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1. What to do to be successful. 

• Be active –ask questions! 
• Always come to classes! 
• These notes.  
• A.Putnis “Introduction to Mineral Sciences”. Cambridge, 1992. (main 

textbook). 
• L. Pauling “The Nature of the Chemical Bond”. Cornell Univ. Press, 1960 

(masterpiece, although in places outdated. Only for further reading). 
• I. Hargittai & M. Hargittai “Symmetry through the eyes of a chemist”. Plenum 

Press, 1995. (Crystallography as fun – for those who liked this course, good 
reading in free time).  

 
2. Introduction and history.  
What is crystallography? Goethe said:  
“Crystallography … is not productive, it exists only for itself, and has no consequences… As it is nowhere 
really useful, it has developed largely within itself. It does provide the intellect with a certain limited 
satisfaction, and its details are so diverse that one can describe it as inexhaustible; that is why it captures 
even first-rate people so firmly and so long.” (Translation J.D. Dunitz). 
Crystallography has greatly changed since – and changed all related sciences, including 
physics, chemistry, biology, and geosciences. One can say that crystallography is a modern 
interdisciplinary science dealing with the structure and properties of solids with long-range 
order. In this course we stress its role in Earth sciences.  
History.  
Ancient times: In Greek, “crystallos” means “transparent ice”. Greeks believed that rock 
crystal is a form of ice. Democritos and Lucrecius Car develop views that matter consists 
of particles – “atoms”.  
Renaissance: G. Cardano (1501-1576) was probably the first scientist attracted by crystals, 
he tried to explain their internal structure using ideas about packing of spherical particles. 
These ideas were developed, and the first attempts to analyse the shape of crystals were 
made, by Johannes Kepler (1571-1630) in his treatise on snow flakes (1611).  
1669 – year of birth of crystallography as a science. Nicholas Steno formulates the first 
crystallographic law: “Crystals of the same compound, but different shapes, have 
invariable angles between the corresponding faces”. His work was unknown until much 
later. His life was dramatic – born to a Lutheran Danish family and converted to 
Catholicism in mature age, he abandoned science and soon became a bishop. He was 
renowned for his heroic life and was later proclaimed a Catholic saint.  
Steno’s law was later re-discovered by M.V.Lomonoson (his work was also forgotten) 
and, finally, in 1783 by the French mineralogist J.-B. Rome de L’isle (1736-1790).  
French abbot R.-J. Hauy (1743-1822) was the first to introduce the notion of the crystal 
lattice. This allowed him to formulate a second law of crystallography – the law of rational 
indices, which we discuss later. Hauy’s life was also remarkable. Being a priest during the 
French revolution was very risky, but he refused to change his convictions. Revolutionary 
tribunal, however, saved his life– thanks to Hauy’s scientific achievements.   
XIX century was the golden era of geometric crystallography. A. Bravais derives the 32 
crystallographic point symmetry groups (1848) and discovers the 14 lattice types (1855) – 
though the 32 groups were previously derived by J. Hessel (1830) and M. Frankenheim 
(1826), whose works were quickly forgotten. A.W. Gadolin proved that 5-fold and higher 
than 6-fold symmetry axes are impossible in crystals and gave an elegant derivation of the 
32 groups (1867).  In 1890, E.S. Fedorov (1853-1919) has derived the 230 space groups, 
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which describe the symmetry of periodic crystals. A. Schoenflies (1853-1928) gave a 
different (and independent) derivation, but completed it slightly later. At this stage 
geometric crystallography was practically complete. Its major extensions in the XX 
century include the derivation of antisymmetry space groups by A.V. Shubnikov (1887-
1970), colour symmetry by N.V. Belov (1891-1982), and 4-, 5-, and 6-dimensional space 
groups by a number of different people. End of the XIX century witnessed significant 
developments in chemical crystallography – by such scientists as L. Pasteur, P. Groth, W. 
Barlow.        
XX century. Atomistic theory was accepted by many people, but it was not possible to 
prove it until the discovery of X-rays in 1895 by W. Roentgen. In 1906, great Austrian 
physicist L. Boltzmann committed suicide after being accused of relying too much on the 
notion of atoms – the very existence of which was not proven. Just 6 years later, in 1912, 
M. von Laue’s observation (which earned him a Nobel Prize) of diffraction of X-rays by 
crystals finally proved that the structure of matter is discrete and atoms do exist. Also in 
1912, W.H. Bragg and W.L. Bragg performed the first X-ray structure analysis – the first 
analysed materials were halite (NaCl) and sphalerite (ZnS) – resulting in another Nobel 
Prize. By 1920 Braggs determined several dozens of crystal structures and proposed the 
first system of atomic radii. Later W.L. Bragg formulated basic principles of mineral 
structure. M. Born (Nobel Laureate) and coworkers devised the formalism and methods to 
predict crystal structures and lattice dynamics. 1927 – L. Pauling (twice Nobel Laureate) 
formulates his famous 5 rules for ionic structures. His later works laid the foundations of 
the theory of chemical bonding – widely using quantum mechanics, he formulated such 
notions as electronegativity, hybridisation, bond valence. Approximately at the same time 
V.M. Goldschmidt creates one of the most popular systems of ionic radii, and applies them 
in geochemistry. L.D. Landau (Nobel Laureate) invents a general theory of phase 
transitions, later developed by K. Wilson (Nobel Laureate). High-pressure crystallography 
was founded in the pioneering works of P.W. Bridgman (Nobel Laureate). D. Hodgkin 
(Nobel Laureate) made important contributions by solving structures of biological 
molecules using X-ray diffraction. Generally speaking, crystallographic methods are 
widely used in molecular chemistry and biology – solving the structure of molecular 
crystals (e.g., proteins, DNA, etc.) allows one to extract the molecular structure. In the 
post-war period, N.V. Belov was prominent in mineralogical crystallography: his studies 
resulted in dozens of new mineral structures and their deepened understanding. Important 
contributions to structural chemistry were made by F. Laves, Yu.T. Struchkov, P. 
Coppens. With time, crystal structure determination ceased to be a challenge – now this is 
almost a routine task. The breakthrough in the methodology of structure solution was 
made by J. Karle and H.A. Hauptman (Nobel Laureates), who invented the so called 
“direct methods”. R.E. Smalley (Nobel Laureate) and co-workers discovered fullerenes, an 
exotic form of carbon with a number of unique properties (including superconductivity in 
metal-doped forms) – this was a major boost to studies of unusual materials. W. Kohn 
(Nobel Laureate) and coworkers opened a new era in quantum mechanics by formulating 
density functional theory – now even complex crystal structures can be studied 
theoretically, opening new ways of predicting and understanding the structure of matter. 
The second half of the XX century witnessed the discovery of a number of new unusual 
phenomena (stability of incommensurate phases and quasicrystals, hitherto unknown 
complex magnetic structures, unusual structural and electronic transitions under pressure, 
etc.). Crystallographers have solved structures of complex biological molecules (proteins, 
DNA, etc.) and even viruses. Great progress is being continually made in the 
understanding of chemical bonding. Now we are at the beginning of being able to predict 
materials properties on the quantum-mechanical basis, with an outlook to materials design. 
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New powerful methods and new exciting challenges guarantee that crystallography will 
remain an interesting and practically important science.  

1 2 3 4  

5 6 7 8  

9 10 11 12  

13 14 15 16  

17 18 19 20  

21 22  … maybe you ???????   
1 – G. Cardano, 2 – J. Kepler, 3 – N. Steno, 4 – R.-J. Hauy, 5 – R. de L’isle, 6 – A. Bravais, 7 – E.S. 
Fedorov, 8 – M. von Laue, 9 – M. Born, 10 – W.L. Bragg, 11 – V.M. Goldschmidt, 12 – L. Pauling, 13 
– L.D. Landau, 14 – P.W. Bridgman, 15 – A.V. Shubnikov, 16 – D. Hodgkin, 17 – N.V. Belov, 18 – J. 
Karle, 19 – H.A. Hauptman, 20 – K. Wilson, 21 – R.E. Smalley, 22 - W. Kohn.  
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In this course we will learn some basics about the external shape of crystals and ways 
of describing and understanding it, about the internal structure of minerals and its 
relationship with their properties and ways of understanding and predicting it, about 
chemical bonding in minerals and the dramatic changes in the structure, properties, and 
bonding in crystals that occur under high pressures and temperatures inside the Earth 
and other planets.  
 
3. How crystals grow.  
By a crystal we understand a solid with a well-defined periodic atomic structure. All 
minerals are CRYSTALLINE. Often one has a polycrystalline aggregate, where a 
multitude of tiny crystals are intergrown in random orientations. Glasses are an 
example of non-crystalline solids.  

 
Crystal structure of calcite (CaCO3) showing periodicity and the unit cell.  
 
Crystals can grow from: 

• From the gas phase 
• From solution 
• From melt  
• In the solid phase – recrystallisation 
• In a chemical reaction 

By growing crystals on a substrate, if the two have similar crystal structure, one can 
often achieve epitaxy – growth oriented by the substrate. Epitaxial growth is important 
in technology (computer industry etc.). It can produce new unusual phases as it 
introduces a strain in the growing crystal.  
Twinning. Another type of oriented intergrowth of crystals is twinning – where there is 
a symmetry relation between two or more intergrown crystals. One distinguishes 
between simple twins (2 crystals), multiple twins (3 or more crystals) and polysynthetic 
twins (very large number of crystals). Twins are formed during either crystal growth, 
phase transition, or mechanical deformation. Twinning can destroy certain physical 
properties – e.g., pervasive twinning of quartz destroys useful piezoelectric properties 
(used in quartz watches) of most natural crystals of quartz.  



A.R. OGANOV. CRYSTALLOGRAPHY. 6 

  
1-“swallow-tail” twin of gypsum, 2- Karslbad twin of feldspar, 3- twin of pyrite, 4- spinel 
twin, 5- polysynthetic twin of plagioclase, 6- multiple twin of rutile, 7- triple twin of 
aragonite, 8,9- twins of staurolite, 10-Dauphine twin of quartz, 11- Brasilian twin of 
quartz, 12- Japanese twin of quartz. (after Yegorov-Tismenko, 1992).  
 

 
Illustration of the link between crystal structure and twinning (from Yegorov-Tismenko, 
1992). Left – untwinned crystal, right – twin.  
 
Genetic significance of crystal morphology. To an experienced mineralogist, crystal 
morphology can tell a detailed story of how the mineral was formed, grew, and 
changed. E.g., skeletal forms indicate very rapid non-equilibrium growth.  
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Skeletal crystals of sal ammoniac (NH4Cl). 
 
Crystals of corundum (Al2O3) grown in alkaline environments are flat, whereas in 
acidic environments they grow isometric or elongated. For many minerals, e.g. quartz 
(SiO2) crystal shape indicates the temperature of formation.  

  
Crystal shapes and structure of corundum Al2O3 (from Kostov, 1976).  
 
Factors determining crystal shape. 
The first important rule – geometric: crystallographic faces with the lowest indices (e.g., 
{100}, {010}, {001}, {110}, {210}) are usually preferred. This rule was confirmed by 
numerous studies; exceptions are very few – among the most notorious is calcite CaCO3, 
for whose crystals ~700 different faces are known, often involving large indices. However, 
in accordance with our rule, these faces are usually small. Another exception is calaverite 
AuTe2, whose crystals actually prefer to have faces with huge indices – only a few years 
ago it was found that calaverite structure is modulated, and this fact is responsible for the 
weird morphology. 
Of course, the crystal shape is entirely due to the crystal structure and the effects of the 
environment. E.g., crystals of corundum (Al2O3) grown in alkaline solutions, always have a 
tablet shape – i.e. very large basal faces {0001}. A likely explanation is that during crystal 
growth the (OH)- ions are adsorbed on the {0001} surfaces forming thin films of gibbsite 
Al(OH)3. These thin films are very stable and slow down the growth of the crystal in the 
direction perpendicular to this surface. As a consequence, {0001} faces predominate. Note: 
generally, the slowest-growing faces are the most common ones. Fast-growing faces are 
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very small. This is the second important rule that we discover in the field of crystal 
morphology. It is based on the kinetics of crystal growth. Wulff’s theorem is the other 
important rule, but based on thermodynamics – i.e. considering crystal growth as a very 
slow process. These rules complement each other. 
 
Wulff’s theorem. Atoms at the surface of a crystal are weaker bound to the rest of the 
crystal than atoms inside the crystal. There always is an energy cost associated with the 
formation of a surface. Take, e.g., breaking a piece of glass – new surfaces, introduced by 
fracturing, cannot be formed unless you spend some energy on this process (e.g., energy of 
a stone hitting the glass window!) So, there is an energy cost associated with the formation 
of surfaces. Crystals want to minimise this cost. If crystals were isotropic (like glasses and 
liquids), they would be bound to have a spherical shape to minimise the surface area. The 

anisotropy of crystals means that different surfaces – e.g., {100} and {1
−

10} have different 
surface energies. Of course, the crystal would prefer to have the low-energy surfaces rather 
than the high-energy ones. Minimising the total surface energy, Russian crystallographer 
G.Wulff has found a remarkable theorem called the Wulff theorem, for a macroscopic 
crystal in equilibrium: 
W1/d1=W2/d2=Wi/di=constant,  
where Wi are the surface energies for particular faces, and di the lengths of the normals 
from the centre of the growing crystal to the face. The shorter the normal, the larger the 
face. In accordance with our expectations, the lowest-energy faces have the shortest 
normals and largest areas. Larger-energy faces can also be present – their role is to 
minimise the total surface area of the crystal, to cut the edges and corners. From Wulff’s 
theorem and the kinetic principle of crystal morphology it can be seen that the speed of 
growth of a crystallographic face at equilibrium is proportional to its surface energy. As 
always, there is a close link between kinetics and thermodynamics! This is strictly true for 
slowly-growing crystals, close to the thermodynamic limit. For fast-growing crystals, the 
attachment energy (showing how easy it is for particles to settle upon a given surface) that 
will govern the growth rate and crystal shape.  

 
Illustration of the Wulff theorem. 
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Equilibrium shape of crystals of MgSiO3 perovskite, predicted with the Wulff theorem 
(Alfreddson et al., 2005).  
 
