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ABSTRACT
The strongest driving forces for the formation of binary compounds (e.g., Na2O, MgO, Al2O3, and SO3) are related to the octet rule (formation
of closed electronic shells) and charge redistribution as a result of electronegativity differences. Here, we investigate the driving forces behind
the reactions of these binary compounds with each other, traditionally described in the language of acid-base interactions. For example, why
do Na2O and SO3 (both of which have a closed-shell electronic structure) react with each other forming Na2SO4? In addition to Na2SO4, we
also consider the processes of formation of Mg2SiO4 and MgAl2O4, tracking changes in chemical bonding characteristics and ionic charges of
the constituent atoms. We show that in such acid-base reactions, electrons move from the atomic states with higher energies (from the basic
oxide-forming element) to atoms with lower-energy states. This happens by changing the degrees of ionicity of bonds, without disrupting the
closed-shell electronic structure.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0261492

I. INTRODUCTION

What are the driving forces of compound formation? Why
do some elements (e.g., Na and Cl) form compounds while others
(e.g., Mg and Fe) do not? The history of this question is more than
200 years old, and it started with the idea of Davy and Berzelius
that “electropositive” (metals) and “electronegative” (nonmetals)
elements tend to form stable compounds with each other. This idea
has evolved into the concept of electronegativity, the idea being
that a large difference in electronegativities stabilizes the chemi-
cal bond and two elements with very different electronegativities
tend to form stable binary compounds. This becomes understand-
able because, according to Mulliken’s definition, electronegativity is
equal to minus the chemical potential of the electron in an atom:
energy lowering due to electron transfer from atoms with lower

electronegativity (higher chemical potential of the electron) to more
electronegative ones stabilizes the compound.

We can upscale this question to more complex systems. What
are the driving forces behind the formation of ternary and quater-
nary compounds from binary ones? Why does CaO react with SiO2
to form CaSiO3 and Ca2SiO4, while not reacting with Na2O? Clas-
sical chemistry answers this by invoking the theory of acids and
bases: CaO and Na2O are both basic oxides, whereas SiO2 is an
acidic one: bases tend to react with acids, but not with other bases.
Lewis’ theory of acids (which he interpreted as entities accepting
electrons) and bases (donating electrons) suggests, once again, that
redistribution of the electrons is the key. It is possible to estimate
the electronegativity of a compound as the arithmetic mean of the
electronegativities of its constituent elements; indeed, oxides with
high electronegativity (e.g., SiO2) will be acidic and those with low
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electronegativity (e.g., Na2O and Ca2O) will be basic. However, it is
not immediately clear what kind of charge redistribution can occur
between CaO and SiO2, given that in the examples, these oxides and
the resulting silicates are closed-shell. In other words, where can
electrons go if all bonding orbitals are already occupied?

The nature of chemical bonding in compounds remains a com-
plex and often ambiguous subject, lacking a definitive quantitative
approach. Even for binary compounds, where only two types of
atoms interact, accurately assessing the degree of ionicity or cova-
lency in chemical bonds presents significant challenges. From a the-
oretical perspective, several methods have been developed to address
this issue. These include straightforward calculations and analy-
sis of electronegativities,1 Löwdin or Mulliken population analysis,
Bader’s atoms in molecules method,2 natural population analysis,3
and Crystal Orbital Hamilton Population (COHP)11,12 analysis. Each
method has its strengths and limitations, varying in the degree of
basis set dependence and applicability to crystals or molecules.

Recently, we have proposed a method4 that, based on the
results of first-principles calculations, allows the partitioning of the
one-electron energy of a chemical bond into covalent and ionic
components. Our method combines the advantages of Löwdin pop-
ulation analysis and COHP while addressing the issue of basis
dependence by using Wannier functions—a rigorous and well-
established framework for describing localized electronic states in
crystals. This approach has been successfully applied to a series of
binary compounds.4

In this study, we extend the application of our method to crys-
talline compounds composed of three elements. Our investigation
focuses on the evolution of atomic charges and the degree of cova-
lency of chemical bonds during the formation of ternary oxides from
their binary precursors.

