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Recent advancements in exchange-correlation functionals within density functional theory high-
light the need for rigorous validation across diverse types of materials properties. In this study, we
assess the performance of the newly developed meta-GGA r2SCAN and its predecessor, SCAN, in
predicting the Néel transition temperature of antiferromagnetic materials. Our analysis includes
48 magnetic materials, spanning both simple and complex systems. Using DFT, we compute the
energies of various magnetic configurations and extract exchange interaction parameters through a
least-squares fitting approach. These parameters are then used in classical Monte Carlo simulations
to estimate the transition temperatures. Our results demonstrate that both SCAN and r>’SCAN
greatly outperform standard GGA and GGA+U methods, yielding predictions that closely align
with experimental values. The Pearson correlation coefficients for SCAN and r?SCAN are 0.97 and
0.98, respectively, when compared to experimental transition temperatures. Additionally, we calcu-
late the energy differences between antiferromagnetic and ferromagnetic configurations to assess the
performance of the hybrid HSE06 functional. We found that the HSEO6 functional underestimates

transition temperatures compared to the meta-GGA functionals and experimental values.

I. INTRODUCTION

The exchange-correlation (xc¢) functional is a crucial
component of the Kohn-Sham density functional theory
(DFT), as it encapsulates the complex many-body ef-
fects of electron-electron interactions. The accuracy of
DFT calculations heavily depends on the choice of xc
functional, especially for magnetic calculations. Mag-
netism serves as an ideal ground for testing and improv-
ing exchange-correlation (xc) functionals, as it directly
arises from the presence of xc energy in the many-body
Hamiltonian [II 2].

The local density approximation (LDA) [3] and the
generalized gradient approximation (GGA) [4,[5], as com-
monly used xc functionals, both face challenges in de-
scribing systems with strong on-site Coulomb interac-
tions, such as those involving d and f orbitals. These lim-
itations, stemming from self-interaction errors [6], lead to
inaccuracies in predicting electronic structures and mag-
netic properties. For example, LDA often results in incor-
rect magnetic moments for strongly correlated materials
and fails to predict the correct magnetic crystal struc-
tures [7]. GGA offers improved accuracy with respect to
LDA, providing reasonable predictions for magnetic mo-
ments; nevertheless, GGA struggles to open sufficiently
band gaps and fully capture strong electronic correla-
tions.

To address these limitations, the GGA+U method [8]
9] was introduced, which adds an on-site Coulomb inter-
action term to better account for strong electronic cor-
relations. However, the accuracy of GGA+4U heavily de-
pends on the U parameter, which must be carefully tuned
for each system. Hybrid functionals, which mix a portion
of Hartree-Fock exchange with LDA or GGA function-
als, offer further improvements in accuracy but are of-
ten computationally prohibitive, particularly for large or

complex systems. Both GGA+U and hybrid function-
als fall into the category of orbital-dependent density
functionals [I0], where the direct use of orbitals in the
Hamiltonian helps to partially correct self-interaction er-
rors. Therefore, it is prudent to also consider other func-
tionals in this category, such as meta-GGA, for studying
magnetic materials.

Meta-generalized gradient approximation (meta-
GGA) functionals, such as the Strongly Constrained
and Appropriately Normed (SCAN) functional [I1],
represent a significant advancement over traditional
functionals [12]. These functionals improve the localiza-
tion of d-electrons [13], leading to more realistic band
gap predictions and addressing many of the limitations
associated with both LDA and GGA. The improved
d-electron localization enables meta-GGA functionals
to better describe magnetic materials that are Mott
insulators. However, this feature can also result in
an overestimation of magnetic moments in itinerant
ferromagnets, such as iron (Fe) [6].

SCAN demonstrates superior performance in magnetic
and non-magnetic materials [12, 4] but demands dense
real-space grids to mitigate numerical instabilities [I5].
This computational demand can pose challenges.

To overcome the instability challenges, the restored
regularized SCAN (r?SCAN) functional [15] was devel-
oped. This functional retains the accuracy of SCAN
while improving numerical stability and computational
efficiency [16]. In transition metal oxides, r*’SCAN has
demonstrated superior performance, balancing accuracy
and efficiency, making it an attractive option for studying
magnetic systems.