Now, what determines the surface energy? The structure of the crystal and the 
environment. The effects of the environment are mainly to neutralise the surface charge, 
saturate the broken bonds at the surface, and also to put an impurity atom on the surface. 
The crystal structure can tell you which surfaces will involve the disruption of the strongest 
bonds and, therefore, would be unfavoured. In the pyroxene structure the strongest bonds 
are Si-O. SiO4 tetrahedra form infinite [SiO3] chains parallel to the c axis. To create a 
{001} surface means to break an [SiO3] chain and bonds within it. On the other hand, 
creation of surfaces parallel to c can be imagined without breaking any Si-O bonds, and 
therefore has a lower energy. These faces are clearly preferred – explaining the prismatic 
habit of the pyroxenes. Note also that in the vacuum the effects of the environment are 
absent, and crystal structure alone determines the surface energies. Cleavage planes would 
correspond to the lowest-energy surfaces – hence the relation between the crystal 
morphology and cleavage geometry (in pyroxenes, also prismatic).  

A. B.  
Crystal structure of pyroxene diopside (CaMgSi2O6) and morphology of its crystals. SiO4 
tetrahedra red, MgO6 octahedra blue, Ca atoms yellow. One can see a clear relationship 
between crystal morphology and structure. B. Cleavage planes in pyroxenes (projection 
perpendicular to the c axis). 
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Layered crystal structure of mica – micas have perfect cleavage along the layers of 
structure, and platy habit.  
 
 
4. Geometric macrocrystallography.  
Crystal morphology.  
Not every crystal is perfectly shaped and symmetric, crystals often grow in asymmetric 
shapes due to asymmetric growth conditions. It was Steno who first observed that the 
angles between the corresponding faces of a crystal are constant, characteristic for a 
given mineral. These angles are dictated by the internal structure, not by the conditions 
of growth (which can only change the relative areas of different faces). Therefore, the 
relative orientation of crystal faces contains information on the symmetry of the crystal.  
The macroscopic symmetry of crystals is characterised by a set of symmetry operations 
called a point group, and there are only 32 possible crystallographic point symmetry 
groups. We will consider these groups in more detail below, first we focus on 
symmetry elements possible in crystals. 
In a macroscopic crystal, we distinguish the following symmetry elements: 

• Mirror plane (m). 
• Centre of symmetry (or inversion centre – C). 
• Rotation axes: twofold (2), threefold (3), fourfold (4), sixfold (6). 

• Rotoinversion axes: only fourfold (
−

4 ). 
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Theorem: 3-dimensional periodicity is incompatible with the presence of 5-fold and 
greater than 6-fold symmetry axes. These “inconsistent” symmetry axes are called non- 
crystallographic and can exist in aperiodic systems like quasicrystals, molecules, viruses, 
etc. (to illustrate this, it is easy to show that it is impossible to fill a plane with regular 
pentagons). Until recently, quasicrystals were unknown in the nature. However, in 2009 
L. Bindi (Italy) and coauthors reported a naturally occurring stable and well-ordered 
quasicrystal of composition Al63Cu24Fe13 (Bindi et al., Science 2009), forming micron-
size grains.  

a b  
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c  
Examples of fivefold symmetry in aperiodic objects. a-Ho-Mg-Zn quasicrystal, b-electron 
microscopy image of a quasicrystal structure, c – icosahedral virus.  

 

 
Notation of symmetry elements (from Weiss & Witte, 1983). 

 

Crystal categories and systems, coordinate systems: 3-,4-, and 6-fold axes are called 
major axes. Symmetry axes and normals to mirror planes are called special directions. 
According to their presence or absence, we distinguish three crystal categories, which are 
detailed below with a description of the coordinate systems: 

• High: more than one major axis present. 

Only cubic crystal system. The choice of coordinate’ system is obvious. 

• Medium: Only one major axis. 

Hexagonal (6-fold axis), trigonal (3-fold axis), tetragonal (4-fold axis) systems. 
Coordinate system: c along the major axis, a and b are in the perpendicular plane and 
along some special direction. 
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• Low: No major axes present. 

Orthorhombic: three special directions (defining coordinate axes). Monoclinic: one 
special direction (axis b, for historical reasons), axes a and c are chosen in the 
perpendicular plane. Triclinic: no special directions, coordinate axes in the general 
orientation. 

This division is based on a mathematical analysis of possible crystal symmetries: e.g., it 
is not possible to have only two special directions in a crystal, interaction of symmetry 
elements will necessarily produce the third special direction. Note that often “proper 
hexagonal” and “trigonal” systems are considered as subsystems of the hexagonal 
system. 

Below is a summary of crystal systems:  
Category Crystal system Features Coordinate 

system 
Mineral examples 

High Cubic 

 
Four 3-fold axes 

 
a=b=c, 

α=β=γ=90° 

Native Cu, Fe, diamond (C) 

Halite (NaC1) 

Sphalerite (ZnS) 

Garnets 
Medium 

 
Hexagonal 

 
One 6-fold axis 

 
a=b≠c,  

α=β=90°, γ=120° 

Graphite (C) Wurtzite (ZnS) 

 
Trigonal 

 
One 3-fold axis 

 
a=b≠c,  

α=β=90°, γ=120° 

Quartz (SiO2)  

Calcite (CaCO3) 

Tetragonal 

 
One 4-fold axis 

 
a=b≠c, 

α=β=γ=90° 
Stishovite (SiO2) 

 
Low 

 
Orthorhombic 

 
3 special 

directions 

a≠b≠c, 

α=β=γ=90° 
Aragonite (CaCO3) 

Monoclinic 

 
1 special 

direction 

a≠b≠c, 

α=γ=90°≠β 
Some feldspars (orthoclase 
KA1Si3O8) 

Triclinic No special 
directions 

a≠b≠c, 

α≠β≠γ≠90° 
Some feldspars (albite 
NaA1Si3O8) 

 

A bit of mathematics: indices of vectors, edges and faces in crystals.  

Notation – [pqr] for vectors, (hkl) for a particular face, {hkl} for a family of 
symmetrically equivalent faces.  

Now that we have a coordinate system definition, we can work on mathematical 
descriptions of crystal morphology and its main elements — crystal faces and edges. A 
vector is denoted by three coordinates defined in our (in general, non-Cartesian!) 
coordinate system — just like in standard geometry. The same definition applies to 
crystal edges. For faces things are more complex. 

We could define coordinates of a plane by its intersections with the coordinate axes, 
however, there is a problem — for faces running parallel to a coordinate axis, at least 
one index will be infinite (no intersection with the axis!). To solve this problem, Miller 
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indices are used, which use the inverse numbers of these intersections — so, for an axis 
parallel to a, the first index is not ∞, but l/∞ - or just 0. 

Generally, if we denote the intercepts of the three coordinate axes as la, lb, and lc, 
respectively, unit lengths of the coordinate system as a,b,c, and indices of the face as 
h,k,l, we get the following definition of Miller indices: 

(a/la): (b/lb): (c/lc)=h:k:l 

Hauy has found that in crystals h:k:l is always a ratio of small integers (law of rational 
indices). Note that one takes the smallest integers — for example, (222) should be 
reduced to (111), (884) will be reduced to (221), etc.  

Miller indices have a number of very useful properties often used in structural analysis 
and theoretical descriptions of crystals. 

• One interesting property is that a vector [hkl] is perpendicular to the plane {hkl }. 

• Another property is that all faces {hkl} parallel to direction [pqr] satisfy the following 
equation: 

hp+kq+lr=0 

Subtlety for hexagonal and trigonal crystals, especially in old literature, four indices 
were introduced - {hklm}, since there are three equivalent axes in the a-b plane. 
However, only three of them are truly independent as h+k=-l in this case. So, for 

instance, one can write {10
−

10} or simply {100} - this means the same. 

 
Examples of Miller indices (from Putnis, 1992). 
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Hauy’s drawings of crystal surfaces: from Hauy’s work it followed that for stable crystal 
faces hkl-indices are small integer numbers. (picture from Hargittai & Hargittai, 1995). 
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32 point groups. Simple but lengthy mathematical considerations give an important 
result — there can be only 32 possible crystallographic combinations of symmetry 
elements. 

To list them all, we need a scheme for labelling these classes. Here is the simplest one 

— we list all the symmetry-independent elements together with their number in the 
crystal, e.g.: 

22’2”mm’m”C — symmetry class of aragonite. 

This notation is somewhat lengthy, so it has been replaced by the so-called international, 
or Hermann-Mauguin, symbols. These symbols contain three positions, which are used 
as follows: 

High category: 1st position for the coordinate direction, 2nd  for the threefold axis, 3rd for 
the diagonal between two coordinate axes. 

Medium category: 1st position for coordinate direction c, 2nd for direction a(=b), 3rd for 
the a-b diagonal. 

Low category: each position for each coordinate direction in order a,b,c. 

Symmetry elements are denoted as 2,3,4,6,
−

4 ,m, and from now on we denote the 

symmetry centre as 
−

1 (it is equivalent to the 1-fold rotoinversional axis). When there are 
two elements corresponding to the same direction, e.g. an axis and a normal to a mirror 
plane, we write, e.g. 4/m. In Hermann-Mauguin symbols, we write only the necessary 
and sufficient elements — omitting those that can be generated from this set. 

For example, 22’2”mm’m”C = 2/m 2/m 2/m = mmm, because all the symmetry elements 
of this class can be generated from three mutually perpendicular mirror planes.  

Below is a table with all crystallographic symmetry classes, with some examples 
predominantly from the realm of minerals: 
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Examples of 32 point groups, mainly from minerals (from Hargittai & Hargittai, 1995). 
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Symmetry statistics. Quite surprisingly, there is a strong preference of crystals to a 
small number of point groups. For example, 35% of inorganic and 45% of organic 
crystals have the point group 2/m. Though the exact numbers differ between organic 
and inorganic materials (organic crystals overall have lower symmetry), there is a 
common trend: lower-symmetry crystal systems are more often adopted, and for each 
crystal system the highest-symmetry point group is more popular (e.g., 2/m among 
monoclinic groups). The exact explanation for this strange statistics is not known, but 
much can be explained by the competition between two tendencies: the tendency of 
structures to adopt the highest possible symmetry, and also by the predominance of 
chemically complex compounds in statistics (such compounds usually have low 
symmetries, in contrast to usually highly symmetric chemically simple crystals).  

 
Symmetry statistics (after Newnham, 2005).  
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Stereographic projections. Stereographic projections are used for displaying crystal 
forms and crystal symmetry. They are constructed as follows: 

1. Place the crystal in the centre of a sphere. 

2. Starting from the centre of the sphere, draw normals to each crystal face. 

3. Take intersections of these normals with the sphere in the northern hemisphere, 
and draw a line connecting these intersection points with the south pole of the 
sphere. Intersection of these lines with the equatorial plane are called 
stereographic projections of crystal faces.  

4. By analogy one can construct stereographic projections of symmetry elements.  

 

 
Construction of a stereographic projection (from Borchardt-Ott, 1993). 

 

Enantiomorphism (chirality). When there are no symmetry planes or inversion centre 
(and inversion axes), the same substance can be in two forms, called “left” and “right”. 
Examples are left and right crystals of quartz. This phenomenon is called 
enantiomorphism, and the two forms are called chiral. Many molecules, especially 
biologically active ones, are chiral. Although physically and thermodynamically the two 
chiral forms are equivalent, all biologically active molecules are “left” – this paradox 
still has no explanation (but holds keys to understanding the origin of life). Jules Verne 
wrote in his “20000 Leagues Under the Sea” that most mollusk shells are twisted from 
right to left.  
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Illustrations of chirality in molecules (glyceraldehyde) and crystals (quartz) (from 
Hargittai & Hargittai, 1995). 

Did you know? Chiral forms of the same molecule have the same physical properties, but VERY 
DIFFERENT biological activity (and no one really knows why!): right-handed molecule of vitamin C 
((+)-ascorbic acid) is a vitamin, whereas left-handed (-)-ascorbic acid is not a vitamin and has no 
biological activity. (+)glucose is a food, whereas (-)glucose is not. (-)-chloromycetin is a powerful 
antibiotic, whereas (+)-chloromycetin is not. (-)-adrenaline is many times more active as a hormone than 
(+)-adrenaline. (+)-form of thalidomide is a safe and effective drug against morning sickness, whereas (-
)-thalidomide is an active mutagen (i.e. causes biological mutation and leads to birth defects if taken by 
pregnant women) [Roberts, 1989].  
Did you know? We all know how often table salt (NaCl) particles stick to each other, making it 
difficult to sprinkle salt on your favourite dish. The reason is that NaCl particles have the shape of a 
cube, and these cubes (wth the help of water molecules from the air) stick to each other along the large 
surfaces of the cubes. In 2006, a group of Indian scientists patented a way to avoid this, by growing tiny 
salt crystals from a solution containing small amounts of glycine. Crystals of NaCl grown from such 
solutions have a different shape, rounder than cube.  This rounder shape prevents sticking of salt 
particles. The reason that this shape appears is that glycine molecules prefer to settle on {210} faces 
(rather than {100} cubic faces) – and thus slow their growth. Remember that slowly growing faces of a 
crystal dominate! In the presence of urea, NaCl forms octahedral crystals, but this method is not 
suitable for culinary purposes!  

 

Curie principle. Unusual morphologies. Pierre Curie has formulated a fundamental 
principle that only those elements that are common between the object (crystal) and the 
environment (growth environment) will be preserved in the object. In other words, 
crystals growing in asymmetric environment, appear to have lower symmetry than 
what is dictated by crystal structure. It is well known that perfectly symmetric crystals 
are rare, but sometimes one has truly “deceptive” crystal shapes. E.g., cubic pyrite is 
known in crystals of trigonal symmetry. Or sal ammoniac, NH4C1 and cuprite Cu2O, 

belonging to non chiral symmetry class m
−

3m, in natural conditions sometimes have 
morphological symmetry 432 (i.e. its crystals are chiral, with a distinction between 
“left” and “right”). The reason for this morphological paradox is in the presence of 
biological molecules (usually chiral — and predominantly “left” rather than “right”, a 
paradox still lacking explanation!) in the growth environment — these molecules 
destroy equivalence between “left” and “right” in the crystal, and we get chiral 
morphology. 