In particular, we examine three cases of ternary compound for-
mation: Mg2SiO4 from 2MgO + SiO2, MgAl2O4 from MgO +Al2O3,
and Na2SO4 from Na2O + SO3.

Our focus is not on predicting stable stoichiometries but on
uncovering the electronic mechanisms that drive the formation of
ternary compounds from binary oxides. This complements stability-
based approaches by answering why certain reactions occur between
already stable compounds.

By tracking charge transfer and evolution of bonding upon
the formation of complex oxides or salts, we reveal how local
bonding adjustments—without disrupting closed-shell states—drive
these transformations. This complements stability-based approaches
by addressing the fundamental ’why’ behind the observed reactivity.

II. METHOD
In order to determine the degrees of ionicity and covalency

of bonds, the Wannier function approach was used. This computa-
tional scheme has previously been successfully applied to study the
properties of chemical bonds in a series of compounds.4 The band
structure calculations were performed using the GGA (generalized
gradient approximation)5 as implemented in the Quantum Espresso
package.6,7 We used pseudopotentials from the standard solid-state
pseudopotential library set with the exchange–correlation functional
in the PBEsol form (SSSP PBEsol Precision v1.3.0).8 The energy cut-
off for the plane wave function and charge density expansion was

set to 50 Ry and 400 Ry, respectively. An effective Hamiltonian
HDFT was constructed using the basis of atom-centered Wannier
functions, as described in Ref. 9.

Let us consider a binary compound AB. Its binding energy,
Ebond, is typically defined as the difference between the total energy
of the compound per formula unit at its equilibrium volume V0 and
the sum of the energies of the free atoms A and B at infinity,

E0
bond = E0

AB − (E∞A + E∞B ). (1)

Solving the DFT problem, we obtain a set of electronic eigen-
values and eigenfunctions, εα

⃗k , ∣ψα
⃗k ⟩, and the electronic Hamiltonian

can be expressed as

Ĥ =∑
⃗kα

∣ψα⃗k ⟩ε
α
⃗k⟨ψ

α
⃗k ∣. (2)

The corresponding density matrix operator is

ρ̂ =∑
⃗kα

∣ψα⃗k ⟩n
α
⃗k⟨ψ

α
⃗k ∣, (3)

where nα
⃗k = θ(EFermi − εα⃗k).

Wannier functions ∣W i⟩ are calculated through a unitary
transformation of the set of Bloch functions ∣ψα

⃗k ⟩,

∣Wi⟩ =∑
⃗kα

∣ψα⃗k ⟩⟨ψ
α
⃗k ∣φi⟩, (4)

where ∣φi⟩ are trial atomic wave functions, and thus, ∣W i⟩ also
possess the same atomic orbital symmetry.

A basis set ∣W i⟩ defined by Eq. (4) is then orthonormalized. One
can say that Wannier functions ∣W i⟩ are “natural” atomic orbitals for
the electrons in a crystal, and index i runs over the atomic quantum
numbers nl (1s, 2s, 2p, 3p, 3d, . . .). Equation (4) is one of the pos-
sible choices for the unitary transformation of the Bloch function
set ∣k⟩, chosen to obtain Wannier functions having the symmetry
of the atomic orbitals, as is usually done in the analysis of chem-
ical bonds. It is known that Wannier functions are not uniquely
defined. The projection procedure in Eq. (6) solves this problem,
giving uniquely defined Wannier functions that are most similar
to atomic orbitals, are fully compatible with both the atomic limit
and solid-state calculations, and allow us to separate the atomic and
bonding effects.