Numerous benchmarks are available for assessing xc
functionals in predicting properties such as bond lengths,
band gaps, and energy barriers [I7]. However, in the
field of magnetism, where xc functionals play a criti-



cal role, benchmarking efforts remain limited, particu-
larly for magnetic interactions. Studies on meta-GGA
functionals for magnetic materials have highlighted lim-
itations, such as their tendency to overestimate mag-
netic moments in itinerant ferromagnets, where GGA
often yields more accurate results [0, I8, [19]. Other in-
vestigations have examined such properties as equilib-
rium volumes, band gaps for transition metals (3d, 4d,
and 5d)[20], Heusler alloys[12], and transition metal ox-
ides [21], showcasing certain advantages of meta-GGA
over GGA. Despite these efforts, a comprehensive study
on the prediction of magnetic thermodynamic properties
is still lacking. Establishing robust benchmark sets for
magnetic materials is crucial to addressing the challenges
in DFT calculations for these systems.

In our previous work, we benchmarked the Perdew-
Burke-Ernzerhof (PBE) [5] GGA and GGA+U function-
als for predicting the transition temperatures of antifer-
romagnetic (AFM) materials. The results showed that
GGA tends to overestimate, while GGA+U tends to
underestimate, the exchange coupling interactions [22],
leading to correspondingly higher and lower estimates of
the Néel transition temperature. These findings highlight
the need for improved xc functionals to achieve more ac-
curate predictions of magnetic coupling.

In this study, we aim to evaluate the accuracy of the
SCAN and r?SCAN functionals in predicting the tran-
sition temperature of insulating AFM materials. To
achieve this, we calculate magnetic exchange couplings
using total energy calculations for various magnetic con-
figurations with these functionals. These exchange in-
teractions are then used to construct a model Hamilto-
nian, which is analyzed through Monte Carlo (MC) sim-
ulations. We also evaluate how the predicted transition
temperature from DFT changes as we advance to higher-
level functionals on Jacob’s ladder [23], ascending from
meta-GGA to hybrid functionals like HSE06.

The paper is organized as follows: In Section[[T} we de-
scribe the computational details for obtaining transition
temperatures. Sectionm presents an analysis of the pre-
dicted transition temperatures using SCAN and r2SCAN,
including a comparison between the two functionals and
with HSE06. The paper concludes with a summary of
findings and implications. In the appendix, we provide
a table listing the transition temperatures predicted by
SCAN and r?SCAN alongside their experimental values.
Additionally, the supplementary materials include all ex-
change parameters obtained from SCAN and r?SCAN for
each compound.

II. COMPUTATIONAL DETAILS AND
MATERIALS

A. DFT and MC

The experimental structures, including both atomic
positions and lattice vectors, are directly used for all ab

initio calculations. No ab initio geometrical optimiza-
tion is performed on these structures. To determine up to
which nth nearest neighbor to include in the calculations,
we consider both the distance and the bonding connec-
tions between magnetic sites. Distances greater than 7 A
are generally excluded unless there are atomic bond con-
nections with angles close to 180° at such distances. For
layered structures, we ensure that the interactions con-
sidered include at least one exchange interaction between
adjacent layers.

Calculating exchange parameters up to the nth near-
est neighbor requires a supercell structure that is math-
ematically capable of supporting such calculations. This
is achieved using the SUPERHEX code [24], which gen-
erates optimized supercells specifically designed for de-
termining exchange interactions up to the desired nth
nearest neighbor. For most compounds, the generated
supercells contain 32 to 84 atoms, although for some
structures, the number of atoms was as large as 112.

We perform spin-polarized density functional theory
calculations using the Vienna Ab-initio Simulation Pack-
age (VASP) [25], employing a plane-wave basis set with
an energy cutoff of 600 eV. The Brillouin zone is sam-
pled with a Monkhorst-Pack grid, maintaining a k-point
spacing of 0.15 A~!. To address convergence challenges
in meta-GGA calculations, we initialize each magnetic
configuration using wave functions and charge densi-
ties obtained from converged GGA or GGA+U calcu-
lations. We use the PBE xc functional for both GGA
and GGA+U calculations.

