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Abstract

Protein structure prediction is one of major problems of modern biophysics: current

attempts to predict the tertiary protein structure from amino acid sequence are suc-

cessful mostly when the use of big data and machine learning allows one to reduce

the “prediction problem” to the “problem of recognition”. Compared with recent suc-

cesses of deep learning, classical predictive methods lag behind in their accuracy for

the prediction of stable conformations. Therefore, in this work we extended the evo-

lutionary algorithm USPEX to predict protein structure based on global optimization

starting with the amino acid sequence. Moreover, we compared frequently used

force fields for the task of protein structure prediction. Protein structure relaxation

and energy calculations were performed using Tinker (with several different force

fields) and Rosetta (with REF2015 force field) codes. To create new protein structure

models in the USPEX algorithm, we developed novel variation operators. The test of

the new method on seven proteins having (for simplicity) no cis-proline (with ω ≈ 0�)

residues, and a length of up to 100 residues, revealed that our algorithm predicts ter-

tiary structures of proteins with high accuracy. The comparison of the final potential

energies of the predicted protein structures obtained using the USPEX and the

Rosetta Abinitio approach showed that in most cases the developed algorithm found

structures with close or even lower energy (Amber/Charmm/Oplsaal) and scoring

function (REF2015). While USPEX has clearly demonstrated its ability to find very

deep energy minima, our study showed that the existing force fields are not suffi-

ciently accurate for accurate blind prediction of protein structures without further

experimental verification.
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1 | INTRODUCTION

1.1 | Motivation

Proteins—organic compounds consisting of amino acid residues—

perform many functions in living organisms. For example, collagen is

very important for skin, ligaments, and tendons, providing strength

and elasticity. In bones and teeth, it is mineralized to form hard

tissues, contributing to their bearing capacity. Some proteins, such as

myosin or kinesin, can be considered as molecular machines that can

move in a “quasi-mechanical” way. These multiprotein complexes fre-

quently perform vital functions, such as muscle contraction and gene

expression. In addition, proteins are responsible for many other pro-

cesses, from catalysis of biochemical reactions to signal transmission

between cells. The function of a protein is defined by its structure,

and knowledge of this structure helps understand the function and
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mechanism of the protein's operation, providing the basis for the crea-

tion of new effective drugs.1

The rapid development of sequencing technologies has led to an

exponential increase in the number of known protein sequences,

whereas their spatial structures are mostly unresolved. There are cur-

rently three widely used methods for the experimental determination

of the spatial structure of a protein: X-ray diffraction analysis (XRD),2

nuclear magnetic resonance spectroscopy (NMR),3 and cryogenic

electron microscopy (cryo-EM).4 However, it is not always possible to

determine the structure of proteins in experiment because of the

complexity, high cost, and limitations of experimental techniques.

Moreover, not all proteins can be easily obtained in crystalline form,

which is necessary for the XRD; a particular problem arises with mem-

brane proteins.5 In addition, these experimental methods involve com-

plex manipulations with a protein molecule, which can lead to a

change in its conformation and, consequently, to artifacts. As a result,

although UniProtf8KB/TrEMBL6 protein database contains more than

200 million known protein sequences, only a tiny fraction of them

(slightly more than 150 000 as of March 3, 2021) have their spatial

structures experimentally identified at the atomic level and listed in

the protein structure bank (PDB).7 This reflects a large gap between

the identification of the sequence of a protein and determination of

its structure.

However, we can avoid the complexity and disadvantages of the

experimental techniques that slow down the search for three-

dimensional structures. The spatial structure of a protein can be, in

principle, predicted using theoretical methods based on physical or

empirical approximations used for energy-based search for the protein

structure,8 or on its recognition using “big data” and machine learn-

ing.9–11 Such predictions can significantly simplify the first stages of

research in molecular biology and medicine.

The energy-based approach which we develop in this work is

based on the concept formulated and experimentally confirmed by

Anfinsen,12 a Nobel laureate in chemistry, that all the information

needed to fold a protein into its native structure is encoded in its

amino acid sequence. Another important application of theoretical

methods is the refinement of proteins' crystal structures obtained in

experiment: according to the PDB, less than half of them have resolu-

tion of better than 2 Å. In addition, these algorithms can enable the

construction of such protein sequences that will have a predeter-

mined tertiary structure and, consequently, properties. The solution to

this problem is especially important for the pharmaceutical technology

and immunology.

Thus, the development of computationally inexpensive and effec-

tive theoretical methods for predicting proteins' three-dimensional

structures is extremely important.