 
Illustration of the Curie principle. (from Kostov, 1976). 
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Physical properties and the von Neumann principle. For physical properties, the 
von Neumann principle is valid: “Physical properties have the same symmetry as the 
crystal structure, or higher”. For instance, thermal expansion of a cubic crystal has 
symmetry higher than cubic — spherical. 

Generally speaking, many crystal properties are described by the so-called rotation 
groups (spherical, cylindrical, conical groups). In these, infinite-order rotation axes are 
present. 

 
Illustration of the von Neumann principle: symmetry of a physical property (e.g., thermal 
expansion - right) is higher or equal than symmetry of the crystal (left). (from Putnis, 
1992).  

  

5. Space groups. 
The symmetry groups considered in the previous chapter are called “point groups” 
because their symmetry operations leave one point unmoved. These are symmetry 
groups of finite objects, molecules and clusters, macroscopic crystals. When one 
considers atomic structure of crystals at the microscopic level, the size of the crystal is 
so much larger than the size of the atom that it is convenient to consider crystals as 
infinite objects. These objects have an additional symmetry operation — translation.  

Unit cell and Bravais cell. The choice of a unit cell (smallest unit periodically repeated 
in space) is not unique. The standard choice is a cell with shortest translation vectors.  

 
Illustration of non-uniqueness of cell choice. The shaded cell is the standard choice. 
(modified after Vainstein, 1979). 
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This smallest unit cell, however, is not always the most convenient one – in some cases 
its shape will not reflect the symmetry of crystal. By a Bravais cell we understand the 
smallest periodically repeated crystal fragment, whose shape has the correct point 
group symmetry of the crystal. Bravais cell and unit cell are identical for primitive (P)  
lattices, and different for centred lattices.  

Different types of cell centering are possible: 

Body-centred cells (I-centred) 

Face-centred (F-centred) 

Base centred (A-, B-, C- centred). 

Bravais has demonstrated that only 14 different types of lattices are possible – e.g., 
cubic lattices can be primitive (P), body-centred (I), or face-centred (F), but not base-
centred.  

 
14 Bravais lattices (from Putnis, 1992). 
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Translational periodicity is the most fundamental feature of crystals. In infinite 
periodic structures of crystals all the symmetry elements that we discussed before can 
be present, but there are additional symmetry elements that did not exist in case of 
finite figures like macroscopic crystals, molecules, etc.: 

• Translations (P, I, F, A/B/C, R). 

• Screw axes (21, 31, 32, 41, 42, 43, 61, 62, 63, 64, 65) –e.g. 31 is called a “left” axis, 
while 32 is “right”. Such axes as 21, 42 and 63 are neither “left” nor “right”. 

• Glide planes (a, b, c, n, d). 

Symmetry of infinite 3-dimensional periodic structures is described by 230 space 
groups listed below.  

 
Illustration of fourfold screw axes 41 and 43 (from Yegorov-Tismenko, 1992). 

 

 
Screw axes vs rotational axes (from Klockmann, 1978). 
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Illustration of a translation (a), mirror plane (b,c) and a glide plane (d) in a periodic 
structure (from Vainstein, 1979). 

 

The point group of a crystal is easy to find from its space group: just ignore the Bravais 
lattice type, and replace all translational symmetry elements with their classical 
counterparts (screw axes are replaced by pure rotational axes, glide planes by mirror 
planes). For example, the space group I41/amd (No. 141) corresponds to point group 
4/mmm.  

 

Table. List of 230 space groups.  

1 P1 2 P-1 3 P2 4 P21 5 C2 

6 Pm 7 Pc 8 Cm 9 Cc 10 P2/m 

11 P21/m 12 C2/m 13 P2/c 14 P21/c 15 C2/c 

16 P222 17 P2221 18 P21212 19 P212121 20 C2221 

21 C222 22 F222 23 I222 24 I212121 25 Pmm2 

26 Pmc21 27 Pcc2 28 Pma2 29 Pca21 30 Pnc2 

31 Pmn21 32 Pba2 33 Pna21 34 Pnn2 35 Cmm2 

36 Cmc21 37 Ccc2 38 Amm2 39 Abm2 40 Ama2 

41 Aba2 42 Fmm2 43 Fdd2 44 Imm2 45 Iba2 

46 Ima2 47 Pmmm 48 Pnnn 49 Pccm 50 Pban 

51 Pmma 52 Pnna 53 Pmna 54 Pcca 55 Pbam 

56 Pccn 57 Pbcm 58 Pnnm 59 Pmmn 60 Pbcn 

61 Pbca 62 Pnma 63 Cmcm 64 Cmca 65 Cmmm 

66 Cccm 67 Cmma 68 Ccca 69 Fmmm 70 Fddd 
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71 Immm 72 Ibam 73 Ibca 74 Imma 75 P4 

76 P41 77 P42 78 P43 79 I4 80 I41 

81 P-4 82 I-4 83 P4/m 84 P42/m 85 P4/n 

86 P42/n 87 I4/m 88 I41/a 89 P422 90 P4212 

91 P4122 92 P41212 93 P4222 94 P42212 95 P4322 

96 P43212 97 I422 98 I4122 99 P4mm 100 P4bm 

101 P42cm 102 P42nm 103 P4cc 104 P4nc 105 P42mc 

106 P42bc 107 I4mm 108 I4cm 109 I41md 110 I41cd 

111 P-42m 112 P-42c 113 P-421m 114 P-421c 115 P-4m2 

116 P-4c2 117 P-4b2 118 P-4n2 119 I-4m2 120 I-4c2 

121 I-42m 122 I-42d 123 P4/mmm 124 P4/mcc 125 P4/nbm 

126 P4/nnc 127 P4/mbm 128 P4/mnc 129 P4/nmm 130 P4/ncc 

131 P42/mmc 132 P42/mcm 133 P42/nbc 134 P42/nnm 135 P42/mbc 

136 P42/mnm 137 P42/nmc 138 P42/ncm 139 I4/mmm 140 I4/mcm 

141 I41/amd 142 I41/acd 143 P3 144 P31 145 P32 

146 R3 147 P-3 148 R-3 149 P312 150 P321 

151 P3112 152 P3121 153 P3212 154 P3221 155 R32 

156 P3m1 157 P31m 158 P3c1 159 P31c 160 R3m 

161 R3c 162 P-31m 163 P-31c 164 P-3m1 165 P-3c1 

166 R-3m 167 R-3c 168 P6 169 P61 170 P65 

171 P62 172 P64 173 P63 174 P-6 175 P6/m 

176 P63/m 177 P622 178 P6122 179 P6522 180 P6222 

181 P6422 182 P6322 183 P6mm 184 P6cc 185 P63cm 

186 P63mc 187 P-6m2 188 P-6c2 189 P-62m 190 P-62c 

191 P6/mmm 192 P6/mcc 193 P63/mcm 194 P63/mmc 195 P23 

196 F23 197 I23 198 P213 199 I213 200 Pm-3 

201 Pn-3 202 Fm-3 203 Fd-3 204 Im-3 205 Pa-3 

206 Ia-3 207 P432 208 P4232 209 F432 210 F4132 

211 I432 212 P4332 213 P4132 214 I4132 215 P-43m 

216 F-43m 217 I-43m 218 P-43n 219 F-43c 220 I-43d 

221 Pm-3m 222 Pn-3n 223 Pm-3n 224 Pn-3m 225 Fm-3m 

226 Fm-3c 227 Fd-3m 228 Fd-3c 229 Im-3m 230 Ia-3d 
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Space group Pmna (from International Tables for Crystallography, vol. A). 

 

6. Crystal Chemistry: Part I. Structure determination. Chemical 
bonding. 
Before discussing crystal structures of minerals and their principles, we need to discuss 
how crystal structures are determined in experiment.  
 
Experimental structure determination.  
Crystal structures are determined using diffraction of particles/waves with wavelengths 
comparable to lattice parameters – e.g., X-rays, neutrons, electrons, γ-particles.  
The first three methods are widely used.  
X-rays are scattered by the electron density of the crystal. 
Electrons are scattered by the electrostatic potential. 
Neutrons are scattered by the nuclei.  
 
Each of these methods has certain advantages and shortcomings, e.g.: 

• X-rays are generally most suitable, easy to use (even at high 
pressure/temperature), accurate, allow direct determination of electron density 
distributions (cf. chemical bonding), but not very sensitive for positions of 
atoms with a small number of electrons (especially H), 

• Neutrons are very sensitive to hydrogen atoms, probe directly nuclear positions, 
but require very large samples (~1 cm3). 

• Electrons are strongly absorbed by matter, so used mainly for thin films etc.  
 
Here we focus on the case of X-rays, but other methods (neutrons, electrons, etc.) are 
in principle very similar.  
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Examples of diffraction from a single crystal (left) and from a powder (right). 
 
Bragg and Wulff, independently, have derived the basic condition of diffraction. In a simple 
model, one considers diffraction as “reflection” from an atomic plane. Interference between 
different waves reflected from the same family of planes will be constructive only if phases 
of reflected waves differ by 2π (or 2π  times a whole number), and only in this case 
diffraction will be observed. Mathematically, this condition is given by the following 
equation: 

θλ sin2dn = , 
where λ is the wavelength of the X-ray, θ is the diffraction angle, d the interlayer spacing, and 
n is any integer number.  

 
Illustration of the Bragg-Wulff law (from Yegorov-Tismenko, 1992). 
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Typical X-ray powder diffraction pattern.  
 
Determination of lattice parameters is very simple – positions of diffraction peaks 
directly give interlayer spacings, from which lattice parameters can be calculated using 
simple mathematics. 
 
Determination of atomic positions is less simple – information about atomic positions 
inside the unit cell is contained in the intensities of diffraction peaks. While it is trivial 
to calculate the diffraction pattern for a given crystal structure, solution of the inverse 
problem is mathematically very non-trivial. Many methods have been devised for 
solving this problem, but the most comprehensive solution is given by the so-called 
direct methods invented by J. Karle and H.A. Hauptman, who were awarded for this a 
Nobel Prize. Now, with existing methods and computer programs, crystal structure 
solution is a routine task.  
 
The possibility to solve crystal structures has opened a new era in physics, chemistry, 
biology, and Earth sciences.  
 
Chemical bonding.  
Full theory of chemical bonding is contained in quantum mechanics, but many of its 
aspects can be understood using simplified classical or semiclassical ideas and models. 
Main types of bonding: ionic, covalent, metallic, van der Waals. Hydrogen bonds are a 
special case of ionic/covalent bonding.  
Main concepts: radius (ionic, covalent, metallic, van der Waals), atomic charge, 
electronegativity, polarisability. 

• Radii depend on (i)type of bonding, (ii)valence state, (iii)coordination number, 
(iv)pressure/temperature, (v)spin state for transition metals.  

(Coordination number of an atom = the number of its closest neighbours in the 
structure.)  
E.g., for Si: ionic radii are 0.26 Å (fourfold coordination), 0.40 Å (sixfold 
coordination). Covalent radius: 1.17 Å.  
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Table of ionic radii (Shannon, 1976). CN = coordination number, IR = ionic 
radius, HS = high-spin, LS = low-spin. 
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Pauling’s electronegativity scale. 
H 
2.1 

                

Li 
1.0 

Be 
1.5 

          B 
2.0 

C 
2.5 

N 
3.0 

O 
3.5 

F 
4.0 

Na 
0.9 

Mg 
1.2 

          Al 
1.5 

Si 
1.8 

P 
2.1 

S 
2.5 

Cl 
3.0 

K 
0.8 

Ca 
1.0 

Sc 
1.3 

Ti 
1.5 

V 
1.6 

Cr 
1.6 

Mn 
1.5 

Fe 
1.8 

Co 
1.8 

Ni 
1.8 

Cu 
1.9 

Zn 
1.6 

Ga 
1.6 

Ge 
1.8 

As 
2.0 

Se 
2.4 

Br 
2.8 

Rb 
0.8 

Sr 
1.0 

Y 
1.2 

Zr 
1.4 

Nb 
1.6 

Mo 
1.8 

Tc 
1.9 

Ru 
2.2 

Rh 
2.2 

Pd 
2.2 

Ag 
1.9 

Cd 
1.7 

In 
1.7 

Sn 
1.8 

Sb 
1.9 

Te 
2.1 

J 
2.5 

Cs 
0.7 

Ba 
0.9 

La 
1.1 

Hf 
1.3 

Ta 
1.5 

W 
1.7 

Re 
1.9 

Os 
2.2 

Ir 
2.2 

Pt 
2.2 

Au 
2.4 

Hg 
1.9 

Tl 
1.8 

Pb 
1.8 

Bi 
1.9 

Po 
2.0 

At 
2.2 

Fr  
0.7 

Ra 
0.9 

Ac 
1.1 

              

Lanthanides and Actinides 
Ce-Lu Th Pa U Np-No           
1.1-1.2 1.3 1.5 1.7 1.3           

 
Atomic charge: there are many definitions of atomic charges (from electron density 
distribution, from lattice dynamics, from dipole moments, from electronegativity 
differences, …) which give very different values of charges.  

 
Bader volumes and Bader charges (in parentheses – dynamical 

charges) of high-pressure forms of SiO2 (from Oganov et al., 2005). 
Phase ZSi, |e|  VSi, Å3 ZO, |e| VO, Å3 

Stishovite 3.2 (3.9) a 2.70 -1.6 (-1.9) a 10.24 
α-PbO2 3.2 (3.9) a 2.78 -1.6 (-2.0) a 10.00 

Pa
−

3  3.2 (4.0) a 2.95 -1.6 (-2.0) a 9.40 

 
• Polarisability – measure of polarisation of an atom by an electric field. 

Polarisability defines the strength of van der Waals bonding. Highly polarisable 
atoms and ions (heavy elements, large cations and anions) often prefer layered 
structures, which are stabilised by van der Waals interactions.  