To estimate exchange interactions, we map the DFT
results onto the Heisenberg Hamiltonian [22, [20]:

where S; and S; are unit magnetic vectors at sites i
and j, and J;; represents the coupling constants.

To determine the Heisenberg exchange interactions us-
ing the total energy [22] 26], at least n+ 1 magnetic con-
figurations are required to calculate coupling constants
up to the nth nearest neighbors. However, small induced
magnetic moments often appear on non-magnetic atoms,
which can affect the results. To improve accuracy, it is
recommended to use more magnetic configurations than
the minimal requirement [27]. The least-squares method
is applied to fit the energy differences between magnetic
configurations to evaluate exchange interactions.

For each compound, we use at least three times the
minimal number of magnetic configurations and monitor
the convergence of the coupling constants as the num-
ber of configurations increases. If convergence is unsat-
isfactory, we add more configurations until a satisfactory
result is achieved.

To compute the Néel temperature, we utilize the ES-
pinS code [28], which performs classical MC calculations
based on the Heisenberg Hamiltonian. We select super-
cells containing at least 2000 magnetic atoms per cell.



This choice ensures adequate sampling of magnetic inter-
actions and minimizes finite-size effects. We execute 106
MC steps for thermalization and 10% steps for sampling,
collecting data every 5 steps. When large fluctuations
are observed, the thermalization steps are increased to
2% 10% and the sampling steps to 3 x 10® to enhance accu-
racy. To accelerate convergence to stable configurations,
we employ the parallel tempering method, exchanging
configurations every 10 MC steps.

B. MATERIALS

In this study, we investigate a total of 48 AFM materi-
als, including 27 of the 29 compounds from our previous
work using GGA and GGA+U methods [22]. Among the
previously selected compounds, we encountered conver-
gence issues in the total energy calculations for LiCoPQOy4
when using the SCAN and r2SCAN functionals. Also,
we exclude KMnSb from this study, which was included
in our previous work, because we found no definitive ex-
perimental reports on its transition temperature.

We limit our selection to 3d magnetic materials to
avoid additional complexities arising from spin-orbit cou-
pling. Additionally, we focus on insulating magnetic
materials to avoid itinerant magnetism, which typically
requires accounting for exchange interactions over very
long distances. The selected materials, along with ref-
erences to their experimental structures, are as follows:
YV03 [29], CI‘SbQ [30], CI‘CIQ [31], CI‘FQ [32], CI‘QOg [33],

[
MnS [37], MnSe [38], MnTe [39], MnO, [40], MnF |
MnS; [42],MnTes [3], LiMnO; [44], SrMnOs |
KMnF3 [46], MnPS; [47], MnPSe; [48], MnWOy |
LigMIlO;g [50], LIMHPO4 [51], F6203 [52], STFGOQ [
BiFeO3 [54], LaFeOs [55], YFeOs [56], FePS; |
F62T606 [35}, SI‘F@QSQO [58], COWO4 [59}, NiO [
NiF, [61], NiBr, [62], NiS, [63], NiCly [64], NiPS; |
NiPSes [66], KNiF; [67), NiWO, [68], LasNiO, |

[

CUFQ [74} .

III. RESULTS AND DISCUSSIONS
A. Exchange parameters

We initially validated the reliability of our calcula-
tions by employing the PBE PAW potentials in conjunc-
tion with the SCAN functional. To ensure accuracy, we
selected a series of simple materials, including CrCls,
Cry03, MnO, MnS, MnSe, MnF5, NiO, and NiFs, com-
puted their magnetic exchange couplings using the FHI-
aims program package [75]. A comparison between the
results obtained from FHI-aims and VASP packages, pre-
sented in Table [ demonstrates compatibility between
the two codes, confirming that the meta-GGA functional
can be reliably used with these pseudo-potentials.

Theoretically, obtaining Heisenberg exchange interac-
tions up to the nth nearest neighbor requires a minimum
of n 4+ 1 unique magnetic configurations. However, prac-
tical considerations introduce additional challenges, such
as the induced magnetic moments of anions like oxygen
atoms. To address these complexities, it is advisable to
utilize a greater number of magnetic configurations and
to determine the Heisenberg exchanges using the least-
squares method, as suggested in our previous work [27].
Consequently, we employ approximately three times the
minimum required number of magnetic configurations to
account for these additional factors and enhance the ac-
curacy of our results.