1.2 | Current methods for predicting the protein
structure

According to the thermodynamic hypothesis proposed by Anfinsen12

and later confirmed by experiments, the native conformation of a pro-

tein corresponds to the global minimum of free energy. Using this

idea, we can compare different protein conformations and evaluate

which one is more stable. Therefore, the central problem of modern

algorithms for energy-based predicting the spatial conformation of

proteins is finding structures with the minimum potential energy

(or rather free energy, to calculate the stability at a finite tempera-

ture).12 Computationally, this is a very difficult task because of a huge

number of degrees of freedom that exist in biomolecules. For an ideal

prediction, these methods must explore the space of all possible struc-

tures, which is astronomically large. This problem, described within

the framework of Levinthal's paradox,13 is the impossibility to enu-

merate all conformations with exhaustive search. It is worth remem-

bering that there are intrinsically disordered proteins, as well as

proteins with multiple stable conformations, but we will not consider

them in this article.

Currently, the energy-based protein structure prediction methods

are classified by their use of the known experimental structures from

the PDB database: template-based (comparative modeling) and

template-free (de novo modeling) methods. The template-based

methods build protein models by comparing amino acid sequences of

a new protein with the sequences of experimentally resolved protein

structures and using the experimentally resolved three-dimensional

protein structures as templates. The idea that protein chains with sim-

ilar amino acid sequences will eventually fold into similar three-

dimensional conformations follows from the evolutionary proximity of

such proteins leading to their very close structural similarity.14,15 Find-

ing such templates can significantly speed up the prediction of the ter-

tiary structure of a protein.

The template-based methods are often more accurate than the

template-free ones, but they are only successful when similar struc-

tures are available in the PDB library. In contrast, the template-free

methods do not rely on any known protein structures and perform a

conformational search using only the amino acid chain of a protein.

Several methods10,16–22 for the “de novo modeling” have been

developed and used to determine protein structures; the most accu-

rate of these methods combine template-based and de novo

approaches with the big data-based machine learning.9–11,18–20 For

example, Rosetta,22 an algorithm developed by D. Baker's laboratory

and now used by many scientists around the world, searches for local

matches of the amino acid sequences of the original protein with

other proteins, then the resulting templates assembled from different

structures are used as a starting point for the de novo modeling.

Protein structure prediction methods are strongly dependent on

the way the energy is calculated. Potential energies can be accurately

estimated using quantum chemistry methods (e.g., density functional

theory); however, it is computationally expensive for a system consist-

ing of thousands of atoms, like proteins. Besides, the water that sur-

rounds the protein should be included in the calculations and, among

other things, the electrostatic interactions of the protein atoms should

be decreased by water by nearly two orders of magnitude. Therefore,

to estimate the potential energies of protein structures, empirical

force fields are used. In addition, in a living cell, proteins exist at a

finite temperature, therefore the entropy contribution should be

taken into account. One of the possible solutions is implemented in

Rosetta22: instead of the potential energy, it uses a “scoring function”
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which is a proxy to free energy. It consists of the potential energy and

statistical terms (which include probabilities in accordance with the

Ramachandran map, frequencies of occurrences of rotamers in experi-

mental structures etc.23).

Another important technique is molecular dynamics (MD). Nowa-

days, the state-of-the-art supercomputers can run MD simulations for

proteins on millisecond time scale.24 This very powerful tool helps find

not only the stable protein structure, which corresponds to the Gibbs

free energy minimum, but also the entire path of molecular folding

that led to it. This approach has been applied by various teams around

the world, such as the work of D. E. Shaw's group,25,26 which used

Anton supercomputer. The MD approach has also been used in the

refinement category of the CASP competitions.27

Recently, new machine learning methods became widely used for

modeling complex chemical systems. In recent works, deep learning

techniques have successfully predicted three-dimensional protein

structures.9–11,20,21,28 Among the machine learning methods, it is

important to note the progress made by the DeepMind team in the

protein structure prediction. The algorithms they developed, Alpha-

Fold and AlphaFold2,11 have demonstrated excellent prediction accu-

racy in the CASP13 and CASP14 competitions. These results give

further impetus to solving the problem of protein structure prediction.

However, all the deep learning techniques reported so far use

sequence similarity of the protein structures from the PDB and statisti-

cal patterns and thus obtain “recognitions” rather than “predictions”.
These methods do not focus on describing the physics of the interac-

tions within a protein, which limits their field of application, making it

difficult to work with completely new, currently unknown motifs of

protein sequences. Although the use of neural networks created a large

field for further discussions, it did not finally solve all the problems.