 
Chemical bonding can be studied experimentally (X-ray studies of electron density 
distribution) and theoretically (quantum-mechanical calculations). Thanks to such 
studies, now we have a good understanding of chemical bonding in many compounds.  
Classical pictures of ionic, covalent, and metallic bonding are largely confirmed by such 
studies (van der Waals bonding is not well visible on electron density maps).  
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Theoretical electron density (left) and electron localisation function (right) for a high-
pressure form of SiO2. High density – red, low density – blue. One can see predominantly 
ionic bonding, but with significant covalency of Si-O bonds. From Oganov et al. (2005). 
 

a b  
Covalent bonding: a- experimental deformation density (crystal – sum of atoms) of 
diamond (C) (from Tsirelson et al., 1986), b- theoretical valence electron density of Si. In (a) 
solid contours correspond to positive values, dashed – to negative.  
 

 
Ionic-covalent bonding: Deformation density of corundum (Al2O3) – left, and hematite 
(Fe2O3) – right (from Tsirelson et al., 1986). 
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Ionic bonding: theoretical valence electron density of MgO.  
 
Crystals with directional (covalent) bonding tend to have higher melting points (see Table 
below) and higher hardnesses. As one goes down the Periodic Table, directionality 
diminishes: while carbon and silicon form strongly directional covalent bonds, tin has 
two polymorphs (one metallic and one covalent semiconductor), and lead is a typical 
metal. The decrease of directionality is obvious from the Figure below.  

 
Melting and boiling points of C, Si, Sn, Pb solids, and their bond energies (from Wen, 
Cahill & Hoffmann, 2010).  

 
Energy variation as a function of angle, showing little or no directionality in bonds 
formed by Pb atoms (from Wen, Cahill & Hoffmann, 2010).  
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7. Crystal chemistry: Part II. Structural motifs. Polyhedral 
representation of structures. Close packing. Pauling’s rules. 
Of course, any crystal structure can be described using an exact mathematical language – 
in terms of lattice parameters (three lenghths and three angles for the unit cell) and atomic 
coordinates (usually given in fractions of unit cell dimensions).  
For understanding structures and their properties, we need a more intuitive description. 
According to the dominating structural motif, one can often distinguish between 
molecular structures (e.g., CO2 or realgar As4S4) or structures with isolated groups (e.g., 
most carbonates, phosphates, sulphates, some silicates  – e.g., kyanite Al2SiO5), or with 
rings (e.g., beryl Be3Al2Si6O18), or with chains (e.g., SiS2, chain silicates like enstatite 
MgSiO3, etc.), sheets (e.g., graphite C, micas, brucite Mg(OH)2, post-perovskite form of 
MgSiO3), frameworks (e.g., albite NaAlSi3O8 and other feldspars, chabazite 
CaAl2Si4O12*6H2O and other zeolites). 

a b  
Molecular structures: a) CO2, b) realgar. 

 

 
Kyanite: structure with isolated SiO4 tetrahedra. 
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Beryl: structure with 6-member rings of silicate tetrahedra. 
 

a b  
Chain structures: a) SiS2, b) enstatite. 

a b  
Sheet structures: a) graphite, b) post-perovskite form of MgSiO3.  
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a b  
Framework structures – a) albite, b) chabazite. 
 
When describing crystal structures, we often use (and have already used many times in illustrations 
to this course) polyhedral representation of structures. In many cases this description is clearer than 
the standard ball-and-stick representation. 

a b  
Ball-and-stick (left) and polyhedral (right) representations of the structure of quartz.  
 
Close packing of spheres. It turns out that very many mineral crystal structures can be described on 
the basis of close packing (usually of anions, since they are usually larger than cations). Theory of 
close packing of spheres, initially developed by mathematicians, is therefore widely used in 
crystallography.  
In two dimensions, there is only one way to arrange spheres so as to produce the densest filling: 
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2-dimensional close packing. 
 
In three dimensions, there are many ways to produce the densest packing of spheres (which we call 
close packings), but all of them are based on the densely packed layer illustrated above. Different 
stackings of such layers produce a whole family of different packings having identical density of 
space filling: in all of them, the spheres fill 74.05% of the total volume. In all of these 3D close 
packings each sphere touches 12 other close-packed spheres1.  
Indeed, there are two ways of putting the next close-packed layer: if we denote the original layer 
“A”, these two possibilities for the next layer can be denoted “B” and “C”, respectively. Note that 
two layers of the same type can never be neighbours in a close packed structure (this arrangement 
will not be dense – for greater density, atoms have to be on top of empty space, not on top of atoms). 
Still, there is a great number of possibilities to combine “A”, “B”, and “C” – e.g., 
“|AB|ABABAB…”, “|ABC|ABCABC…”, “|ABAC|ABACABAC…”, or even disordered or long-
period packings. Note that “A”, “B”, and “C” layers have identical geometry – their distinction is 
arbitrary and done only for convenience of labelling different stackings of, in principle, identical 
layers. 

a b  
Alternative ways of stacking the next close-packed layer on top of a close-packed layer: a)layer “B” 
(positions of atoms in this layer are indicated by black squares), c)layer “C” (positions of atoms in this 
layer - white squares).  
 

                                                           
1 The number of touching spheres in close packings in mathematics is called „kissing number“ k, 
which for space dimensionalities between 1 and 8 equals 2, 6, 12, 24, 40, 72, 126, 240. The value for 
24-dimensional space (196560) is also known.   
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Stacking of close-packed layers (from Putnis, 1992). 
 
All close packings have a hexagonal or trigonal symmetry. Only one packing - |ABC| - has a higher 
symmetry: it is easy to see that this actually is a face-centred cubic structure; this packing is therefore 
called “cubic close packing” (structure type of Cu). The |AB| stacking is called “hexagonal close 
packing” (structure type of Mg), |ABAC| is often called “double hexagonal close packing”, 
describing other close packings, we usually mention their symmetry and the number of layers.  

a b  c  
Examples of close packings –a) Hexagonal, b) Double hexagonal, c) Cubic. 
 
If anions make up the close packing, it is important to know which cavities in this packing are 
available for cations. There are “trivial” 2- and 3-coordinate sites, but also 4-coordinate (tetrahedral) 
and 6-coordinate (octahedral) cavities. There are 2 tetrahedral voids and 1 octahedral void per anion. 
In hexagonal close packing both tetrahedral and octahedral voids are “on top” of each other and 
share a polyhedral face – this is is unfavourable if cations are highly charged (because the distance 
between the centres of adjacent voids is relatively small, and Coulombic repulsion will be high).   
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Voids in close-packed structures: a-b)Octahedral, c-d)Tetrahedral, e)Three-coordinate, f)Two-
coordinate. (from Yegorov-Tismenko, 1992) 

 
Location of tetrahedral and octahedral voids in a-b) hexagonal, c-d) cubic close packing (from 
Yegorov-Tismenko, 1992).  
 
Structures based on close packed atomic arrangements are very common among materials with non-
directional bonding: metals, ionic crystals, noble gases. Many mineral structures are based on close 
packing as well. Since close packing is the densest possible arrangement of spheres of identical size, 
one expects close-packed structures to be particularly stable at high pressure. Often this is the case, 
but there are many exceptions. For example, close-packed Mg transforms into a body-centred cubic 
structure at ~50 GPa. This and many other examples should caution against absolutisation of the 
close packing principle: because atoms are not hard spheres, close packing often is a purely 
geometrical, rather than physical, concept.  
 
Pauling’s rules. In 1927, Linus Pauling (then, only 26-years old!) formulated his famous 5 rules of 
stability of ionic crystals.  
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1st rule: ‘A coordinated polyhedron of anions is formed about each cation, the cation-anion 
distance being determined by the radius sum and the coordination number of the cation by the 
radius ratio’. This rule allows one to predict bond distances on the basis of ionic radii tables. Also 
it allows one to understand why in silicates Si atoms have a fourfold coordination (because Si4+ 
ions are small), Al atoms 6-fold coordination (Al3+ ions are larger), and Mg atoms 6-8-fold 
coordination (Mg2+ ions are even larger).  

The basic point is that cations occupying structural cavities, should be large enough to “touch” 
or even “push out” the surrounding anions. Based on this, one arrives at the so-called Magnus-
Goldschmidt rule summarised by the following table: 

Cation coordination number Minimum 
−

+
r

r  

12 1 
8 0.732 
6 0.414 
4 0.215 
3 0.155 

 
Illustration of some common coordination environments (from Nesse, 2000)  

 
2nd rule: ‘In a stable co-ordinated structure the total strength of the valency bonds which reach 

an anion from all the neighboring cations is equal to the charge of the anion’ (Pauling, 1929). The 
bond strength according to Pauling is calculated in a simple way: the valence of the cation divided 
by its coordination number. And according to the rule, the sum of such strengths on each anion is 
equal to the anion’s charge. E.g., in silicates the strength of each Si-O bond is = (valence of 
Si)/CNSi = 4/4 =1. When there are 2 Si-O bonds on one O atom, the total bond strength is 2 – 
equal to the (absolute value of the) charge of O ion, 2. On the other hand, 3 silicate tetrahedra 
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having a common O-atom are forbidden by this rule – such configurations are never observed. 
When we have, e.g., sulphates, two sulphate tetrahedra having a common O-atom would imply the 
total bond strength on the bridging oxygen of 2*6/4=3. This is too different from the needed value 
of 2, and sulphate tetrahedra polymerise only in exceptional circumstances, and never in minerals. 
This simple rule is a very powerful means to understand crystal structures of minerals. Deviations 
from it are known (e.g., andalusite and sillimanite, Al2SiO5), but they never exceed 25%.  

3rd rule: ‘The existence of edges and particularly faces, common to two anion polyhedra in a 
coordinated structure decreases its stability; this effect is large for cations with high valency and 
small coordination number, and is especially large when the radius ratio approaches the lower limit 
of the stability of the polyhedra’. In accordance with this rule, silicate tetrahedra never share faces, 
extremely seldom share edges (e.g., in the metastable fibrous silica SiO2), and prefer either to 
remain single, or share only corners. The rule is not so strict for larger cations – e.g., MgO6-
octahedra in pyroxenes share edges.  

4th rule: ‘In a crystal containing different cations, those of high valency and small coordination 
number tend not to share polyhedra elements with each other’.  

5th rule: ‘The number of essentially different kinds of constituent in a crystal tends to be small’. 
In other words, nature prefers simplicity. Many silicate structures are very complicated, but the 
simplest ones are often the most stable ones.  

Pauling’s rules were originally formulated for ionic crystals (because for ionics they have a 
more or less transparent explanation), but afterwards it was realised that they are perfectly valid for 
significantly covalent crystals as well. Metallic and almost entirely covalent crystals require 
different approaches for the explanation of their structures.  

 
 

8. Crystal Chemistry: Part III. Polymorphism, polytypism. Morphotropy. 
Solid solutions.  
Polymorphism – phenomenon of the existence of several distinct crystalline modifications of 
the same compound. E.g.: graphite and diamond (C), calcite and aragonite (CaCO3), pyrite and 
marcasite (FeS2), etc. Most compounds have many polymorphs at different pressure-
temperature conditions. Polymorphs can be stable or metastable, depending on whether they 
have the lowest free energy at given P-T conditions or not. Since structures of different 
polymorphs are different, their properties can be very different too. By definition, polymorphs 
have identical compositions. 
When one polymorph transforms into another, we talk about a phase transition. Phase 
transformations can be reversible or irreversible. Often one has reversible phase transitions 
with a hysteresis. Phase transitions can be first-order (jumps in volume and entropy) or 
second-order (jumps in thermal expansion, heat capasities, elastic constants). In some cases 
(e.g., cubic-tetragonal transition in BaTiO3) the same transition can be first- or second-order at 
different P-T conditions. Landau has shown that for a second-order transition the two phases 
must be structurally related, and their symmetry groups must conform to certain group-
subgroup relations. An interesting case are structural transitions involving no changes in 
crystal symmetry: these are first-order at low temperatures, but on increasing temperature the 
first-order discontinuity gradually decreases and can disappear completely producing a fully 
continuous transition at high temperatures. Such isosymmetrical transitions are known for Ce, 
SmS, KTiOPO4, and other compounds. On increasing temperature, one usually obtains higher-
symmetry phases, and on increasing pressure symmetry also usually increases, but there are 
more exceptions.  
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a b  c   
Displacive transition: α-quartz (a) to β-quartz (b) at 846 K and a reconstructive transition from 
quartz to coesite (c) at 2.5 GPa. 

 
Thermodynanics of first order transitions are based on the Clapeyron relation: 

dT
dP = 

V
S

∆
∆  ,                                                                (1)                                                    

where ∆S and ∆V are the entropy and volume differences between the phases. This relation is 
valid only for first-order transitions, because for continuous transitions both ∆V and ∆S are 
equal to zero. Using (1) it becomes possible to determine the slopes of the equilibrium lines 
on the P-T phase diagram.  

 
 

A relation, analogous to (1), for second-order transitions was derived by Ehrenfest:  

dT
dP  = 

α∆
∆

TV
CP   ,                                                        (2) 

where ∆CP and ∆α are the jumps of the heat capacity and thermal expansion at the transition. 
However, precise experiments, computer simulations, and modern theories indicate a 
qualitatively different behaviour of the heat capacity – instead of having a finite jump, it 
logarithmically diverges to infinity on both sides of the transition. This ‘λ-behaviour’ 
invalidates the Ehrenfest relation.  
M.J.Buerger (1962) distinguished two main types of phase transitions – those with and without 
changes of the first coordination number. Each of these types was further classified into 
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reconstructive (i.e., requiring formation/breaking of bonds), displacive, order-disorder, 
electronic, etc. transitions. Displacive phase transitions are accompanied by small atomic 
displacements (hence the name), which usually destroy some elements of symmetry. These 
displacement patterns are determined by the eigenvectors of one or more normal modes – the 
so-called soft modes. Order-disorder transitions occur between a low-temperature structurally 
ordered (e.g., having positional order in cation distribution – e.g., microcline KAlSi3O8, and 
orientational order of atomic groups – e.g., NH4Cl) and a high-temperature disordered phase 
(e.g., positional disorder – sanidine K(Al,Si)4O8, or orientational disorder – e.g., high-T 
“CsCl-like” phase of NH4Cl, where due to almost free rotation the NH4

+-group behaves as a 
spherical ion). Electronic transitions are accompanied by a change of the electronic or 
magnetic structure and/or valence state of atoms in the structure; the structure type may or may 
not change in this process. Reconstructive phase transitions, by Buerger’s definition, involve 
breaking/formation of at least some bonds. These transitions are always first order, involve a 
latent heat, and require activation for bond breaking. Order-disorder and displacive transitions 
can in principle be of any order.  

a b  
Phase transitions: (a) isosymmetric electronic transition in SmS, (b) order-disorder transition in 
feldspars.  

a  b  c   
Polymorphs of Al2SiO5: a) kyanite, b) andalusite, c) sillimanite. All transitions between these 
structures are reconstructive and involve changes in coordination numbers.  