The exchange constants for most compounds converge
when only a few additional configurations beyond the
minimal set are included. Figure [1] (a) illustrates the
variation of Jy for NiO and J5 for CuO as a function of
the number of magnetic configurations. For both com-
pounds, adding just 3 to 4 configurations beyond the min-
imal set is generally sufficient to achieve convergence.

For NiO, the minimal set of configurations yields a J
value that is reasonably close to the converged result. In
contrast, for CuO, the minimal configurations result in
a Js value that deviates significantly from the converged
value. This demonstrates that relying solely on the min-
imal configuration set to calculate exchange interactions
can lead to substantial inaccuracies.

We encounter convergence challenges when studying
compounds that exhibit metallic band structure in cer-
tain magnetic configurations. In contrast, insulating con-
figurations tend to converge more readily. To ensure re-
liable convergence of exchange interactions, we exclude
metallic magnetic configurations from our analysis. Fig-
ure [1] (b) illustrates how .J; for MnTe fails to converge
properly when all 34 magnetic configurations, including
metallic ones, are considered. However, by excluding two

Compound  Jscan(vasp) (meV)  JscaN(FHL-aims) (meV)
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TABLE I. Comparison of the two largest exchange cou-

pling interactions for each material calculated using VASP
and FHI-aims packages.
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FIG. 1.  The plots illustrate the convergence behavior of

exchange parameters as a function of the number of magnetic
configurations. Plot (a) shows the convergence of the largest
exchange parameters for NiO (Jz) and CuO (Js). Plot (b)
highlights the impact of including versus excluding metallic
configurations on the convergence of J; for MnTe. ” All” refers
to data including both metallic and insulating configurations,
while ”Ins” refers to data derived exclusively from insulating
configurations.

metallic configurations, J; converges significantly faster
to a stable value.

AFM ordering is observed in the exchange interac-
tion couplings of all studied compounds, except for
CrFy, where the r2SCAN functional predicts ferromag-
netic (FM) ordering. The exchange parameters obtained
from SCAN and r?SCAN functionals are given in the
Supplemental material [76].

B. SCAN and r’SCAN transition temperature

Figure [2] compares the transition temperatures ob-
tained from MC simulations using the SCAN and
r?’SCAN meta-GGA functionals with experimental tran-
sition temperatures. The predictions from both SCAN
and 12SCAN functionals show variations, sometimes
overestimating and sometimes underestimating the ex-
perimental values. However, overall, the transition tem-
peratures computed with these meta-GGA functionals
align significantly better with experimental data com-
pared to those obtained using GGA and GGA+U meth-
ods.

The mean absolute percentage error (MAPE) is 23%
for SCAN functional and 22% for r?SCAN functional,
demonstrating their superior accuracy. In compari-
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FIG. 2. A comparison of computed Néel transition tempera-
tures in SCAN and r>SCAN functional from MC simulations
with experimental transition temperatures. Inset figure rep-
resents the total mean absolute percentage error (MAPE) of
transition temperatures in different functional. The GGA and
GGA+U data are taken from ref [22].

son, GGA and GGA+U functionals exhibit significantly
higher MAPE values of 87% and 54% , respectively, as
shown in the inset of Figure |2| (the GGA and GGA+U
data are taken from our previous work [22], where we
used Dudarev’s formulation for GGA+U [(7]. The Hub-
bard U parameter was determined using the constrained
DFT (cDFT) approach, implemented via density func-
tional perturbation theory (DFPT) [78| [79]). The high
Pearson correlation coefficients of 97% for SCAN and
98% for r2SCAN suggest that r?’SCAN functional is well-
suited for high-throughput calculations. When combined
with machine learning techniques, it can enhance the pre-
diction of transition temperatures.