The goal of this work is to develop an energy-based method for

predicting the tertiary structure of a protein based on its amino acid

sequence, which makes it possible to quickly find stable structures of

protein chains in water without the use of homologues. In our work,

already published interaction potentials are used, without trying to

build an optimal force field. We used the implicit water to simulate

the protein environment in our work. Therefore, after calculating

energies using the force fields we got a mean-force potential, which

takes into account the entropy component of the environment. As an

approximation, we considered the entropy of a protein chain in a

“solid” protein to be constant. Our method was built on the USPEX

evolutionary algorithm,29–31 which showed high efficiency and reli-

ability in predicting the structures of crystalline solids,32,33 surfaces,34

nanoclusters,35 and molecular crystals.36 The method does not

depend on whether the database contains structures similar to the

considered protein. All it needs is the correct parametrization of inter-

actions inside and outside the protein.

An evolutionary algorithm is an optimization method that uses

and models the ideas of natural selection to find the “best” solutions

(or structures). The best structures are determined by evaluating their

fitness function. An example of a fitness function can be energy, vol-

ume or any other parameter by which we can compare structures.

Further, in our research we will use the term “fitness function” both

for mean-force potential energies and scoring functions.

At the beginning, the algorithm creates a set of structures called

generation. For each of the structures in the generation, its fitness

function is calculated. The best of the resulting structures are then

used to produce the next generation by applying variation operators.

Other structures with insufficient fitness are discarded so that the

“gene pool” of structures is constantly improved. Having performed a

set of such calculations, the algorithm iteratively improves the struc-

tures and finds the optimum. The USPEX algorithm is a member of

the family of evolutionary algorithms and its scheme of work for pro-

tein structure prediction is shown in Figure 1.

2 | PRINCIPLES OF THE DEVELOPED
ALGORITHM

2.1 | Protein representation

First, it is necessary to define how protein structures are represented

in the algorithm. Each atom in a protein is initially defined by three

coordinates. To simplify the search space we switch from the coordi-

nate representation for each atom to the torsion angles within and

between the adjacent amino acids: φ, ψ, and ω for the main chain and

χ for the side chains.1,33,37 The purpose of the evolutionary algorithm

is to find the optimal set of dihedral angles. After the algorithm fixes a

certain set of angles, we return from the representation of torsion

angles to the coordinate space. In it, we run local optimization using

force fields and determine the fitness function of structures. In this

work, we considered all the atoms in the side chains. The transition

from torsion angles to coordinate space uses the distances between

atoms from the Tinker program.

After local optimization, we return to the space of angles φ and ψ

and change them using variation operators. The angles ω and χ can

change during the relaxation of the structure via gradient descent; no

separate variation operator is assumed for them; χ-angles are initial-

ized with the values given in the parameter files of Tinker38 software.

At the beginning the angles φ and ψ are initialized with the values

taken randomly from the database and the angles ω are assumed to

be 180�: at this value, a deep minimum on the potential energy exists

because of sp2 hybridization of the C C bond in the amino acid

chains.1 All amino acid residues in proteins, except for some of proline

residues, are known to have ω ≈ 180�; but 5%–10% of prolines have

ω ≈ 0� (this is another, but higher energy minimum for the sp2 hybridi-

zation of the C C bond1). In this work, we, for simplicity, will only

consider the proteins where all the prolines have ω ≈ 180� (i.e., have

trans- conformations).

2.2 | Diagram of the USPEX algorithm of protein
structure prediction

Each protein is defined as a set of pairs of torsion angles. The evolu-

tionary algorithm optimizes the potential energy (or scoring function)

as a function of these angles, which we use to compare the resulting

structures with each other. To calculate the structure fitness function,
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we used four different force fields often used in literature: Amber

ff99SB,39,40 CHARMM22/CMAP,41 and OPLS-AA/L42 from Tinker

and REF2015 from Rosetta.22 The Lazaridis–Karplus43 and GBSA44

implicit water models were used for calculations with Rosetta and Tin-

ker, respectively. The details of the selection of potentials and their

parameters are presented in Methods section (5.1. Force field param-

eters and water models).

The developed algorithm (Figure 1) is similar to the earlier

used24–26 USPEX evolutionary algorithm; the main differences

come from the random generation of structures and variation

operators that work with the heredity of conformations (Heredity),

rotation of angles (Rotation), displacement of the boundaries of

the secondary structures (ShiftBorder), and replacement of the

secondary structures (SecSwitch). «Random» and «Best Individ-

uals» are needed to randomly generate new structures and to pre-

serve the best structures from generation to generation,

respectively.

1. Random: The structure generation algorithm splits a protein into

several parts, then for each of them randomly takes the main chain

angles from one of almost 80 thousand proteins (ranging in length

from 8 to 3660 amino acid residues) from the database (https://

zhanglab.ccmb.med.umich.edu/library/). Thus, the angles in the

resulting structure are not completely random, which helps to

avoid generating a set of unrealistic angles.