 
Polytypism: existence of two or more modifications with structures consisting of the same 
layers, but in different stacking. This is a special case of polymorphism. Since energy 
difference between polytypes usually are very small, often several polytypes coexist in the 
same sample. Most of polytypes in such situations are metastable. Polytypism is extremely 
common in layered structures (micas, graphite, molybdenite,…), but many non-layered 
structures can also be described as polytypic: close-packed structure, Earth-forming 
spinelloids, etc. The most famous example of polytypism is SiC – the “king of polytypes” - 
which has over 60 polytypes structurally characterised already by 1980! 
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a b  
Structures of ringwoodite (a) and wadsleyite (b) – polymorphs/polytypes of Mg2SiO4. 
 

 
Structures of MgSiO3 poymorphs/polytypes: perovskite (a), post-perovskite (d), two 
intermediate polytypes (b,c). Only SiO6 octahedra shown, Mg atoms are omitted for clarity. 
MgSiO3 perovskite is the main mineral of the Earth’s lower mantle and post-perovskite is the 
main mineral of the core-mantle boundary. Arrows show the layers, the displacement of which 
produces all the polytypes.  
 
 
Morphotropy – sudden change of structure type in a series of compounds having the same 
ratio of structural units. E.g., sphalerite ZnS, troilite FeS and oldhamite CaS have the same 
ratio of cations and anions – yet, they belong to three different structure types: sphalerite, 
nickeline, and sodium chloride structure types.  
Many interesting examples of morphotropy can be found by looking at compounds formed 
by atoms from the same column of the Periodic Table, e.g. MCO3 carbonates: 
 
MgCO3: calcite structure, Mg in octahedra 
CaCO3: calcite structure, Ca in octahedra ;  
                                                     CaCO3: aragonite structure, Ca in 9-fold coordination 
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                                                     SrCO3: aragonite structure, Sr in 9-fold coordination 
                                                     BaCO3: aragonite structure, Ba in 9-fold coordination 
 
Ca2+ ion appears to have a radius in between those needed for 6-fold (octahedral) and 9-fold 
coordinations. 
 
Solid solutions, or mixed crystals – crystals of variable composition, which can be 
considered as “solution” of one pure end-member in the other pure end-member. For 
example, olivines (Mg,Fe)2SiO4 are solid solutions between pure end-members forsterite 
Mg2SiO4 and fayalite Fe2SiO4. Mg and Fe atoms in this structure occupy the same structural 
position, with a statistical distribution of Mg and Fe.  
Chemically pure minerals do not exist, and most minerals are in fact solid solutions. 
Understanding solid solutions is crucial also for geochemistry – suitability of an atom as an 
impurity in major minerals determines the geochemical fate of many, especially rare, 
elements. In mantle geochemistry, there is a special term “incompatible element”, indicating 
that a particular element is not concentrated in mantle-forming minerals (e.g., large cations 
like Na+, K+ are incompatible in the mantle and are concentrated in melts – the source of 
magma – rather than in mantle minerals, mainly silicates of Mg).  

  
Illustration of ordered and disordered distributions of two sorts of atoms over positions in a 
simple cubic sttructure (from Putnis, 1992). 
 
Solid solutions can be isovalent (the substituting atoms have the same valence – e.g., Mg2+ 
and Fe2+ in olivines) or heterovalent (their valences are different, and therefore some charge 
compensation is required – e.g., coupled Na+Si4+ - Ca2+Al3+ substitution in feldspars).  
Energetically, solid solutions are always unfavourable – insertion of a foreign atom always 
causes distortions of the lattice. The enthalpy (H=E+PV) of a solid solution is always higher 
than the enthalpy of an isochemical mixture of pure end-members – in other words, the 
enthalpy of mixing ∆Hmix is always positive (see below).  
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Illustration of the enthalpy of mixing for a solid solution (from Putnis, 1992). 
 
Nevertheless, solid solutions are stable at high temperatures – due to the entropy associated 
with atomic disorder. Gibbs free energy (G=H-TS) of mixing can be negative, if the entropy 
factor (TS) outweighs the enthalpy, and this of course happens at high temperatures. On 
decreasing temperature, solid solubility decreases. The line on T-x (temperature-
composition) phase diagram, below which solid solutions decompose, is called solvus (see 
below). Solid solubility is small when the differences in the sizes (e.g., ionic radii) of the 
substituting atoms are large (typically > 15%) or when chemical bonding in the end members 
is very different (e.g., almost purely ionic NaCl and significantly covalent AgCl form very 
limited solid solution series, although radii of Na+ and Ag+ are very similar).   

 
Illustration of the Gibbs free energy of mixing (left), its evolution with temperature and solvus 
line (from Putnis, 1992). 
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Sometimes, especially when the differences between the substituting atoms are too large, an 
intermediate ordered compound may exist. In this case, one has a more complicated phase 
diagram – as in the case of CaCO3-MgCO3 system with an intermediate phase, dolomite 
CaMg(CO3)2. 

 
Phase diagram of the calcite-magnesite system and the ordered structure of dolomite. (from 
Putnis, 1992).  
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9. Structure types of minerals.   
Structure of the elements. Elemental solids, in spite of simple chemical composition, are often 
structurally complex. We can distinguish several situations:  
-metallic elements (these usually have fcc-, hcp-, bcc- structures – but there are exceptions such as 
Mn, Ga, Hg, rare earth elements, actinides) 
-noble gases (fcc-structures, but He crystallises in the hcp-structure) 
-molecular solids (H2, halogens, N2, O2, some forms of phosphorus – P4, and sulphur – S8), chain 
structures (S, Se, Te) and sheet structures (P, As, Sb, Bi) with a gradual transition to 3D-structures 
on increasing degree of metallization (Bi is a semiconductor, but Po is a metal with a unique 
simple cubic structure)   
-non-molecular covalent crystals (B, C, Si, Ge) gradually losing directionality of bonds upon 
increasing degree of metallicity down the column of the Periodic Table (C-Si-Ge-Pb).  
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Many covalent structures of the elements follow the so-called “8-N” rule that the number of nearest 
neighbours for atoms in such structures is equal to 8 minus the number of the column of the 
element in the Periodic Table. E.g., in chain structures of S, Se, Te (VI group) each atom has 2 
neighbours, at the same time 8-6 = 2. Such “8-N” structures are formed if all atoms are connected 
by ordinary covalent bonds – in this case, taking into account the electrons shared in covalent 
bonds, they guarantee the stable 8-electron configuration for atoms. Other examples of such 
structures are P, As, Sb, Bi (V group) with 3 neighbours for each atom, C (diamond), Si and Ge 
(IV group) with 4 neighbours for each atom. If there are multiple covalent bonds, the number of 
neighbours is smaller – e.g., 1 in crystalline oxygen, or 3 in graphite (C).  
Some elements have remarkably complex structures (B, Mn, Ga, actinides). However, most 
elements that can be found as minerals have rather simple structures – fcc, hcp, bcc, diamond, 
graphite. E.g., Fe has bcc, fcc, hcp structures at different P-T conditions. Cu, Ag, Au, Al, Pb have 
the fcc structure. Distorted simple cubic structure is found for As, Sb, Bi. Sulphur (S) has many 
modifications, some consisting of cyclic molecules Sn (n=7,8,9,10,12,18,20), others consisting of 
S∞ chains. At room temperature the most stable phase is orthorhombic, containing S8 molecules. 
Above 95.4 °C, a monoclinic phase is stable – this one consists of the same S8 molecules, but one 
third of them have random configurations (which increases the entropy, thus enabling this phase to 
appear at high temperatures).   

a b c  
Simple metal structures: a) fcc (Cu, Ag, Au, Al, noble gases except He; Fe at high temperature), b) 
bcc (Fe at normal conditions, Na, K, Rb, Cs, V, Cr), c) hcp (Fe at high pressure, He, Mg, Zn).  
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For carbon, there is an interesting form called lonsdaleite, whose structure can be considered as a 
hexagonal polytype of diamond. This mineral, like diamond, exists at high pressures (often as thin 
lamellae within diamond). 

 
Crystal structure of lonsdaleite.  
 
 

a b  
a) Molecular structure of sulphur, with S8 ring molecules. Within the molecules, bonding is covalent, 
between them - van der Waals bonding (from Nesse, 2000). b) Layered structure of graphite with 
covalent bonding within the layers, and van der Waals between them.  
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Structural stability of diamond and graphite (from Nesse, 2000).  
 
An interesting observation has been made by K. Syassen and W. Holzapfel (Germany) and R. 
Nelmes and M. McMahon (U.K.): many elements with simple structures and apparently well-
understood chemical bonding transform into extremely complex crystal structures at high pressure 
– e.g., Li, K, Rb, Cs, Ba, Bi, Sb, etc. This is usually associated with appearance of d-electrons in 
these elements at high pressure, i.e. great changes in chemistry under high pressure. This could 
have interesting geochemical consequences (e.g., K becomes a transition metal at high pressure 
and could be incorporated in larger amounts into the Fe-rich Earth’s core). 

  
Complex “self-hosting” high-pressure structure of Rb(IV) – Schwarz et al. (1999). 
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Illustration of complex structures of some elements at normal pressure. 
 
Another class of rather complex elemental structures is fullerenes, metastable molecular forms of 
carbon, with centres of large Cn molecules (the most stable molecule is C60) occupying positions of 
an fcc-structure. Fullerenes can be easily doped with metal atoms (e.g., K, Rb, Cs) – such doped 
forms are superconductors with relatively high Tc ≈ 30 K. Fullerene discovery in 1985 by H. Kroto, 
R. Curl and R. Smalley earned them a 1996 Nobel Prize in Chemistry.  

a b c  



A.R. OGANOV. CRYSTALLOGRAPHY. 53 

Fullerenes: a) C60, b) C74, c) packing of fullerene molecules in the solid. 
 

Fullerenes can be imagines as a spherical “convolution” of a graphite sheet. One can 
also imagine extended tubular “convolutions” called carbon nanotubes, which have 
been experimentally observed and found to possess very interesting physical 
properties. Carbon nanotubes were discovered in 1952 by Russian scientists L.V. 
Radushkevich and V.M. Lukyanovich, although many “outsiders” to this field believe 
that the discovery was made in 1991 by S. Iijima. Unique electronic properties are also 
possessed by single sheets of graphite – the so-called graphene, experimentally 
separated in 2004 by A.Geim and K.Novoselov. Curiously, the motion of the electrons 
in graphene obeys the laws of relativistic quantum mechanics.   

 

 
Carbon nanotubes. 

 
Many different types of fullerene clusters have been synthesised. Figure below shows 
a mass-spectrum of such clusters, from which it is clear that the most stable 
fullerenes contain 60 and 70 atoms. Some fullerenes are rather small, e.g. C20 or C22, 
others are very large (>100 atoms).  

 
Mass-spectrum of carbon clusters (from Poole & Owens, 2003). 
 
In the structure of fullerenes, there are large voids between the fullerene cages, and these voids can be 
occupied by large alkali metal atoms. Such intercalation compounds are superconductors, and there is 
a clear increase of the critical superconductivity temperature with the size of the intercalating atom.  
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Critical temperature of cubic A3C60 intercalated fullerenes (A=alkali atom) as a function of the 
lattice parameter (from Poole & Owens, 2003). 
 

 
Structures of some sulphides, oxides, halides. Here, there are several dominant structure types: 
I. AX types. 
NaCl-type – cubic close packing of anions (B) with all octahedral voids filled by cations (A). 
Cation octahedra share the edges and the corners. This structure is enormously common among 
ionic, covalent, metallic compounds. Space group Fm3m. 
Examples: Galena PbS, periclase MgO, wüstite FeO (at low pressures Fe-deficient), halite NaCl, 
silvine KCl, also oldhamite CaS, non-minerals CaO, MnO, LiF, RbCl, NaBr, NaI,…   

a b  
Structure of NaCl in a)ball-and-stick and b)polyhedral representations. 
 
CsCl-type – simple cubic structure formed by the anions (B) with cations (A) occupying the 
centres of all cubes. These cation cubes share the faces, edges, and corners. Space group Pm3m. 
Examples: Sal ammoniac NH4Cl, many alloys, high-pressure phases of NaCl-type materials (NaCl, 
KCl, …), some metallic alloys. 
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CsCl structure 
 
NiAs-type – hexagonal close packing of anions (B) with all octahedral voids filled by cations (A). 
Cation octahedra share the faces and the edges and the corners. Face-sharing is disfavoured in ionic 
crystals, so this structure is adopted only by covalent and metallic crystals. Face-sharing is 
favourable in cases where is a cation-cation bond across the shared face (as it happens in troilite 
FeS and nickeline NiAs). Formally, NaCl- and NiAs-type structures can be considered as 
polytypes, but because of different chemical bonding types needed for these two structures they 
almost never exist for the same compound. Space group P63/mmc. 
Examples: Nickeline NiAs, troilite FeS (usually Fe-deficient), many sulphides, phosphides, 
arsenides, …  

 
NiAs structure, with octahedral drawn around Ni atoms. 
 