Wannier functions ∣W i⟩ from Eq. (4) are in real space rep-
resentation. Sometimes, it is useful to define the reciprocal space
representation ∣Wi⃗k⟩ for them,

∣Wi⃗k⟩ =∑
T⃗

exp (−ik⃗ ⋅ T⃗)∣Wi⟩, (5)

where T⃗ is the translation vector, i is an atomic number in the crystal
unit cell, and α is a band number.

One can define the Hamiltonian and density matrix in the
Wannier functions basis,

H
⃗k
ij = ⟨Wi⃗k∣Ĥ∣Wj⃗k⟩,

ρ
⃗k
ij = ⟨Wi⃗k∣ρ̂∣Wj⃗k⟩.

(6)
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Then, the electronic energy E is

E = Tr (ρ̂Ĥ) =∑
⃗k
∑

ij
Q
⃗k
ijH
⃗k
ji

=∑
⃗k
∑

i
Q
⃗k
iiH
⃗k
ii +∑

⃗k
∑
ij,i≠j

Q
⃗k
ijH
⃗k
ji. (7)

To separate the electronic energy E in Eq. (7) into covalent
and ionic parts is not a trivial task. While the interatomic term
∑⃗k∑ij,i≠j Q

⃗k
ijH
⃗k
ji = ∑ij,i≠j Eij is clearly a covalent energy, the diagonal

term∑i Eii = ∑⃗k∑i Q
⃗k
iiH
⃗k
ii contains both contributions: the covalent

energy for all atoms of type i in the crystal and the ionic part of
the energy. To separate them, let us introduce the average energy
Hi = ∑⃗k H

⃗k
ii and the average occupancy Qi = ∑⃗k Q

⃗k
ii for atom i. The

ionic part can be defined as Eion
i = QiHi, and the covalent part can be

defined as Ecov
i = Eii −QiHi. The electronic energy E in Eq. (7) can

be written as

E = Ecov + Eion,

Eion =∑
i

Eion
i =∑

i
QiHi,

Ecov = ∑
ij,i≠j

Eij +∑
i

Eii −∑
i

QiHi.

(8)

In a general case with orbital indices L = (l, m), Eq. (7) is

E = Tr (ρ̂Ĥ) =∑
⃗k
∑

iL,jL′
Q
⃗k
iL,jL′H

⃗k
jL′ ,iL

=∑
⃗k
∑
iL,iL′

Q
⃗k
iL,iL′H

⃗k
iL′ ,iL +∑

⃗k
∑

iL,jL′
Q
⃗k
iL,jL′H

⃗k
jL′ ,iL. (9)

For the binary compound AB, the binding energy [Eq. (1)] is

Ebond = EAB − (E∞A + E∞B )
= Ecov + Eion − (H∞A Q∞A +H∞B Q∞B ). (10)

The following approximation could be useful:

H∞A = HA =∑
⃗k

HAA,

H∞B = HB =∑
⃗k

HBB.
(11)

Then, from Eqs. (8) and (10),

Ebond = Ecov + Eion − (HAQ∞A +HBQ∞B ),
Eion = Eion

A + Eion
B = QAHA +QBHB,

(12)

Ecov = 2EAB + EAA −QAHA + EBB −QBHB. (13)

Hence, the binding energy partitioning is

Ebond = Ecov
bond + Eion

bond,

Eion
bond = Eion

A + Eion
B − (HAQ∞A +HBQ∞B )

= (QA −Q∞A )HA + (QB −Q∞B )HB,

Ecov
bond = Ecov = 2EAB + EAA −QAHA + EBB −QBHB. (14)

The covalent contribution to the binding energy Ecov
bond in Eqs. (13)

and (14) contains, by definition [see Eq. (8)], only off-diagonal terms
of the Hamiltonian and density matrices in the basis of Wannier
functions with atomic orbital symmetry Eq. (6). Hence, it directly
corresponds to the common chemical understanding of a covalent
bond between atomic orbitals. However, the ionic part is defined by
the contribution from diagonal terms of those matrices minus the
HAQ∞A +HBQ∞B term. Hence, it contains not only the ion–ion inter-
actions in the crystal but also the energy of intra-atomic electronic
redistribution between different orbitals and the energy of formation
of charged ions from neutral atoms.