After a generation of structures is produced and relaxed, the struc-

tures are ranked by fitness. The fittest 70% structures are given

probabilities to become parents for the next generation.

2. Heredity: The algorithm randomly selects 25%–75% of the pairs of

main chain angles from two parents from the previous generation

and combines these parts into a new protein of the same length.

3. Rotation: Up to 20% of sequential main chain angle pairs in a pro-

tein are randomly changed.

4. Shift border: A protein is divided into secondary structure seg-

ments (i.e. segments where all the residues belong to the same

F IGURE 1 Scheme of the USPEX algorithm for predicting protein structure. Symbols “α”, “β”, “turn” denote main-chain conformations of
amino acid residues. See explanations in the text.
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secondary structures) using STRIDE45 code STRIDE determines

the secondary structures to which each of the amino acids in the

protein corresponds. Then, a region with one of the secondary

structures is randomly selected. The values of the angles of this

secondary structure are assigned to the adjacent amino acids

either to the right or to the left of the selected region. The shift of

the secondary structure occurs randomly, shifting the border

between secondary structure domains by 1–5 amino acid residues.

5. Secondary switch: As above, the protein is again divided into sec-

ondary structure segments (i.e., segments where all the residues

belong to the same secondary structures) using STRIDE.47 The

values of the angles corresponding to one randomly selected part

are replaced with the values corresponding to a different second-

ary structure type taken randomly from the experimental

database.

6. Best individuals: A certain number of the best structures from the

previous generation are preserved and passed on to the next gen-

eration, and participate in producing offspring again.

2.3 | Computational parameters

2.3.1 | Parameters of population

For optimal operation of the evolutionary algorithm, it is important to

determine its internal parameters. To do this, a series of calculations

with a different sets of parameters were carried out in each of the

tested force fields. It was determined that the population of 250 struc-

tures and 100 generations is sufficient for most calculations. These

values can be used as defaults for proteins that have up to �100

amino acids.

2.3.2 | Variation operators

It is important that the structures obtained using variation operators

have low energies and are sufficiently diverse, in order to explore con-

formation space more fully. Operators which satisfy these conditions

to a greater extent will be applied more frequently.

To check how different computed structures are, we calculated a

«fingerprint»46 for each of them. In our work, the fingerprint is a way

to describe how compact a protein is. For each of the atoms in the

structure, a set of spheres (127 in our case) of a fixed radius centered

in the coordinates of the atom is constructed. In this consideration,

each atom has a finite volume, that is, is not a point particle. The algo-

rithm then calculates how many atoms are on the surface of each

sphere, the results are summed up over all the atoms in the structure

and normalized. A vector called a fingerprint is thus obtained, the

number of elements of which is equal to the number of spheres. The

value of each element in the vector is the calculated number of atoms

on the surface of a sphere of a certain radius. Such vectors (finger-

prints) were calculated for each of the protein chains we have

obtained. To visualize the results, we applied the principal component

analysis (PCA) to the calculated fingerprints. Taking a linear combina-

tion of the vector components describing the structure in a multidi-

mensional space, we switched to a two-dimensional space, where the

basis is defined by two principal components. After this transforma-

tion, the basis vectors no longer carry any specific physical meaning,

but they can describe the calculated structures, retaining most of their

variation (in our case, 60%). This way, in the two-dimensional space,

we can visualize the distribution of protein structures created using

different variation operators (Figure 2).

These calculations were carried out for each of the proteins, fol-

lowed by a visual analysis of the result. Figure 2A shows that the

F IGURE 2 (A) Distribution of
the generated structures for
protein 1shf after the PCA
analysis, created using different
variation operators (with
subsequent pseudo-energy
minimization) during the USPEX
run (red—Random, green—
Heredity, blue—Rotation, black—
SecSwitch, purple—ShiftBorder),
in the coordinates of the principal
components. (B) Pseudo-energy
(“scoring function”) distribution of
the generated protein structures.
An orange line marks the average
pseudo-energy of the distribution.
The ordinate represents the
number of structures.
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structures obtained using different variation operators are equally dis-

tributed over the space of the PCA features, only the result of Shift-

Border operator is slightly different: there are very few structures

obtained using ShiftBorder operator on the left side of the distribution

in coordinates of the principal components (Figure 2A). In addition,

using visual analysis of the energy distribution of the structures, one

notes that all variation operators result in energies that are on average

lower than in random structures, while among the variation operators,

the ShiftBorder produces the highest average energy (Figure 2B). This

trend has been observed for all proteins studied here. This gives

a reason to reducing the number of structures obtained using Shift-

Border operator in favor of other operators. Based on such analysis,

we chose the following ratios of variation operators to be used ini-

tially to create structures:

30%—Generation of a new random structure,

25%—Heredity,

20%—Rotation,

15%—Secondary switch,

10%—ShiftBorder.