Zincblende- (sphalerite-)type – cubic close packing of the anions (B) with half of the tetrahedral 
voids occupied by the cations (A). Cation tetrahedral share only the corners. Common structure for 

covalent crystals. Space group F
−

4 3m. 
Examples: Sphalerite ZnS, ordered superstructure – chalcopyrite CuFeS2,…  

a b  
Structures of a) sphalerite, b) wurtzite.  
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Wurtzite-type – hexagonal close packing of the anions (B) with half of the tetrahedral voids 
occupied by the cations (A). Cation tetrahedral share only the corners. Common structure for 
covalent crystals. Energetically similar to sphalerite, these two structures can be considered as 
polytypes. P63mc. Wurtzite-type crystals can have interesting piezoelectric properties. Under 
pressure sphalerite- and wurtzite-structured crystals often adopt the NaCl-type structure. Wurtzite 
structure is derived from the lonsdaleite structure, whereas sphalerite structure is derived from the 
diamond structure.  
Wurtzite ZnS, greenockite CdS, zincite ZnO, ... 
 
 
II. AB2 types. 
Quartz-type – Three-dimensional framework of corner-sharing SiO4-tetrahedra. This structure is 
not very dense and easily transforms into denser structures (coesite, stishovite, …) under pressure.  
Examples: Quartz SiO2, berlinite AlPO4, α-GeO2, …  

a b  
Structure of quartz: a) low-temperature trigonal α-quartz, b) high-temperature hexagonal β-quartz 
(stable above 573 °C). 
 
Quartz-type materials are valuable piezoelectric materials used, e.g. in watch manufacturing.  

 
Low-pressure  phase diagram of SiO2.  
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High-pressure phase diagram of SiO2 (Oganov et al., 2005). 
 
Rutile-type – tetragonal structure that can be viewed as a distorted hexagonal close packing of the 
anions (B) with half of the octahedral voids occupied by the cations (A). Cation octahedral share 
edges and corners. Columns of edge-sharing octahedral chains running along the c-axis can easily 
be seen in this structure; these columns define anisotropy of many properties of rutile-structured 
materials.  
Examples: Rutile TiO2, pyrolusite MnO2, stishovite SiO2, sellaite MgF2, …  
Distorted orthorhombic variants – marcasite FeS2, CaCl2. In marcasite, one has molecular S2-ions, 
while the CaCl2 structure is a distortion towards more regular close packing of anions (hence more 
stable under high pressure – e.g., rutile-structured stishovite SiO2 at ~50 GPa transforms into a 
CaCl2-type phase).  

a b c  
Rutile structure: a) howing octahedral columns running along c-axis, b) view perpendicular to c-
axis, c) the same view for the orthorhombic CaCl2 structure. 
 
Pyrite-type: the structure of pyrite (FeS2) has Fe atoms and S2 groups occupying positions of Na 
and Cl, respectively, in the rocksalt structure. Since the symmetry of persulphide group S2 is lower 

than the spherical symmetry of the Cl ion, pyrite has a lower symmetry – Pa
−

3  instead of Fm
−

3m. 
Persulphide-ion creates a strong crystal field (stronger than sulphide-ion S2-), therefore pyrite 
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contains Fe2+ in the non-magnetic low-spin state, whereas pyrrhotine FeS has Fe2+ in the high-spin 
state, which determines the magnetic properties of pyrrhotine.  
When the distance between the anions (e.g., S-S) is too large to describe it as a chemical bond, one 
has the PdF2-subtype. The high-pressure form of SiO2 belongs to this sub-type, i.e. has no O-O 
bonds (Oganov et al., 2005). In pyrite- and PdF2-type crystals, the cations are octahedrally 
coordinated by the anions.  
Examples: Pyrite FeS2, MnS2, CoS2, PdF2, high-pressure form of SiO2… 

a b  
Pyrite structure: a) polyhedral, b) ball-and-stick representations. 
 
CdI2-type – can be described as close packing of the anions where ½ of the octahedral voids are 
occupied (in alternating layers) by the cations. Layered structures are usually favoured in materials 
with highly polarisable anions, such as I-, OH-, S2-, etc. Different polytypes with very close 
energies exist for this structure type. Brucite-type layers exist in many other structures, e.g. 
chlorites.  
Examples: Brucite Mg(OH)2, … 

 
Structure of brucite, showing Mg-centred octahedra.   
 
Another structure type of hydroxide minerals, that of goethite FeO(OH), is shown below. This 
structure can be derived from the rutile type (like the hollandite structure, see below). It has Fe3+ in 
the octahedral coordination, and the structure is characterised by the presence of hydrogen bonds: 
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Structure of goethite, showing Fe-centred octahedra.  
 
Molybdenite-type – unusual layered structure that has Mo atoms in the trigonal prismatic (6-fold) 
coordination.  
Examples: Molybdenite MoS2,… 

 
Structure of molybdenite. Polyhedra (trigonal prisms) are drawn around Mo atoms.  
 
 
Fluorite-type – This structure can be described as cubic close packing of the cations with the 
anions filling all the tetrahedral voids in it. The coordination number of the anions is then 4 
(tetrahedral coordination), of the cations – 8 (cubic coordination). Alternatively, the structure can 
be described as a checker-board arrangement of cation-centred cubes.  
Examples: Fluorite CaF2, SrF2, BaF2, uraninite UO2 (usually U-deficient),… 

a b  
Fluorite structure in the a) polyhedral and b) ball-and-stick representations. 
 
Hollandite-type – This structure is derived from rutile, but is different in that here there are double 
octahedral chains running parallel to c-axis, and the channels are much larger and can now 
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incorporate large cations (Ba2+, Pb2+,…) making such minerals interesting as sources of these 
elements, as possible materials for radioactive waste disposal, and as possible hosts of such 
elements in the Earth’s lower mantle – at high pressures corresponding to the lower mantle, 
microcline KAlSi3O8 transforms into a hollandite-type phase that could be an important mantle 
mineral (Madon et al., 1989).   
Cation-stuffed forms of MnO2 (hollandite Ba(Mn4+,Mn2+)8O16), high-pressure KAlSi3O8,… 

 
Structure of hollandite, showing Mn-centred octahedra.  
 
CO2-type – molecular structure with centres of the CO2 molecules occupying positions of an fcc 
lattice. Geometrically, this structure type is related to the pyrite and fluorite structure types: all 

these structures have the space group Pa
−

3  with the cations occupying positions of an fcc-lattice, 
and the only difference is in the oxygen atom coordinate xO: ~0.1 in the CO2-type, 0.25 in the 
fluorite type, ~0.34-0.36 in the PdF2 sub-type, and 0.37-0.41 in the pyrite type.  

 
Structure of CO2.  
 
Ice and water. At low pressures and temperatures, ice Ih has the structure, where O occupy the 
same positions as C atoms in the structure of lonsdaleite, with H atoms in between and forming 
hydrogen bonds. This structure has large empty hexagonal channels, and therefore has a low 
density. When ice melts, these channels are destroyed, and as a result water has a slightly greater 
density than ice (which is unusual, since in most other cases solids are denser than liquids) – hence, 
ice can float on water.  
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Structure of ice Ih. Only the positions of oxygen atoms are shown (red spheres). This structure 
belongs to the structure type of lonsdaleite (“hexagonal diamond”), there is also another structure 
(ice Ic) belonging to the cubic structure type of diamond.  
 

Did you know how clouds are dispelled? The method for doing so (first invented by Irving Langmuir, 
and the modern version of the method created by Bernard Vonnegut (brother of novelist Kurt Vonnegut)) is based 
on the fact that clouds contain supercooled water vapor (i.e. vapor below the freezing temperature, but unable to 
crystallize due to difficulties of nucleation of the crystalline phase) and involves incorporation of “seeds” into 
clouds. B.Vonnegut proposed to seed clouds with AgI – which has the same (lonsdaleite or wurtzite) structure as 
ice Ih, and very similar lattice parameters. This enables ice crystals to grow on AgI substrate (phenomenon known 
as epitaxy), leading to an avalanche-like crystallization of ice and dissolution of clouds. AgI is used mainly for hail 
suppression, while other techniques are used for enhancement of rainfall. Crystallography of ice lfigured in Kurt 
Vonnegut's novel Cat's Cradle. 

 
On increasing pressure, a large number of other, denser structures are formed. Ice X is the highest-
pressure phase known and has very strong symmetrical hydrogen bonds (in most cases, except for 
the strongest hydrogen bonds F-H…F, hydrogen bonds are very asymmetric and relatively weak). 
Water, together with NH3 and CH4, is a very important component of the giant planets Uranus and 
Neptune. 
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Phase diagram of H2O (from de Pater and Lissauer, 2001).  

 
III. A2X3 types.  
Corundum-type – in corundum Al2O3, one has hexagonal close packing of the O atoms, with 2/3 
of the octahedral voids occupied by the Al atoms.Al-centred octahedra share faces, edges and 
corners. Ilmenite (FeTiO3) structure is a superstructure of the corundum structure with doubling of 
the c parameter: Fe and Ti occupy octahedral positions in alternating layers.  
Corundum Al2O3, hematite Fe2O3, escolaite Cr2O3, ilmenite FeTiO3, akimotoite MgSiO3… 

 
Structure of corundum, showing Al-centred octahedra.  
 
IV. ABO3 types. 
Perovskite-type – in perovskite CaTiO3, one has corner-sharing Ti-centred octahedral, with Ca 
atoms occupying large cages formed by the octahedra. Ideal perovskite structure is cubic (below, 
left: SrTiO3 at room temperature, CaSiO3 at mantle conditions), but for  most compounds the 
structure is distorted to tetragonal (SrTiO3 at low temperatures, CaSiO3 at room temperature), 
orthorhombic (below, right: MgSiO3 in the lower mantle), or one of many other variants.  
MgSiO3 perovskite makes up ~75 vol.% of the Earth’s lower mantle (equivalent to ~40 vol.% of 
the entire Earth (!), this is the most abundant mineral in the Earth), and CaSiO3 perovskite makes 
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~5 vol.% of the lower mantle. Some perovskites (e.g., NaMgF3) are good ionic conductors of 
electricity. In fact, the same could be true for MgSiO3 perovskite in the mantle, and this was put 
forward as a possible explanation for the high electrical conductivity of the lower mantle inferred 
by geophysicists (Constable & Constable, 2004). Most high-temperature superconductors contain 
layers of perovskite structure. Finally, many perovskites, due to the proximity of numerous phase 
transitions, possess enormous dielectric constants and are good ferroelectric materials (e.g., 
BaTiO3).  
Perovskite CaTiO3, lueshite NaNbO3, perovskite-type MgSiO3 and CaSiO3, SrTiO3, BaTiO3, 
NaMgF3,...  

 
Perovskite-type structures: cubic, tetragonal, orthorhombic (from left to right). Many other 
variations of this structure type are known.  
 
CaIrO3-type – unusual layered structure with Ir-centred octahedra forming layers, between which 
Ca atoms (in 8-fold coordination) are sandwiched. Until recently, this structure was known only for 
a handful of synthetic compounds, but recently it was found (Ono et al., 2004; Oganov & Ono, 
2004, 2005; Murakami et al., 2004) at high pressure in several important systems (high-pressure 
forms of Fe2O3, Al2O3, MgSiO3) 

 
Structure of MgSiO3 post-perovskite (structure type CaIrO3), showing layers of Si-centred octahedra.  
 
V. AB2X4 types.  
Spinel-type – in spinel MgAl2O4, O atoms form cubic close packing, Mg atoms occupy 1/8 of the 
tetrahedral sites, and Al atoms – ½ of the octahedral ones. This structure is adopted by many 
minerals and compounds. From the technological point of view, many spinels are interesting 
magnetic materials (ferrites) and are used in magnetic tapes. Ringwoodite Mg2SiO4 is the main 
mineral of the Earth at depths 520-670 km.  
Spinel MgAl2O4, magnetite Fe3O4, chromite FeCr2O4, ringwoodite Mg2SiO4,… 
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Structure of spinel, showing Al-centred octahedra and Mg-centred tetrahedra.  
 
 
Structures of some borates, carbonates, phosphates, sulphates. The main features are: 

• Carbon only trigonal CO3-groups in carbonates.  
• Phosphates and sulphates have tetrahedral PO4

3- and SO4
2- ions, respectively.  

• In carbonates, phosphates, sulphates, anion groups are isolated, i.e. do not share even 
corners with each other.  

• Borates are more complicated: they can have both BO3
3- and BO4

5- anions, and these very 
often share corners forming complex polymeric anions.  

• This ability/inability to polymerise can be understood from the II Pauling’s rule, e.g.: 
Valence strength of a P-O bond in a PO4-tetrahedron is 5/4. If there were two tetrahedra sharing 
one oxygen atom, the sum of valence strengths on that atom would be 2*5/4=2.5, which is 
significantly different from the valence of the oxygen atom (2) and therefore unlikely.  
On the other hand, the bond strength in a BO3-triangle is 3/3=1, and in a BO4-tetrahedron it is ¾. 
Therefore, it is possible to have corner sharing of two BO3-triangles (the sum of bond strengths on 
O atom is exactly 2), two BO4-tetrahedra (sum of 1.5 – the rest is easy to make up by additional 
cations) or one triangle and one tetrahedron (bond strength sum of 1.75 – again easily compensated 
by additional cations).  
Since chemically and structurally borates, carbonates, phosphates and sulphates are extremely 
diverse, while their abundance is relatively low, only a few structure types are illustrated below. 

a b  a– 
calcite, b – aragonite (CaCO3). 
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Structure of dolomite CaMg(CO3)2. 

 
Structure of inyoite Ca2B6O6(OH)10·8 (H2O). 

a b  
Structures of a) apatite Ca5(PO4)3(OH,F,Cl), b) barite BaSO4. 
 