It is important to note that the energy E = Tr (ρ̂Ĥ) in Eq. (9) is
not the total DFT energy but a sum over the occupied one-electron
eigenvalues ∑⃗kα nα

⃗kε
α
⃗k and so, unlike DFT total energy, it cannot be

rigorously used to calculate energy differences (e.g., when comput-
ing energies of chemical reactions). Unfortunately, there is no way
to split the total energy into such contributions as the ionic and
covalent parts as done in Eq. (14). So, in the following, we use the
definition of Eq. (14) for the ionic and covalent parts of the one-
electron energy Eq. (9). It is also useful to calculate the covalent bond
energy separately for certain pairs of atoms ij as∑L,L′QiL,jL′HjL′ ,iL.

III. RESULTS AND DISCUSSION
A. Mg2SiO4

Mg2SiO4 crystallizes in the olivine structure type, space group
Pnma (no. 62). A schematic representation of its structure and DFT
density of states are shown in Figs. 1(c)–1(f). This ternary oxide is
formed from the binary oxides MgO and SiO2 in the reaction 2MgO
+ SiO2 = Mg2SiO4. During this process, the coordination numbers
of magnesium and silicon do not change: in the binary oxide, mag-
nesium has octahedral one with six neighbors [Fig. 1(a)] and silicon
has tetrahedral coordination with four Si [Fig. 1(b)]. The density of
states of all three compounds [Figs. 1(d)–1(f)] follows the same pat-
tern. The top of the valence band of them is mainly formed by p-O
states hybridizing with s− and p− states of Mg or/and Si, while the
bottom of the conduction band, separated by an energy gap, consists
mainly of s− and p− Mg(Si) states. Thus, this set of states was used
to construct the Wannier function basis for these systems. The DFT
total energy calculations indicate that the formation of Mg2SiO4
from binary oxides is favorable by 0.575 eV per formula unit (or
0.082 eV/atom). Curiously, the difference of one-electron energies
gives the opposite sign.

The degree of covalency slightly increases in forming a ternary
oxide: 62% for MgO, 59% for SiO2, and 63% for Mg2SiO4.

Let us consider the atomic charges, which will allow us to char-
acterize the flow of electrons between ions during the formation of
a complex compound from simpler ones, using the data given in
Tables. I and IV. The charge of Mg, computed as a trace over the
corresponding density matrix, increases from ZMg = 1.21 in MgO
to ZMg = 1.26 in Mg2SiO4. There are two ways to look at this. One
way is to say that 0.05 electrons flow from magnesium (0.10 per for-
mula unit). The charge of silicon decreases accordingly from ZSi
= 2.64 in SiO2 to ZSi = 2.41 in Mg2SiO4, that is, 0.23 electrons
flow to silicon. The oxygen ion charge in Mg2SiO4 (−1.22/−1.28) is
intermediate between the values in MgO (−1.21) and SiO2 (−1.32).
According to our Wannier Hamiltonian calculations, the energy of
the Mg states is higher than that of the Si orbitals by ≈ 1 eV for
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FIG. 1. Crystal structures of MgO (a), SiO2 (b), Mg2SiO4 (c), and corresponding density of states [(d)–(f)] relative to the Fermi level. The orange, blue, and red spheres
correspond to Mg, Al, and O atoms, respectively.

binary oxides MgO and SiO2 and increases to ≈2 eV in Mg2SiO4.
That fact explains the slight transfer of electrons from magnesium
to silicon in the ternary oxide. The second way is less detailed, but
(as we will see later) more universal: Looking at the atomic charges,
we conclude that 0.055 electrons are transferred from 2MgO to SiO2
during the formation of Mg2SiO4. This corresponds to the acid–base
interpretation of compound formation.