To generate low-energy structures more often, these ratios are

dynamically evolved.47 Comparing the energy distributions of

structures (Figure 2B), we conclude that the use of variation operators

is justified because it shifts the distribution of structures closer to the

low-energy region (compared with random structure generator).

To find out whether the generated structures are evenly distrib-

uted or concentrated in one area in the space of principal compo-

nents, we visualized the fitness function surface of the protein 1shf

(Figure 3).

The structures with the Rosetta scoring function below 20 units

are presented in Figure 3. It shows that the algorithm explores not

F IGURE 3 (A) Fitness function surface of the generated structures for the chain of protein 1shf in the principal component basis.
(B) Magnified area of the fitness function. (C) Interpolation of the fitness function surface presented in Figure 3B.

F IGURE 4 3D visualization of the fitness function surface of the
protein 1shf in the principal component basis.
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TABLE 1 Fitness functions of the best structures predicted in five different USPEX runs with different force fields compared with the values
obtained for the experimental protein structure using the same potentials. The last column shows the results obtained using Rosetta Abinitio. The
root-mean-square deviation (RMSD) of the positions of the Cα atoms from their positions in the real structure as well as GDT_TS score is shown
after the energies. The minimum energies obtained in five runs are set in bold. The results with the lowest RMSD and highest GDT scores are
boxed for each protein. The energies of the protein structures obtained from the PDB are underlined.

Protein

\force field

Amber ff99SB CHARMM22/CMAP OPLS-AA/L REF2015
Rosetta Abinitio
(validation)

kcal
moljÅjGDT kcal

moljÅjGDT kcal
moljÅjGDT Ros_scorejÅjGDT Ros_scorejÅjGDT

2rvd Eexp = �427.2 Eexp = �320.8 Eexp = �644.3 Eexp = �15.6 N/A

(too short chain)E1 = �423.9j0.8j97.5 E1 = �320.7j0.6j97.5 E1 = �646.4j2.6j80.0 E1 = �24.3j0.7j97.5
E2 = �425.8j0.6j100.0 E2 = �320.5j0.6j97.5 E2 = �646.7j1.0j95.0 E2 = �28.3j1.8j85.0
E3 = �424.7j0.5j100.0 E3 = �320.5j0.6j97.5 E3 = �647.4j2.7j77.5 E3 = �24.3j0.7j97.5
E4 = �425.9j0.5j100.0 E4 = �320.7j0.6j97.5 E4 = �646.8j3.0j80.0 E4 = �24.7j0.9j95.0
E5 = �425.9j0.7j97.5 E5 = �320.5j0.6j97.5 E5 = �647.4j2.7j77.5 E5 = �24.3j0.7j97.5

2jof Eexp = �653.6 Eexp = �574.3 Eexp = �1007.4 Eexp = �54.0 NA

(too short chain)E1 = �667.9j1.9j88.8 E1 = �575.3j4.2j63.8 E1 = �1023.7j6.1j48.8 E1 = �51.3j1.8j85.0
E2 = �662.9j2.5j78.8 E2 = �582.3j1.2j92.5 E2 = �1021.1j5.7j57.5 E2 = �52.7j3.9j65.0
E3 = �662.0j5.0j65.0 E3 = �584.1j2.4j87.5 E3 = �1020.9j4.2j58.8 E3 = �50.9j4.7j62.5
E4 = �666.7j5.2j62.5 E4 = �578.2j3.9j66.3 E4 = �1021.3j5.1j56.3 E4 = �50.6j4.7j61.3
E5 = �668.3j1.8j88.8 E5 = �578.2j3.9j65.0 E5 = �1025.4j4.6j55.0 E5 = �49.7j5.4j60.0

1fme Eexp = �1782.5 Eexp = �2066.98 Eexp = �2148.8 Eexp = �51.6 �69.1j6.8j65.2
E1 = �1814.3j8.0j46.4 E1 = �2115.1j8.3j41.0 E1 = �2195.7j6.6j55.4 E1 = �67.7j7.9j54.5
E2 = �1817.6j8.1j49.1 E2 = �2116.5j7.3j54.5 E2 = �2191.1j7.3j47.3 E2 = �72.9j6.8j66.1
E3 = �1826.1j7.9j53.6 E3 = �2113.4j8.1j44.6 E3 = �2186.4j6.3j59.8 E3 = �68.5j7.4j59.8
E4 = �1822.1j7.4j54.5 E4 = �2113.4j7.7j50.0 E4 = �2205.4j6.7j42.9 E4 = �65.6j7.3j62.5
E5 = �1818.9j8.0j52.7 E5 = �2109.7j6.5j47.3 E5 = �2210.4j6.7j46.4 E5 = �70.8j3.0j75.9