Crystal chemistry of silicates. 
Silicates dominate the composition of the Earth’s crust and mantle. Crystal chemistry of silicates is 
a particularly fascinating subject, because the variety of structures of silicates is almost unlimited. 
This is due to a combination of two factors:  
1) silicate tetrahedra [SiO4] can polymerise, forming polyanions – in the form of chains, sheets, 
and frameworks,  
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2) silicate polyanions are incredibly flexible and can easily adjust to the cations – hence the 
enormous diversity of silicate polyanions (a few hundreds are known) and silicate structure types 
(many hundreds).  
The ability of silicate tetrahedra to polymerise is remarkable, especially compared to sulphates and 
phosphates, in which the anion tetrahedra [PO4] and [SO4] almost never polymerise. Borates, on 
the contrary, also have a huge variety of polyanions. Why? The answer, as we have seen above, is 
given by Pauling’s second rule, from which it follows that at most two SiO4-tetrahedra can share a 
particular corner. Three silicate tetrahedra having a common O-atom are forbidden by this rule and 
are never observed. Sometimes the tetrahedra have no common vertices with each other (as it 
happens in orthosilicates) – in this case other cations must satisfy the balance of valence strengths.  
Pauling’s rules were originally formulated for ionic crystals (because for ionics they have a more 
or less transparent explanation), but afterwards it was realised that they are perfectly valid for 
significantly covalent crystals as well. Metallic and almost entirely covalent crystals require 
different approaches for the explanation of their structures.  
Now let us discuss the second major structural feature of silicates – the remarkable flexiblity of 
silicate polyanions. The Si-O bonds are very rigid, so at first the idea that silicate polyanions adjust 
themselves to the cations looked strange when initially proposed by a Russian crystallographer 
N.V. Belov. Eventually it proved to be the only explanation of the structural features of silicates. 
According to Belov, silicate polyanions are formed when a large cation is present – it would be 
difficult for a single tetrahedron to grip the large atom. Larger polyanions, on the contrary, can 
‘prepare’ a cavity of the necessary size for any cation, however large. This is particularly clear in 
zeolite minerals or feldspars, where there are large cations such as Na+, K+, Ca2+, Sr2+, etc. in the 
large cavities of the aluminosilicate framework. Silicate polyanions also adjust themselves to the 
cation motifs – e.g., to the layers of cation octahedra in micas – parameters of the silicate sheets in 
micas are completely controlled by the dimensions of the octahedral layer. 
The incredible flexibility of the silicate polyanions comes from the flexible Si-O-Si angles: as 
quantum-mechanical calculations of G.V. Gibbs and co-workers (1980s-1990s) have shown, there 
is almost no energy cost associated with changing this angle between 120º and 180º. These 
calculations gave a clear rationalisation to Belov’s observation, and allow us to understand many 
fundamental features of silicate minerals – their structures, dynamics, behaviour under pressure, 
and phase transitions. 



A.R. OGANOV. CRYSTALLOGRAPHY. 67 

 
Energy change due to the change of Si-O-Si angle in silicates (and Si-S-Si angle in analogous 
sulphur-containing materials). One can see that the energy is almost insensitive to the Si-O-Si 
angle. (Gibbs et al., series of works in 1980-s).  
 

a.   b.  
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 c. d.   

e.    f.  
 
Some silicate crystal structures: a) Garnets A2+3B3+2[SiO4]3 (A=Ca, Mg, Fe; B=Al, Fe, Cr) 
(orthosilicate, i.e. with isolated silicate tetrahedra),  
b) Hemimorphite Zn4Si2O7(OH)2·(H2O) (diorthosilicate, i.e. with paired tetrahedra),  
c) Wollastonite CaSiO3 (chain silicate),  
d) Amphibole (chain silicate) A0-1B2Y5[Si8O22](OH,F)2 [A=Ca, Na, K; B=Ca, Fe, Li, Mg; Y=Al, Cr, Fe, 
Mg] 
e) Mica (sheet silicate) AB2-3[Si4O10](OH,F)2 [A=K, Na; B=Al, Cr, Fe, Li, Mg] 
f) Zeolite stilbite NaCa4[Al8Si28O72] ·30(H2O) (framework silicate). 
 
 
 
 
 
 
Orthosilicates Diorthosilicates Ring  

Silicates 
Chain  
silicates 

Sheet  
Silicates 

Framework  
silicates 

Zircon Hemimorphite Beryl Pyroxenes Micas Feldspars 
Garnets Thortweitite Benitoite Pyroxenoids Talc Zeolites 
Olivine Wadsleyite  Amphiboles Chloritoids  
Ringwoodite   Biopyriboles Clays  
Kyanite, 
andalusite, 
(sillimanite) 

     

 
 
The degree of polymerization of the silicate anions depends on the concentration of SiO2 in the 
system – the more silica is present, the greater extent of polymerization. Belov’s principle implies 
that large cations (Na+, K+, Ca2+, Sr2+, Ba2+, Pb2+, …) will be present in such highly polymerized 
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silicates. The two trends happen at the same time during magmatic crystallization: it turns out that 
orthosilicates usually have very high melting temperatures, and the melting temperature goes down 
with the increase of degree of polymerization. Therefore, orthosilicates containing smaller cations 
and having higher melting temperatures will crystallize first. Such silicates (e.g., olivine) are the 
dominant minerals of the upper mantle and of mafic/ultramafic rocks. After their crystallization 
magma becomes more enriched in SiO2 and in large cations (which are “incompatible” in mantle 
minerals and thus prefer to stay in the melt), and on decreasing temperature more and more 
polymerized silicates crystallize – pyroxenes, amphiboles, micas, feldspars, quartz. Studies of 
magmatic crystallization and mineral reactions (occurring between the already crystallized 
minerals and silica-enriched melts) have resulted in the so called Bowen reaction series, which has 
the form of a “fork” with two branches, one starting with olivine and one beginning from Ca-
feldspar anorthite.  

 
Illustration of the Bowen Reaction Series (figure courtesy of S. Dutch).  
 
 
At high pressure, crystal chemistry of silicates changes in that it becomes based on six- and (very 
rarely) five-fold coordinated Si. High-pressure crystallography is the subject of next chapter; here 
we discuss structures of some of the most important silicate minerals.  
 
Orthosilicates: zircon ZrSiO4, garnets A3B2(SiO4)3 [A=Ca, Mg, Fe; B=Al, Fe, Cr], olivine and 
ringwoodite (Mg,Fe)2SiO4, Al2SiO5 polymorphs. These minerals are rather dense and hard and 
have high melting temperatures; olivine even can be described as based on hexagonal close 
packing of oxygen atoms and ringwoodite has a cubic close packing. According to Belov’s 
principle, only relatively small cations can form orthosilicate structures – large cations prefer 
polysilicate constructions.  
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Olivine and garnet, along with chain silicates from the pyroxene group, are the main minerals of 
the Earth’s upper mantle (24-410 km), whereas ringwoodite is the major mineral between 520-670 
km depths. Ringwoodite has the spinel structure type.  
Kyanite, andalusite and sillimanite are important metamorphic minerals, kyanite is stable in the 
upper parts of the Earth’s mantle.  
 

a b  

c d e  
a- zircon, b – olivine, c- kyanite, d- andalusite, e- sillimanite.  
 
 
Diorthosilicates: wadsleyite. Only wadsleyite is a major Earth-forming mineral, it is the main 
phase of the Earth’s mantle between 410 and 520 km depths. Its structure is related to spinel (can 
be considered as its polytype – see above) and is often called β-spinel. It has been found that 
wadsleyite structure can incorporate significant amounts of water (up to about 0.1%), thus making 
the Earth’s transition zone a possible reservoir of water inside the Earth. Wadsleyite has been 
discovered in meteorites.  
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Crystal structure of wadsleyite. 
 
Ring silicates: beryl Be3Al2Si6O18, benitoite BaTiSi3O9. SiO4-tetrahedra can be easily joined in a 
large possible variety of rings, from the smallest 3-membered to very large 12-membered or even 
larger. 

a b  
Structure of a) beryl, b) benitoite. 
 
Chain silicates: pyroxenes, pyroxenoids, amphiboles, biopyriboles.  

Pyroxenes will be discussed in a greater detail to provide an illustration of many general concepts 
that we have encountered before.  
Pyroxenes AB[SiO3]2 [A=Ca, Fe, Li, Mg, Mn, Na; B= Al, Cr, Fe, Mg, Mn] - their structure is 
based on the cubic close packing of the oxygen ions – this explains the relatively high density of 
pyroxene minerals and pyroxene-bearing rocks, as well as their stability in the upper mantle of 
the Earth. The chemical formula is ABSi2O6. The pyroxene structure contains silicate chains 
[SiO3] and two types of cation positions – M1 (octahedrally coordinated) and M2 (with an 
octahedral or 7-fold or 8-fold coordination). The M1 site is smaller and more regular; the M2 site 
therefore is more convenient for larger ions (because of the size of the site) and transition metal 
ions (which sometimes prefer distorted coordinations).  
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a. b.      

c.  
Pyroxene structure. a) Chains of silicate tetrahedra run perpendicular to the plane of the drawing. 
There are two types of cation sites in this structure – M1 (shown by octahedra) and M2 (for M2 
only bonds to oxygens are shown). b) View of the silicate chain (blue). Purple octahedra M1 
positions, turquoise irregular polyhedra M2 positions. c) Single SiO3 chain. 
 
The following pyroxenes are of importance – either as abundant rock- and Earth-forming 
minerals, or (spodumene) as industrially important materials: 
 
Enstatite MgSiO3 
Ferrosilite FeSiO3 
Diopside CaMgSi2O6 
Hedenbergite CaFe+2Si2O6 
Aegirine NaFe+3Si2O6 
Jadeite NaAlSi2O6 
Spodumene LiAlSi2O6 
 
Often, a distinction is drawn between clinopyroxenes (monoclinic) and orthopyroxenes 
(orthorhombic). Solid solutions are very common within (and much less between) these families.  
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On slow cooling we get exsolution of cpx from opx and vice versa. This can proceed in several 
stages in pigeonites and produces lamellar structures. Careful study of exsolution phenomena in 
pyroxenes (by X-ray or transmission microscope methods) has the potential to yield a great deal 
of information about the thermal histories of exsolved pyroxenes.  
 
Pyroxenes can adopt many different space groups depending on cation sizes, silicate chain 
configuration, and possible ordering of the cations. The pressure-induced C2/c-Pbca transition in 
(Mg,Fe)SiO3 pyroxenes (which are very abundant in the Earth’s upper mantle) at ~7 GPa is 
thought to be responsible for the seismic discontinuity at the 220 km depth. This is one of a 
number of impressive examples of the link between crystallography and geophysics, between 
microscopic structure and macroscopic and even global behaviour and properties of materials.  
There is a size limit for M-cations in pyroxenes. One of such criteria is simply given by the ionic 
sizes necessary to form the required coordination polyhedra – in pyroxenes, octahedral 
coordination for M1 cations and 6-8-fold coordination for M2. Magnus-Goldschmidt rules 
require the ratio of ionic radii of the cation and anion to be between 0.414 and 0.732 for the 
cation to have an octahedral coordination, and between 0.732 and 1 to be 8-coordinated. With a 
table of ionic radii at hand, we can immediately say that Al3+, Mg2+, Fe2+ and Fe3+ would be able 
to adopt the octahedral coordination, while Si4+ is too small and K+ is too big for that (Note, 
however, that anions are usually more compressible than cations, and at high pressures the 
cation/anion radius ratio increases and the cations generally adopt higher coordination numbers – 
e.g., Si4+ becomes 6-coordinate).   
Let’s  look at a series with increasing radius of the M-cation in pyroxenes: 
MgSiO3 → FeSiO3 → MnSiO3 → CaSiO3 
The former two minerals are pyroxenes, while the latter two are not. Pyroxmangite and rhodonite 
(MnSiO3) and wollastonite (CaSiO3) are pyroxenoids; their structures are similar to the pyroxene 
structure, but differ in the cation motif and configuration of the silicate chain, which has 3 
tetrahedra per period in wollastonite, 5 in rhodonite, and 7 in pyroxmangite. This is a typical case 
of morphotropy.  
Pyroxenoids. Because of the restriction on the size of the M1-cation, many potentially pyroxene 
compositions adopt one of a number of different, but related pyroxenoid structures. Here is a list 
of pyroxenoid minerals classified by the length (number of tetrahedra in a repeat unit) of the 
silicate chain: 
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Pyroxenoid subfamily  
3 chains supergroup 
Wollastonite CaSiO3 
Bustamite CaMn+2Si2O6 
4 chains group 
Suzukiite BaVSi2O7 
5 chains group 
Rhodonite MnSiO3 
6 chains supergroup 
Chkalovite Na2BeSi2O6 
7 chains group 
Pyroxferroite (Fe,Ca)SiO3 
Pyroxmangite MnSiO3 
12 chains group 
Alamosite PbSiO3 
 
There is a correlation between the M1-cation size and configuration of the silicate chain! As 
pressure increases, M1-O distances contract easier than the Si-O bonds, and it becomes easier to 
match them in a pyroxene structure. As pressure increases, MnSiO3 adopts the following 
structures (Putnis, 1992): rhodonite (5 tetrahedra per period; room-pressure phase) -> 
pyroxmangite (7 tetrahedra per period; stable at ~4 GPa) -> clinopyroxene-like phase (2 
tetrahedra per period; stable at > 6 GPa).   
 

 
Relation between pyroxenes (a) and pyroxenoids (b-e): a) clinopyroxene, b) ferrosilite III, c) 
pyroxmangite, d) rhodonite, e) wollastonite. (after Liebau, 1985).  
 
Amphiboles. This group of minerals is characterized by complex crystal structure containing 
double silicate chains. Amphiboles have wide variations of the chemical composition with the 
ubiquitous presence of solid solutions, the most important minerals are:  
Actinolite-tremolite solid solutions Ca2(Mg,Fe)5Si8O22(OH)2 
Antophillite - orthorhombic (Mg,Fe)7Si8O22(OH)2 
Grunerite-cummingtonite solid solutions – monoclinic (Fe,Mg)7Si8O22(OH)2 
Arfvedsonite Na3(Fe,Mg)4FeSi8O22(OH)2 
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Biopyriboles. Look closely at the crystal structures of a pyroxene, an amphibole, and mica 
Doubling the pyroxene silicate chain, we get the amphibole silicate chain. Sticking together such 
chains we get the mica silicate sheet. The same relations transform the octahedral cation motifs 
of these minerals. These relations become the basis of modular description of these structures. In 
principle, we can easily construct intermediate structures containing an arbitrary number of 
pyroxene chains in a band. These structures, forming a continuum between the pyroxene, 
amphibole, and mica structures types, are called biopyriboles (from ‘bio’ – biotite (mica), ‘pyr’ – 
pyroxene, and ‘bole’ – ‘amphibole). The octahedral cations in pyroxenes, amphiboles, and micas 
are typically Mg, Fe, Al.  

a b c  

d  
Structures of a) pyroxene, b) amphibole, c) mica, d) biopyribole. The biopyribole structure 
corresponds to the so called “21 clinopyribole” containing modules of pyroxene and amphibole 
structures (Yang et al., 2001).  
 