Errors of the calculated transition temperatures for
each material is illustrated in Figure[3] A total of 32 ma-
terials in the SCAN functional and 35 materials in the
r’SCAN functional exhibit errors of less than 25%. The
maximum errors are observed for MuWOQ,, FePS3, CrFy,
and MnSs, with values of approximately 141 (133)%, 64
(73)%, 61 (not applicable for r2SCAN functional due to
incorrect prediction of ferromagnetic (FM) ordering in-
stead of AFM), and 56 (59)%, respectively, for SCAN
(r’SCAN) functional.

To evaluate the consistency between the SCAN and
r?SCAN functionals in predicting Néel transition tem-
peratures, we analyze the ratio T%CAN /TgSCAN. The
frequency distribution of these ratios is shown in the
inset of Figure A ratio close to 1 indicates strong
agreement between the two functionals. For most com-
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FIG. 3. Percentage error of transition temperatures calculated using MC simulations (TM®) with SCAN and r>?SCAN functionals
across various compounds. For CrFy, r2’SCAN data is excluded as it incorrectly predicts CrFa to be FM. Inset of figure represents
the frequency distribution of ratio TZCAN /T gSCAN.
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FIG. 4. Energy differences per magnetic atom between AFM and FM configurations for various compounds, calculated using
four exchange-correlation functionals: GGA, HSE06, SCAN, and r?SCAN.



pounds ( 77%), the transition temperatures predicted by
SCAN are lower than those predicted by r2SCAN. How-
ever, the distribution is centered around 1, indicating
that the two functionals generally provide comparable
predictions. Deviations from this ratio reflect differences
in how the functionals treat specific magnetic systems,
likely due to their distinct parameterizations and under-
lying approximations. In some cases, such as MnTe, the
deviation is significant. SCAN functional predicts a tran-
sition temperature of 232 K, while r?SCAN functional
predicts 356 K, resulting in a difference of 124 K (see
Table [LI)).

C. HSEO06 functional versus SCAN and r’SCAN
functionals

We analyze the energy differences between FM and
AFM configurations using the SCAN and r2SCAN func-
tionals, comparing them with results from the GGA and
HSEO6 functionals. These energy differences reflect the
strength of exchange interactions and provide insights
into how various ab initio methods predict magnetic tran-
sition temperatures.

Calculations are conducted on supercells containing
two to four magnetic sites. While many of these super-
cells represent magnetic structures, some compounds re-
quire magnetic structures with more than four magnetic
sites, rendering HSE06 calculations computationally pro-
hibitive. Consequently, using these smaller supercells
(with two to four magnetic sites) instead of magnetic
unit cells led some calculations to incorrectly predict fer-
romagnetism as the stable configuration for certain com-
pounds. To maintain consistency and accuracy, we ex-
clude these cases from the analysis in this subsection. For
supercells with four magnetic sites, we select the AFM
configurations with the lowest energy among all possible
AFM arrangements.

To reduce the computational cost of HSE06 calcula-
tions, the energy cutoff was set to 550 eV. As shown in
Figure[d] for most compounds, the energy differences per
magnetic site predicted by SCAN and r?SCAN function-
als fall between those predicted by GGA and HSE06 func-
tionals. GGA functional predicts larger energy differ-
ences, indicating stronger exchange coupling and higher
transition temperatures for AFM materials. In con-
trast, HSEO6 functional predicts smaller energy differ-
ences, suggesting weaker exchange interactions and lower
transition temperatures. Since SCAN functional under-
estimates transition temperatures for nearly half of the
compounds, HSE06 is expected to underestimate them
even further in these cases. This highlights potential
limitations of HSEQ6 functional for certain materials and
underscores the need for continued development of DFT
for magnetic systems.

The energy difference between AFM and FM configu-

rations is a key metric for understanding exchange in-
teractions. To improve the reliability of this metric,
advanced wavefunction-based methods, such as coupled-
cluster singles and doubles (CCSD) or quantum MC sim-
ulations, are needed. Data from these methods would be
invaluable for refining DFT functionals and enhancing
their predictive accuracy for magnetic materials.