1enh Eexp = �3543.0 Eexp = �3820.9 Eexp = �3578.7 Eexp = �159.1 �155.3j3.6j72.2
E1 = �3508.9j10.5j37.0 E1 = �3822.3j11.2j41.2 E1 = �3555.8j9.3j37.0 E1 = �140.5j8.9j40.7
E2 = �3508.6j9.2j53.7 E2 = �3812.4j14.1j37.5 E2 = �3563.4j9.6j35.6 E2 = �126.1j17.1j34.7
E3 = �3509.6j9.9j37.5 E3 = �3812.4j13.2j38.4 E3 = �3595.3j11.6j34.3 E3 = �142.1j9.1j40.7
E4 = �3513.7j10.3j27.8 E4 = �3817.3j18.0j31.9 E4 = �3582.9j10.6j35.6 E4 = �141.1j11.7j38.4
E5 = �3507.3j11.4j45.4 E5 = �3817.8j12.8j38.9 E5 = �3596.7j10.0j31.0 E5 = �135.0j10.9j38.9

1shf Eexp = �2239.8 Eexp = �1964.2 Eexp = �3446.6 Eexp = �194.5 �152.7j11.0j46.6
E1 = �2209.9j13.6j21.2 E1 = �2010.1j18.1j17.8 E1 = �3424.0j11.3j22.5 E1 = �133.2j13.0j20.3
E2 = �2209.0j13.1j20.3 E2 = �2009.4j18.5j18.2 E2 = �3430.7j12.7j23.3 E2 = �146.3j11.7j23.3
E3 = �2212.7j11.6j23.3 E3 = �2011.0j18.0j19.1 E3 = �3442.6j12.1j23.7 E3 = �138.6j14.6j19.5
E4 = �2220.3j11.8j22.5 E4 = �2016.5j15.9j19.1 E4 = �3424.3j12.6j22.9 E4 = �145.8j13.2j22.9
E5 = �2211.4j11.4j26.3 E5 = �2014.2j17.9j18.2 E5 = �3422.8j10.7j20.7 E5 = �147.7j10.9j23.7

2a3d Eexp = �3009.1 Eexp = �3139.8 Eexp = �4548.1 Eexp = �185.0 �225.7j2.8j72.9
E1 = �3062.8j11.9j40.8 E1 = �3222.8j15.3j44.5 E1 = �4615.0j13.7j21.2 E1 = �212.6j4.1j58.6
E2 = �3068.0j15.7j34.6 E2 = �3221.8j13.2j34.2 E2 = �4599.5j16.1j26.0 E2 = �214.2j9.7j43.2
E3 = �3071.7j12.2j39.7 E3 = �3219.6j15.4j32.5 E3 = �4597.2j12.1j34.9 E3 = �209.0j4.2j64.4
E4 = �3071.8j7.7j47.9 E4 = �3221.7j6.3j43.8 E4 = �4602.7j10.6j34.2 E4 = �212.1j9.1j45.5
E5 = �3067.7j13.4j35.3 E5 = �3228.6j13.3j33.9 E5 = �4611.7j16.3j28.1 E5 = �212.8j5.9j50.0

1cei Eexp = �3292.4 Eexp = �3267.9 Eexp = �5406.1 Eexp = �265.3 �221.5j12.1j29.4
E1 = �3295.4j12.5j27.4 E1 = �3307.8j20.3j27.3 E1 = �5412.7j13.6j22.9 E1 = �212.2j16.7j29.4
E2 = �3271.8j13.8j26.5 E2 = �3306.8j18.0j26.8 E2 = �5417.4j12.8j27.1 E2 = �222.9j11.6j30.3
E3 = �3273.4j14.5j27.1 E3 = �3312.7j16.6j26.8 E3 = �5414.4j16.2j21.2 E3 = �227.7j12.9j27.4
E4 = �3296.0j10.0j37.4 E4 = �3302.1j23.7j25.0 E4 = �5401.1j16.3j22.6 E4 = �223.5j10.9j27.9
E5 = �3289.6j12.3j28.8 E5 = �3303.1j14.7j27.6 E5 = �5411.6j18.3 E5 = �211.4j17.9j25.0
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only the global minima, but also many different isolated local minima,

which are separated by higher energy barriers. Inset (B) is given to

illustrate that even in a small area of space deep local minima sepa-

rated by high energy barriers are presented nearby. In addition to

many “favorable” structures with low energy found in this region,

there are also high-energy conformations. The potential energy sur-

face of proteins is extremely complex, rough, and has many local min-

ima (Figure 3C and Figure 4), and must significantly complicate the

search for the real structure. Figure 4 is a 3D rendering of the area

shown in Figure 3A.

