedron no
Lo Icosahedron yes
Llog Tetrahedron no
Aug Icosahedron yes
Auyg fce no
Auyg,; Icosahedron yes
Auyp fee no

ods. However the original simple genetic methods have been
shown to be less effective than more elaborate geometrical
operators in Lennard-Jones systems.17

When comparing two clusters of similar size but with
different ground state structures, it is obvious that the EA can
in general not reproduce nonicosahedral ground states with
the operators presented here. The results of these tests can be
found in Table II. This table contains results of comparative
runs without enough statistics to compare performance. The
problem has already been identified and solved by niches to
prevent domination of the whole population by only one ge-
ometry type.30 Using niches it is possible to find the ground
state of all the Lennard-Jones cluster in Table II for which
the standard EA fails. When implementing niches one has to
introduce some measure that allows differentiation between
different types of clusters such as icosahedral clusters and
octahedral clusters. A niche is then a certain interval of val-
ues of this measure. During the genetic algorithm the popu-
lation of one niche is not allowed to grow so strongly such as
to annihilate the population of other niches. In spite of the
significant improvement that can be obtained by the intro-
duction of niches, we renounced implementing this most so-
phisticated variant of EAs for the following reasons. To de-
fine niches we need already some knowledge about the
system. We have to know initially for example that the sys-
tem will take on either icosahedral or fcc-like structures. For
this reason we would presumably have been able to locate as
well the ground states of the gold clusters in Table II, but we
could have missed some more complicated ground states
with unexpected structures.’’ The introduction of niches
would probably not allow to find the ground states of the
silicon clusters in Table III with EAs. Second, implementing
niches is not trivial and for this reason the majority of EAs
renounce using niches. Third and last, it is to be expected
that also other global minimization methods including
minima hopping could be made more efficient by introduc-
ing niches.

Minima hopping is able to find the nonicosahedral mo-
tifs without further modification in the standard configuration
though with a decreased performance comparing to the
icosahedral configuration of similar size. The results show
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TABLE III. Best Results. Highlighted in bold face are the problems where the EA performed better. All values are averaged over multiple runs, indicated in

the column runs. Standard deviations are as big as the mean values.

Cluster Minima Hopping EA

Energy GO no.* Calls (GO)° Calls (MD)" Runs* GO no. Calls Configuration® Runs
Ly —108.315 62 96 50610 8300 100 56 34200 10-4-6 100
Llsg —173.928 42 1190 688 500 85930 100 1265 732 900 25-0-20 100
Llss —279.248 47 190 74 840 14700 100 100 54 900 10-3-3 100
Ll —397.492 33 27 375 12.3X10° 2.11x10° 20
LIioo —557.039 82 5960 1.87 X 10° 417 000 42/50 5908 3.89 X 10° 60-20-40 35/40
Liso —893.310 26 9490 3.72 X 10° 758 000 45/50 7980 436X 10° 60-20-40 17/20
Siyy —4491223 eV 29 11 790 4190 60 61 31300 10-3-4 50
Sijg —74.884 19 eV 110 23 100 10 700 93 195 110 100 10-4-6 40
Siy —92.48090 eV 370 187 400 52100 21 3300 1.74 X 10° 10-4-6 1/5
Sizg —126.0952 eV 5050 3.98 X 10° 750 000 100 e e e
Sig —253.05509 eV 23 300 14.1 X 10° 2.80% 10° 44/49
Auyg —99.951 15 eV 54 26 210 3510 100 87 68 910 10-3-6 50
Auyg —279.34791 eV 1124 526 500 70 800 98 2680 1.60 X 10° 25-5-13 19/20

“Average number of local optimizations over all runs.
°Calls to energy function during local optimization including softening.
“Calls to energy function from MD escape steps.

9If two numbers are present some runs had to be stopped due to too long runtime, the first number indicates the successful runs.

“Configurations of EA: populationsize-elitism-cutoff.

that a further adaption of EA to some specific features of
clusters is necessary to enable the EA to work as efficiently
for clusters as they do for periodic solids.

Minima hopping tends to need in total more calls to the
energy and forces function than the EA in the cases where
the EA succeeded (at least in smaller systems). This is
clearly due to the use of MD and softening in minima hop-
ping. However we remark that it is not necessary to perform
MD escape with full accuracy. Within a DFT based global
geometry optimization one can do the MD escape part for
instance using a reduced basis set and therefore with signifi-
cantly less computer time per force evaluation. For this rea-
son we separately listed the number of force evaluation for
the geometry optimization and MD part in Table III. On the
other hand the EA produces structures that are usually far
from local minima and initial stages of their local geometry
optimization could be done within a DFT calculation at re-
duced precision or even using force fields. Within such a
scheme the number of force evaluations for the EA in Table
IIT would overestimate the required CPU time.

On the other hand minima hopping never produces en-
ergetically awful candidates since it moves via MD. Since
heredity and mutation operators do not necessarily generate
chemically reasonable configurations, the local geometry op-
timization requires more force evaluations in the EA. Since
in DFT applications the early stages of local optimization do
not need high precision they could even be done using force
fields thus reducing the computational demand.

B. Heredity methods

While comparing both heredity methods used we ob-
served that average offspring method performed better in
systems with a compact optimal structure. The plane-cut
method could only produce offspring as good as the other

method by choosing a very low cutoff. When Daven et al.’?
applied this method they produced every single combination
of two parents from a very small population, so having ac-
tually a very low cutoff level too. With the lower cutoff level
the plane-cut method performed well overall.