IV. CONCLUSIONS

In this study, we evaluated the performance of SCAN
and r?SCAN meta-GGA functionals in predicting the
Néel transition temperatures of 48 AFM materials. Us-
ing a combination of DFT calculations, exchange param-
eter fitting, and MC simulations, we showed that both
SCAN and r2SCAN greatly outperform standard GGA
and GGA+U methods in aligning theoretical predictions
with experimental data. These findings underscore the
potential of meta-GGA functionals as reliable tools for
studying magnetic phase transitions, marking a signif-
icant step toward more accurate modeling of complex
magnetic systems. Although SCAN and r2SCAN gen-
erally produce very similar results, our study reveals a
significant discrepancy for CrFe. SCAN correctly identi-
fies the system as AFM, whereas r2SCAN incorrectly pre-
dicts it to be FM. Additionally, for cases like MnTe, there
is a notable difference between SCAN and r?SCAN in
predicting the transition temperature. Although SCAN
and r>SCAN have shown significant success in predicting
transition temperatures compared to GGA, our calcu-
lations faced a major challenge in achieving convergence
during the DF'T self-consistent cycles when applied to su-
percell structures. To address this issue, we initialized all
calculations with results from GGA or GGA+U. While
this approach partially mitigates the problem, it high-
lights a critical limitation that could hinder the broader
application of meta-GGA functionals in magnetic ma-
terial studies. We also presented a method for analyz-
ing how the hybrid functional HSE06 predicts the transi-
tion temperature in comparison to meta-GGA function-
als. Our findings suggest that HSE06 underestimates the
transition temperature relative to meta-GGA functionals
and to experiment.
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TABLE II. Néel temperature predicted by MC simulations
using exchange parameters from SCAN and r?SCAN func-
tionals compared to experimental values.

Compound TECAN T“CZSCAN T
K) (K (K)
YVO3 75 44 77 [80)
CrSby 238 259 273 B2
CrCl, 5 17 16, 20 [83185)
CrF, 19 - 48.7 [86)
Cr,05 231 251 308 [R7RY]
CrSBr 145 198 140, 132 [34] 90]
Cr2TeOs 89 84 93 [91]
CraWOe 43 46 45 [91]
MnO 117 136 117 [92]
MnS 139 162 152 [37)
MnSe 90 117 120, 122 [93] [04]
MnTe 232 356 310 [95) [06]
MnO, 75 56 92, 93 [97] 0]
MnF, 90 90 67.3, 67.7 [99] [100]
MnS, 75 76 48.2, 47.7, 47.9 [I0THI03]
MnTe; 75 81 86.5, 83.8, 83 [43] (103 104]
LiMnO» 250 250 261.5, 259 [105] [106]
StMnO; 234 248 278 [45][107)

KMnF3 131 132

MnPS; 115 112 82, 78 [112] [113]
MnPSes 89 90 74 [112] 114]
MnWO, 325 315  13.5 [ A9
Li;MnOs 13 18 36.5 [50)

LiMnPO4 40 40
FeO3 1243 1262

34.8, 34, 36, 42, 33.8 [II5HIIS]
946, 953, 960, 966 [L19H123]

SrFeO» 382 394 473 [53)

BiFeOs3 760 767 643 [124] [125]
LaFeO3 809 822 738, 750 [126] 127]
YFeO3 689 703 644.5 [128]

FePS3 195 206
FeaTeOg 221 226

117, 116, 123 [112] 113] 129)

SrFe;S,0 238 194 216 [133]

CoWO, 35 37 40 [134]

NiO 412 446 523 [135)

NiF, 7576 73, 73.3 [136) [137)
NiBr, 46 53 52 [138]

NiSs 30 45 39 [63]

NiCl, 50 58 52, 52.3 [139] (140
NiPSs 136 177 155 [112] 113

NiPSes 149 191 206 [112]

KNiFs 261 269 275, 253 [67] [T08HIT0]

NiWOs 43 47 62 [141]

La;NiOs 321 360 330, 328 [69] 142]
KoNiFy 144 150 97.23, 98.7, 180 [1431{145)
KNiPO, 21 23 25 [71] [146]

LiNiPO, 23 22 21.8, 21.7 [147) [148)

CuO 133 159 220,225,230 [73] [149] [150]
CuF, 69 81 69 [151]

86.8, 88, 88.2, 89, 95 [46] [100] TOSHITT]

201, 233, 206.5, 244, 209 [I301132]
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