The energy of one magnesium–oxygen bond EMg − O =−2.93 eV
in MgO and EMg − O = −3.096 eV in Mg2SiO4 (Table I). For
the silicon–oxygen bond, ESi − O = −8.267 eV in SiO2 and ESi−O
= −9.359 eV in Mg2SiO4. Thus, both bonds are strengthened in the
ternary oxide compared to those in the binary oxides. This explains
the favorability of the formation of the ternary oxide and agrees
with the slight increase in covalency on going from binary to ternary
oxides that was found in our Wannier calculations.

B. MgAl2O4

The compound MgAl2O4 has a spinel structure with the space
group Fd3̄m (no. 227), as schematically represented in Fig. 2(b).
The DFT density of states of Al2O3 and MgAl2O4 [Figs. 2(c) and
2(d)] also have the same structure similar to the oxides consid-
ered above. Therefore, the same strategy of choosing the states for
design of the Wannier function basis was used during the projec-
tion procedure. Unlike Mg2SiO4, this ternary oxide does not have
the same metal–oxygen coordination numbers as the binary oxides
that form it. In particularly, while Al is octahedrally coordinated by
oxygen atoms both in spinel and in Al2O3 [Fig. 2(a)], Mg atoms in
spinel exhibit tetrahedral coordination, in contrast to the octahe-
dral coordination in MgO. The Mg–O bond distances are also very
different: 2.095 Å in MgO and 1.938 Å in spinel. Conversely, the
aluminum–oxygen bond distance increases from an average value of

TABLE I. MgO, SiO2, and Mg2SiO4 energies per formula unit.

MgO SiO2 Mg2SiO4

Ionic energy −12.466 eV −23.690 eV −44.387 eV
Covalent energy −20.743 eV −34.356 eV −77.079 eV
Bond energy −33.209 eV −58.046 eV −121.467 eV
Covalent/Bond energy ratio 62% 59% 63%
Covalent energy bond
between Mg–O/Si–O atomic pair −2.93 eV −8.267 eV −3.096/-9.359 eV
Ionic charge ZMg/ZSi 1.21 2.64 1.26/2.41
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FIG. 2. Crystal structures of α-Al2O3 (a) and MgAl2O4 (b) and corresponding density of states [(c) and (d)] relative to the Fermi level. The orange, light blue, and red spheres
correspond to the Mg, Al, and O atoms, respectively.

1.913 Å (comprising three shorter bonds at 1.855 Å and three longer
ones at 1.972 Å) to 1.944 Å.

From the total energies, we find that the formation of MgAl2O4
is favorable by 0.2328 eV per formula unit (or 0.033 eV/atom), which
is a rather small value indicating a small driving force for the forma-
tion of a complex oxide. The difference of the one-electron energies
again gives an effect of an opposite sign.

The degree of covalency defined as the ratio of the cova-
lent component to the binding energy also varies very slightly. For
Al2O3 it is 65%, for MgO 62%, and for the ternary oxide MgAl2O4
again 65%.

It is interesting to follow the change in the value of ionicity,
which characterizes the flow of electrons between ions during the
formation of a complex compound from simple ones (Tables II and
IV). The charge of the aluminum ion changes from ZAl = 1.84 in
Al2O3 to ZAl = 1.77 in MgAl2O4, i.e., 0.07 electrons flow to alu-
minum (0.14 per formula unit). At the same time, the charge of the
magnesium ion increases from ZMg = 1.21 in MgO to ZMg = 1.28 in
MgAl2O4. This means that 0.07 electrons flow to the two aluminum
ions from the magnesium ion, and the remaining electrons trans-
fer from the oxygen ions average ionicity of which decreases: ZO
= −1.235 in Al2O3, ZO = −1.21 in MgO, and in MgAl2O4 ZO = −1.20

TABLE II. α-Al2O3 and MgAl2O4 energies per formula unit.