The samples obtained using the average offspring
method are energetically closer to the fittest member of the
population where the cutting plane method samples broader
with more diversity [Figs. 3(a) and 3(b)]. It is a known fact
that decreasing diversity in the population can lead to pre-
mature convergence.32 On the other hand, if samples in the
complete energy range are allowed, the method resembles
too much a random search and loses efficiency. To observe a
well evolving population it is necessary to have a balanced
distribution of selected individuals.*® It seems therefore nec-
essary to lower the cutoff parameter in plane-cut runs to
select more of the fitter individuals as parents. A mix of both
heredity methods delivered the best results [Fig. 3(c)].

The plane-cut method is better suited to a general appli-
cation of the algorithm; it can partially solve geometries less
compact than the average offspring method. In big clusters it
proved useful to combine all operators available. The results,
especially LJ;y,, were best with a combination of all pre-
sented methods. In general the mixture was at a 1:1 ratio or
even more preferring plane cuts in systems with known
tendency toward nonspherical ground state (e.g., Sijg in
Table 1V).

We also tested different plane-cut setups with a slightly
modified method where a minimal distance between the two
cluster halves is enforced. This method performed poorly
and was always weaker than all different methods tested.
Another modification where COM is not enforced to lie in
the plane was also considered and dropped since there were
no improvements.
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FIG. 3. Candidate samples in LJ;5 after 10 000 minima. Parents: all energy
values of candidates selected as parents. Offspring: all produced samples.
Init: initial population. The global optimum is located at —397 5. (a) Aver-
age offspring method with a relative cutoff of 1, (b) Plane-cut method with
a relative cutoff of 1/3, (c) Combined 1:1 with relative cutoff 2/3.

The random rotation before recombination is necessary
for average offspring method, but only of advantage for the
plane-cut method (see Table V). If the system prefers non-
spherical configurations raterndrot should be small.

C. Parameter tuning

In systems with a double-funnel structure, where the glo-
bal maximum is located in the narrower funnel, it might turn
out advantageous to disable elitism or (better) include in elit-

J. Chem. Phys. 130, 144108 (2009)

TABLE IV. Heredity methods in direct comparison.

Average offspring Plane-cut

Cluster GO no. Configuration GO no. Configuration
Llss 119 10-2-8 100 10-3-3
Llsg 1265 25-0-20 1595 25-0-10
Siyg 322 10-3-6 195 10-4-6
Auyg 87 10-3-6 88 10-2-6

ism only sufficiently different structures. In our tests LlJsg
performed best when filling the population with offspring
only. However we should remark that average offspring
method has a rather preserving character often reproducing
candidates already known.

A drawback of the EA is the need to tune many param-
eters. A solution working with good performance on many
different systems without adjustment would definitely be of
interest. Minima hopping performed better in this aspect: it
never needed additional tuning and all runs were done using
the same set of standard parameters. Using a standard set
(Table I) for all problems resulted in performance loss of the
EA. The problems still converged but with performances
down to half of the tuned versions shown in Table III. A
possible way to overcome this limitation is to fix the relative
rates of elitism and mutation, etc., and only adjust the popu-
lation size to the specific problem. Another possibility would
be an automatically self-adapting version, which tunes the
parameters during runtime. In this case a stable and efficient
scheme of parameter adaptation would be needed, which is
clearly not a trivial task.

We note that for crystals with up 30—60 atoms in the unit
cell, the USPEX algorithm2’3 proved to perform very well
with essentially a universal set of parameters without any
parameter tuning. Evolutionary optimization of clusters,
which are more complex systems, is more sensitive to pa-
rameter values.

D. Modification of minima hopping

Minima hopping has been considerably improved using
softening in all studied cases. The use of the enhanced feed-
back method is advantageous in large or multifunneled sys-
tems, but can even have a negative effect in easy systems as

TABLE V. Number of local optimizations for different random rotation rates
before heredity operator application for LJs5 systems. For each setup 20 runs
were performed. Random rotation is crucial for average offspring method
(AO) but not for plane-cut method (PC).

Rotation®

(%) AO PC
0 >1000 280
10 343 142
50 174 142
75 123 127
90 121 115
100 130 147

“Frequency of random rotation.
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TABLE VI. Geometry optimizations with and without softening in minima
hopping with different feedback parameters. n/a denotes not tested.

No Softening Softening
System c=0" c=0 c=0.1 c=0.2
Llsg 2062 1217 1190 990
Llss 320 140 190 198
Lo 9100 7300 4700 5800
Liss n/a 14,900 9111 11 630
Atsg 167 44 44 56
Ausg n/a 979 890 1024

“Parameter c is defined in Eq. (2).

LJss (Table VI). Parameter ¢ in Eq. (2) should not be chosen
too large. We used softening and enhanced feedback with ¢
=0.1 in the comparison runs.

V1. CONCLUSION

We tested an EA capable of finding ground state struc-
tures of atomic clusters. In spite of the success of EA for
periodic systems and on surfaces the current EA is overall
less efficient than minima hopping in the current implemen-
tation. It is not yet able to find global minima with geometri-
cally difficult structures such as elongated silicon clusters
and nonicosahedral ground states without the concept of
niches. In contrast, minima hopping was able to find all
ground states. Where the EA succeeds its performance is
comparable to or even better than that of MH.

Further improvements in the EA could make it superior
to MH for cluster optimization if the specifics of cluster sys-
tems are taken into account, as it was already done for peri-
odic systems in the USPEX algorithm. The MH algorithm,
on the other hand, shows a high stability and little need for
further adaptation, at least for homoatomic systems.

Minima hopping was improved by doing escape steps in
directions with relatively low curvature of the PES and by
using an enhanced feedback method.
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