To avoid local minima,35 it may be useful to use the antiseeds

technique earlier developed within USPEX method.29–31 This mecha-

nism adds a penalty—a cumulative positive term—to the fitness func-

tion of those structures that have already been sampled during the

calculation, and structures with similar conformations, forcing the

algorithm to sample other areas of configurational space.

2.4 | Validation of results

Regarding the accuracy and required computational resources, we

compared the present extension of the USPEX method for protein

structure prediction with the Rosetta Abinitio protocol (See Section 5).

Note that Rosetta web service can only create fragment files for pro-

teins with more than 27 residues.

After each run, structures with the lowest fitness function were

selected and visualized using PyMOL48 software. To assess the quality

of protein prediction, the following metrics were used: the proximity

of the fitness function of the calculated structure to the fitness func-

tion of the experimental one, GDT_TS between the optimally super-

imposed structures, and RMSD, where RMSD is:

RMSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

d2i

vuut , ð1Þ

where n is the number of pairs of equivalent Cα atoms in proteins and

di is the distance between the atoms in the i-th pair of the Cα atoms.

GDT_TS is better at detecting similarities in fold than RMSD.

GDT_TS is computed using alpha carbon atoms and is reported as a

percentage range from 0 (a meaningless prediction) to 100 (a perfect

prediction). It is useful to highlight the following characteristic values:

random prediction gives about 20 GDT score. Correct determination

of the gross topology gives about 50 GDT score and accurate topol-

ogy around 70 GDT score. With correct prediction of all Cα atoms,

GDT_TS goes up to 100.49

The set of cut-off distances that was used to calculate the

GDT_TS is 1, 2, 4, and 8 angstroms.

3 | RESULTS

Our protein structure prediction method was tested on seven differ-

ent peptides and proteins: 2rvd (10 amino acids), 2jof (20 aa), 1fme

(28 aa), 1enh (54 aa), 1shf (59 aa), 2a3d (73 aa), and 1cei (85 aa). The

prediction results are arranged by the length of the amino acid

sequence, and hence the complexity of prediction. To validate the

results and obtain statistics, five USPEX runs were carried out for

each protein chain (Table 1, Figure 5).

Additional comments detailing how the algorithm works for each

protein are given in the Supplementary Information (8.4. Description

of results). Visualizations of the best models of each of the considered

proteins with each potential are given in the Supplementary Informa-

tion (Figures S7–S13).

In general, even when USPEX does not find a global minimum, its

final structures look like folded globules. This shows that these struc-

tures can indeed be locally stable conformations of a protein or its

transitional forms.

During the USPEX calculations, we often obtained conformations

with fitness functions lower than those of the experimental struc-

tures, which is incompatible with Anfinsen's dogma (that proteins

adopt thermodynamically stable conformations). However, numerous

experiments assure us that Anfinsen's dogma is correct. Therefore,

one may conclude that currently available force fields are insuffi-

ciently accurate.

It is worth remembering that some proteins begin to fold even

before the entire chain leaves the ribosome, and the pathways leading

to the final state may differ significantly for in silico and in vivo.50

However, we work with relatively small proteins and peptides and can

expect our proteins to fold into a conformation that corresponds to

the minimum free energy, regardless of the conditions of the

experiment.

In addition, note that our physics-based protein structure predic-

tion searches were conducted in the absence of other proteins,

including chaperones, with which the protein can interact during the

folding process and which can influence the final state.

F IGURE 5 Visual comparison of the best (in terms of the RMSD)
protein structures predicted using the USPEX algorithm (purple) with
the real conformations from the PDB, shown in green.
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4 | CONCLUSION

This study presents an extension of the evolutionary algorithm USPEX

aimed at predicting the tertiary structure of a protein on the basis of

its amino acid sequence. In this method, the optimization algorithm

searches for a set of main chain dihedral angles that matches the

structure with the minimum fitness function. After the algorithm fixes

some set of angles, we go to the full-atomic representation and the

force fields presented in Tinker and Rosetta are used for structure

relaxation and energy calculation. To avoid trapping in local minima,

we create new structures using several physically motivated variation

operators: Heredity, Rotation, SecSwitch, and ShiftBorder.