α-Al2O3 MgAl2O4

Ionic energy −33.782 eV −43.322 eV
Covalent energy −62.982 eV −81.020 eV
Bond energy −96.764 eV −124.342 eV
Covalent/bond energy ratio 65% 65%
Covalent energy bond
between Al–O/Mg–O
atomic pairs −5.514 (−4.383) eV −5.064/-3.345 eV
Ionic charge ZAl/ZMg 1.84 eV 1.77/1.28

(Table II). This agrees well with the fact that the calculated Wan-
nier energies of Al are lower than the corresponding Mg states by
≈ 1–2 eV.

Let us follow the change in the covalent bonding energy of
the metal–oxygen pairs. In Al2O3, this value EAl−O = −5.514 eV for
three short bonds and EAl − O = −4.383 eV for three long bonds. This
energy becomes equal to EAl − O = −5.06 eV in MgAl2O4, where all
six bonds have the same length. As the average bond energy in Al2O3
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FIG. 3. Crystal structures of Na2O (a) SO3 (b) and Na2SO4 (c) and corresponding density of states [(d)–(f)] relative to the Fermi level. The orange, yellow, and red spheres
correspond to the Na, S, and O atoms, respectively.

is equal to−4.948 eV that means overall strengthening of Al–O cova-
lent bonding upon the formation of the ternary compound. For the
Mg–O bond, EMg − O = −2.93 eV in MgO and EMg − O = −3.35 eV
in MgAl2O4 however, one must remember that in MgAl2O4, there
are only 4 such bonds per Mg atom (and 6 in MgO). Again, from
the computed atomic charges, we see that in the reaction of the
formation MgAl2O4 each MgO unit donates 0.07 electrons to the
Al2O3 unit, again in perfect agreement with the expectations of the
acid–base theory.

C. Na2SO4

Sodium sulfate Na2SO4 [Fig. 3(c)] is a rather simple and clear
chemical compound. It is an almost purely ionic crystal formed by
the ions Na+ and (SO4)2−. However, in the (SO4)2− ion itself, a
strong covalent bonding of sulfur and oxygen is present. The ternary
oxide Na2SO4 is formed from the binary oxides Na2O [Fig. 3(a)]
and SO3[Fig. 3(b)]. While Na2O is an ionic compound, SO3 forms

a polymeric crystal structure where a predominantly covalent char-
acter of chemical bonding is expected. Computing the total energy
differences, we see that the formation of Na2SO4 is favorable by
a large amount, 4.914 eV per formula unit (or 0.702 eV/atom).
The difference of one-electron energies for this compound correctly
reproduces the sign and large magnitude of this energy difference
(overestimating it, however, by more than 2 times).

The structure of the density of states in the region of the Fermi
level for Na2O, SO3, and Na2SO4 is qualitatively similar to that of
the systems considered above, except that the contribution of Na is
limited only by the s− states [Figs. 3(d)–3(f)]. Therefore, the p− O,
s−, p− S, and only the s− states of sodium for these oxides were used
in the construction of the Wannier function basis.

It is useful to follow the change in the value of ionicity, which
characterizes the flow of electrons between ions during the forma-
tion of a complex compound from simple ones (Tables III and IV).
The charge of the Na atom increases from ZNa = 0.735 in Na2O to

TABLE III. Na2O, SO3, and Na2SO4 energies per formula unit.

Na2O SO3 Na2SO4

Ionic energy −8.576 eV −16.317 eV −35.713 eV
Covalent energy −6.811 eV −53.094 eV −60.597 eV
Bond energy −15.384 eV −69.411 eV −96.31 eV
Covalent/bond energy ratio 44% 76% 63%
Covalent energy bond between
Na–O, S–O atomic pair −0.741 eV −10.204 eV −0.375/-13.137 eV
Ionic charge ZNa/ZS 0.735 3.35 3.49/0.85
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TABLE IV. Atomic charges in studied compounds.