To test the developed method, we predicted stable structures of

various proteins ranging in length from 10 to 85 amino acid residues

and compared them with the results obtained using Rosetta Abinitio.

In two out of five cases, our evolutionary method showed greater

accuracy; in other three runs it obtained structures with slightly higher

but similar fitness function. We found structures close to the real ones

for the proteins 2rvd, 2jof, 1fme, and 2a3d. REF2015 force field, on

average, showed better results as it is a proxy to free energy and can

be singled out for further work.

Most of the protein structures obtained using the developed

algorithm have conformations with fitness functions lower than that

of the real structure. On the one hand, this suggests that our method

is very successful in searching for very deep minima. On the other

hand, this also suggests that fitness function surfaces of these pro-

teins are different from the exact free energy surfaces where the

native structures reside, have different global minima, and are not suf-

ficiently accurate for protein structure prediction. The experimental

evidence suggest that proteins do adopt globally optimal structures

and currently available force fields51 are too crude for reliable protein

structure prediction. Their further development should be a very sig-

nificant step for the computational prediction of protein structures.

5 | METHODS

5.1 | Force field parameters and water models

To relax protein structures, we used Tinker38 and Rosetta22 packages,

which include force fields that differ in the parameterization of the

interactions of individual parts of a protein (Equation S1).

The choice of a force field has a significant impact on final results.

There are 17 different sets of potentials included in Tinker and one

potential set in Rosetta—REF2015.22 For each potential–potential

pair, a single relaxation of the same set of structures was carried out

and the correlation between the energies obtained during the relaxa-

tion was analyzed (Figure S1). On the basis of this analysis, we chose

four force fields, which are often used in other works: Amber

ff99SB,39,40 CHARMM22/CMAP,41 OPLS-AA/L,42 and REF2015.

To relax protein structures, Tinker and Rosetta use the gradient

descent method. The criterion for stopping the calculations is the

absolute value of the energy gradient. In calculations using Tinker

(ver. 8.7.2), the RMS gradient value of 0.01 kcal/mol/Å was used. For

Rosetta (ver. 2020.08) calculations, the accuracy of minimization

within the FastRelax protocol was 0.00001 in scoring function units.

To visualize the resulting structures, PyMOL48 software was used.

The interaction of a protein with its environment is also quite

important. In a real cell, a protein can react with a membrane, other

proteins, and a solution. Most of these interactions are impossible to

model due to our limited knowledge about them. To model interac-

tions with water, two approaches can be used. In the explicit water

models, the environmental molecules are explicitly created in a simu-

lated volume using periodic boundary conditions. Then, during the

relaxation, the forces (and velocities in the case of dynamics) are recal-

culated at each step for each atom, including those of waters. How-

ever, modeling all interactions and recalculating forces greatly slows

down the minimization. No such drawback exists in the implicit water

models, which use a certain potential of mean force (PMF) to describe

interactions with water. They are much faster, although slightly less

accurate. In our work, we used Lazaridis–Karplus43 implicit water

model with REF2015 force field and GBSA44 implicit water model

with force fields of the Tinker software package.

5.2 | Rosetta Abinitio parameters

Structure prediction using Rosetta Abinitio is based on a Monte Carlo

algorithm and fragment files, which are sets of template angles for dif-

ferent combinations of amino acid sequences. Fragment files were

generated by Rosetta web server using the “Exclude Homologues”
protocol. The angles taken from these templates are inserted into

those regions of a protein that contain the amino acid residue

sequences identical to the template. After each insertion, the increase

in energy is estimated, then the structure change is applied or rejected

according to the Metropolis algorithm52 using the effective tempera-

ture. The kinetic energy of proteins is not explicitly taken into account

in this approach, because within classical mechanics it is a structure-

independent constant at a given temperature.

The prediction of Rosetta Abinitio totally depends on whether

there are templates in the protein database whose angles coincide

with the angles of the protein considered. Our algorithm does not

depend on these parameters and, despite using databases of protein

structures, does not check the coincidence of amino acid residues in

different proteins. Its work is based entirely on variation operators

and our evolutionary algorithm.

Due to the random nature of Monte Carlo algorithms, different

runs of Rosetta Abinitio can lead to different local minima. Therefore,

many independent runs of this algorithm are carried out, and the

structure with the lowest scoring function is considered the most

stable one.

As we mentioned earlier, 25 000 protein chain structures were

generated on average in each run of the USPEX algorithm (100 gener-

ations of 250 structures each), and for each protein only 5 runs were

performed. To compare and evaluate our results, 25 000 runs were

performed in Rosetta Abinitio.
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