– O Mg Si Al Na S

MgO −1.21 1.21 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
SiO2 −1.33 ⋅ ⋅ ⋅ 2.66 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Al2O3 −1.23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1.84 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Na2O −1.47 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.73 ⋅ ⋅ ⋅
SO3 −1.07/−1.15 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3.35
Mg2SiO4 −1.22 1.26 2.41 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
MgAl2O4 −1.20 1.28 ⋅ ⋅ ⋅ 1.77 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Na2SO4 −1.30 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.85 3.49

ZNa = 0.85 in Na2SO4, that is, 0.115 electrons flow from sodium (0.23
per Na2O unit), and each SO3 unit gains 0.23 electrons. This again is
in accordance with the acid–base theory.

The charge on sulfur increases from ZS = 3.35 in SO3 to
ZS = 3.49 in Na2SO4 when the (SO4)2− ion is formed. This is
interesting—contrary to expectations, the electrons attracted by the
sodium atoms are not redistributed to the orbitals of S, but to the
orbitals of O. The oxygen ion charge ZO = −1.30 in Na2SO4 is
between ZO = −1.47 in Na2O and ZO = −1.07/1.15 in SO3.

Let us consider how the covalent binding energy of the
sulfur–oxygen complex changes during the formation of the ternary
oxide using the data shown in Table III. SO3 has three pairs of S–O
bonds, each with a covalent bond energy of ES–O = −10.2 eV. Mean-
while, in the ternary oxide Na2SO4, the number of pairs increases to
four, and the energy of each S–O bond becomes ES−O = −13.14 eV.
Thus, in this example, the strengthening of individual S–O bonds
does not occur because the energy per bond decreases from −3.4 to
−3.28 eV. Thus, the formation of the ternary oxide Na2SO4 from
binary compounds cannot be explained by the strengthening of each
individual sulfur–oxygen bond, but rather by the formation of a
more stable S–O complex (SO4)2− than (SO3).

Traditional ab initio thermodynamics methods (involving the
convex hull construction and implemented, e.g., in the USPEX10

code) can routinely predict the stoichiometry of stable compounds
(e.g., whether MgO and SiO2 will react to form 2MgO ⋅ SiO2 or MgO
⋅ SiO2 or something else). Instead, the method used here addresses
the question “why”—why MgO and SiO2 react in the first place,
and what are the electronic driving forces behind this reaction and
formation of complex compounds. This bridges the gap between
traditional acid–base concepts and quantum-mechanical bonding
analysis.

IV. CONCLUSIONS
This paper explored, using our latest tools in the theory of

chemical bonding, a fundamental chemical question: what are the
driving forces for the formation of ternary and more complex com-
pounds from simpler ones? Given that chemistry is the science about
the behavior of the electrons in atoms, molecules, and condensed
matter, the key should be in the redistribution of the electrons.
We took as examples the formation of Mg2SiO4, MgAl2O4, and
Na2SO4 from binary oxides. Binary oxides already have the closed-
shell electronic structure, so why do they react? Obviously, oxidation
states do not change. Classical chemistry describes such reactions in
terms of acid–base interactions, where in Lewis’ theory acids and

bases are viewed as acceptors and donors of electrons. Using the
Wannier function formalism, we have found that the electrons are
indeed transferred from the high-energy orbitals of the base to the
lower-energy orbitals of the acid (e.g., from Na2O to SO3 in the
reaction Na2O + SO3 = Na2SO4). This is accomplished without
changing the oxidation states of the atoms, but simply by chang-
ing the degree of ionicity of the bonds. The arithmetic mean of the
atomic electronegativities is a reasonable measure of acidity/basicity,
increasing in the series Na2O–MgO–Al2O3–SiO2–SO3. Indeed, the
largest exothermic effect is produced by the reaction of the strongest
acid (SO3) and strongest base (Na2O) in this series, and the weak-
est effect is in the reaction of MgO and Al2O3. We have shown
that these acid–base charge redistributions lead to an overall bond
strengthening in ternary oxides.
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