Sheet silicates: micas, clays, talc Mg3Si4O10(OH)2, pyrophyllite Al2Si4O10(OH)2, chlorites.  
There is an enormous diversity of sheet silicates, to a large extent because in such structures one 
often has polytypes and hybrid mixed-layered structures.  
 
Kaolinite is a prototype clay mineral. Pyrophillite and talc have similar structures, except that 
octahedral cations are divalent in talc (Mg2+) and trivalent in pyrophyllite (Al3+). Chlorites have 
an additional layer of atoms between the “talc layers”: this can be represented as a brucite layer 
Mg(OH)2.  
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a b  

c d e  
Sheet silicated: a) mica, b) chlorite, c) pyrophyllite, d) talc, e) kaolinite Al2[Si2O5](OH)4.  
 
An important issue is commensurability between the octahedral and tetrahedral sheets. When 
commensurability is not perfect, significant strains occur in the structure. In chrysotile-asbestos 
Mg3[Si2O5](OH)4, because of these strains, the mineral itself is found in the form of thin tubes 
~10 unit cells thick. Because of this, asbestos has a large surface area and can act as a catalyst 
for various reactions – hence its cancerogenic properties.  
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Chrysotile-asbestos. 
 

Framework silicates and aluminosilicates: feldspars, zeolites.  
Feldspars: 
Two main solid solution series exist in feldpars: 
Plagioclases: albite NaAlSi3O8 - anorthite CaAl2Si2O8. 
Alkali feldspars: (microcline, orthoclase, sanidine) KAlSi3O8 – albite NaAlSi3O8. 
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Structure of albite NaAlSi3O8. Green ellipsoids show the positions of Na atoms and their 
amplitudes of thermal vibrations.  
 
At high temperatures, in many feldspars Al and Si are statistically distributed over tetrahedral 
framework-forming positions, but on slow cooling the distribution of these atoms becomes 
ordered, which leads to symmetry lowering. Fast cooling can keep the high-temperature disordered 
structure. Among K-feldspars, low-temperature triclinic microcline has nearly complete Al-Si 
ordering, monoclinic orthoclase has some positions preferred by Al and some by Si, but within 
each position the Al-Si distribution is statistical, and high-temperature sanidine has practically 
complete Al-Si disorder. The degree of Al-Si order is determined by the speed of cooling of 
magmatic rocks after their crystallization. Therefore, studying Al-Si ordering in feldspars can be 
used to determine the cooling history of rocks containing feldspars.  
 
Zeolites: 
Framework silicates, the structure of which contains large cages that can incorporate water 
molecules and/or large cations. Because of their peculiar structures, zeolites are widely used as 
materials for ion exchange, for water purification, catalysis, and hydrocarbon cracking. There is 
now a whole industry of zeolite synthesis. Which is more, scientists have learned to synthesise new 
zeolite structures with the needed cage sizes.  
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a b  

c  
a) analcime NaAl(Si2O6)·(H2O), b) stilbite NaCa4Al8Si28O72·30(H2O), c) mordenite 
(Ca,Na2,K2)Al2Si10O24·7(H2O). 
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10. Crystallography at extreme conditions. 
Units of pressure: The standard unit is 1 Pascal (Pa), which corresponds to a very low 
pressure. Often pressure is given in gigapascals (GPa), kilobars (kbar) or megabars (Mbar). 1 
bar is equal to the standard atmospheric pressure, approximately 105 Pa.  
1 bar = 1 atm ≈ 105 Pa. 
1 Mbar ≈ 100 GPa  
1 GPa ≈ 10 kbar 
Most of material inside the Earth experiences high pressures (up to 3.65 Mbar) and 
temperatures (up to 6000 K), and these extreme conditions of pressure and temperature 
greatly alter the structures and properties of materials.  
 
Did you know that: 
1) At the lowest point of the oceanic floor (Mariana Trench, 11 km depth) pressure is > 1 

kbar. Amazingly, some forms of life survive this pressure.  
2) According to computer simulations, shock pressure exerted by the stone thrown by David 

into Goliath’s head, should have been >1.5 kbar in order to break Goliath’s head.  
 
There are several approaches to the study materials at such extreme conditions: 1) static 
compression (e.g., in diamond anvil cells pressures up to ~4 Mbar can be generated), 2) 
shock-wave compression (for very short times, pressures of ~100 Mbar can be achieved), 3) 
theoretical simulations (see Chapter 12).  
Thermodynamics.  
The Gibbs free energy: 

G = E + PV – TS 
always attains the minimum in the equilibrium state. The increase of pressure always leads to 
a decrease of volume, and increase of temperature always raises the entropy. Phase 
transitions under pressure lead to denser phases, temperature-induced transitions lead to 
high-entropy (often structurally disordered) phases. The effect of temperature on crystals is 
usually not as dramatic as the effect of pressure, in other words the TS-term (even at the 
melting point) is often much smaller than the PV-term at high pressure.  
Since it is the density that plays a crucial role in high-pressure stability, one expects that 
close-packed phases will appear under pressure. This expectation is usually correct, but there 
are many cases where unusual open structures are formed under pressure. Additionally, one 
expects higher coordination numbers to appear at higher pressures.  
Electronic structure under pressure.  
Density increase under pressure has important consequences for electronic structure. 
Consider a gas of non-interacting atoms from which a crystal is formed: Such a gas has a 
discrete set of energy levels. As the density increases, these energy levels shift and broaden, 
forming bands. The width of a band formed from atomic orbitals a and b characterises the 
strength of overlap between these orbitals, so as the density increases, bands progressively 
broaden. The bandwidth is also a measure of electron delocalisation: localised core electrons 
correspond to flat, practically zero-width (constant-energy), bands. Bands in ionic crystals 
are relatively “flat”, i.e. the different orbitals constituting the band have nearly the same 
energies, as a result of which the band is narrow in energy, or (in physical jargon) “flat”. In 
covalent crystals, significant degree of electron delocalisation between bonded atoms is 
responsible for rather wide bands. In metals, bands are even broader.  
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Genesis of band structures in solids.  
 
It is to be expected that under pressure valence bands (occupied) and conduction bands 
(unoccupied) of a non-metal will broaden, and the band gap will decrease – eventually 
vanishing and producing a metallic state. Metallisation under pressure is a fundamental and 
universal phenomenon, important for understanding planets. The observation of strong 
magnetic fields in giant planets Jupiter and Saturn (which consist almost entirely of a H-He 
mixture) can be explained only if one assumes that liquid interiors of these planets are 
electrical conductors (it is currents in these conducting liquids that generate planetary 
magnetic fields). Recent experiments showed that liquid H (and H-He mixtures) become 
metallic at pressures ~100 GPa and temperatures ~2000 K and, therefore, most of Jupiter is 
metallic.  
The Earth`s magnetic field is likewise generated by convective currents in the liquid outer 
core. Now it is well established that the core is made of Fe-rich alloys, but W.H. Ramsey has 
conjectured in 1949 that it is possible that the core consists of the same materials as the 
mantle (e.g., oxides and silicates of Mg), but that at core pressures these materials become 
ultradense and metallic. It turned out, however, that pressures needed to metallise these 
materials are 10-100 times higher than those in the Earth`s centre.  
Among the most important effects of pressure are the increase of packing density of crystal 
structures (often leading to close packed structures and structures with higher coordination 
numbers), suppression of magnetism (for example, Fe in the core of the Earth is non-
magnetic!), and changes in the electronic structure of the atoms (e.g., s→d transitions in K, 
Rb, Cs).  
Introduction to the Earth’s internal structure. 
The Earth is one of the 9 planets in the Solar System. It is the largest of the 4 planets 
(Mercury, Venus, Earth, Mars) known as terrestrial (or rocky) planets; the other 5 planets are 
known as gas planets. Like any other terrestrial planet, the Earth 1) is believed to have a 
nearly chondritic composition, and 2) is deeply chemically differentiated (into the metallic 
Fe-rich and silicate-oxide fractions) and stratified (metallic Fe forms the core, while oxides 
and silicates form the mantle and crust). 
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Estimates of elemental abundances (in atoms per 1 atom Si). 

Element The 
Universe  

Whole 
Earth 

Earth's 
Crust 

Upper 
Mantle 

Lower 
Mantle 

Pyrolitic 
Homogeneous 

Mantle 
O 20.10 3.73 2.9 3.63 3.63 3.68 
Na 0.06 0.06 0.12 0.03 2*10-3 0.02 
Mg 1.08 1.06 0.09 0.97 1.09 1.24 
Al 0.08 0.09 0.36 0.17 0.06 0.12 
Si 1 1 1 1 1 1 
P 0.01 - 4*10-3 6*10-4 4*10-5 4*10-4 
S 0.52 - 8*10-4 6*10-4 5*10-5 2*10-3 

Ca 0.06 0.06 0.14 0.12 0.05 0.09 
Cr 0.01 - 1*10-4 5*10-3 0.01 0.01 
Fe 0.9 0.9 0.11 0.14 0.14 0.16 
Ni 0.05 - 3*10-5 3*10-3 4*10-3 3*10-5 

 
Further stratification of the planet is determined by structural transitions in the mantle and 
core minerals – these are responsible for the discontinuities of elastic properties, observed in 
seismological studies. Spherically averaged seismological models of the Earth (e.g., PREM – 
Preliminary Reference Earth Model), in view of the lack of direct sampling, comprise the 
central piece of information on the deep regions of the planet.  
 

 
Scheme of the Earth’s internal structure. (taken from Lamb S., Sington D. Earth story: the 
shaping of our world. London: BBC Books, 1999, 240 pp.)  



A.R. OGANOV. CRYSTALLOGRAPHY. 83 

 

a b  
PREM profiles: a) seismic wave velocities, b) density. Major regions of the Earth are specified. 
The core-mantle boundary region D’’ (grey shading) is the major seismic boundary in the 
Earth and has many anomalous and poorly understood properties. 
 
Pressure distribution can be calculated using the following equation: 

dp/dr=-4πGρr-2 ∫
r

0

ρ r2dr  = -gρ,                              

where G is the gravitational constant, r is the radius, and g is the acceleration due to gravity.  

 
PREM pressure profile.  
 
The energy balance of the Earth is known only very approximately, the main mechanism of 
the heat transport in the Earth is thermal convection. Convection of the liquid outer core also 
generates the magnetic field of the Earth, which shields the planet from the solar wind. 
Solid-state convection in the mantle is responsible for plate tectonics, and is the ultimate 
cause of the continental drift, earthquakes, and volcanism. Seismic tomography enables a 
visualisation of this convection and can in principle give information on the underlying 
temperature anomalies (Oganov et al., 2001).  
 



A.R. OGANOV. CRYSTALLOGRAPHY. 84 

 
Seismic tomography images of Masters et al. (2000). VC is the bulk sound velocity, not directly 
observed, but easily obtained from the observable VS and VP and often convenient for 
analysis. 
 
The core must be mainly made of Fe, with minor siderophile (particularly Ni) content. Its 
density, however, is too low compared to pure Fe at the core conditions (by ~6-10% in the 
outer core). This is explained by the presence of lighter alloying elements – S, Si, O. It was 
long believed that the phase of Fe stable at the inner core conditions is hcp-Fe. However, 
preliminary experiments show the possibility that the stable form of the (Fe,Ni) alloy in the 
inner core has the bcc structure. Previously, this was predicted by Belonoshko (2003) for 
pure Fe and by Vocadlo (2003) for Fe-Si and Fe-S alloys. From seismic observations it 
follows that the inner core is highly seismically anisotropic, with the fastest direction of 
seismic waves along the axis of the Earth’s rotation. This anisotropy implies a high degree of 
crystal alignment, the cause of which is unknown.  Currently, the composition and 
temperature of the core are still under debate. Perhaps the best estimates (Alfe et al., 2002) 
have the liquid outer core containing 10% Si+S and 8% O, and crystallizing from it solid 
inner core with 8.5% Si+S and 0.2% O. The temperature at the inner-outer core boundary is 
estimated to be 5500 K. The temperature of the core at the boundary with the mantle is 
~4300 K.  
The Earth’s mantle consists mainly of Mg-silicates, with ~10-15% of Mg2+ substituted by 
iron. In the upper mantle and transition zone we have high-spin Fe2+, but in the lower mantle 
the picture changes dramatically: Fe2+ disproportionates producing Fe3+ impurities and free 
metallic Fe:  
 
3Fe2+ = 2Fe3++Fe0

metal  
 
This reaction, first observed (Frost et al., 2004) and theoretically justified (Zhang & Oganov, 
2006), is due to peculiarities of the perovskite and post-perovskite structures. Fe3+ impurities 
undergo at least partial transition from the high-spin to the low-spin state at conditions of the 
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lower mantle. Effects of such transitions on the physical properties of these silicate minerals 
are still not well understood.   
Phase transitions of Mg-silicates determine the seismic stratification within the mantle. 
Currently, it is believed that the lower mantle would consist of (Mg,Fe)SiO3 perovskite (~75 
vol. %), magnesiowüstite (Mg,Fe)O (~20 vol. %), and CaSiO3 perovskite (~5 vol. %).  

 
Schematic phase relations in pyrolite (adapted from Ono & Oganov, 2005). Cpx and Opx 
ortho- and clinopyroxene, ILM is MgSiO3 ilmenite (akimotoite), MW is magnesiowüstite 
(Mg,Fe)O, ‘Mg-perovskite’ and ‘Ca-perovskite’ stand for MgSiO3 and CaSiO3 perovskites. 
 
The electrical conductivity of the lower mantle is indeed very high (~100-102 S/m); apart 
from partial melting it could be due to ionic diffusion in MgSiO3 perovskite (O’Keeffe & 
Bovin, 1979; Matsui & Price, 1991).  
The core-mantle boundary region (called D” layer) has many anomalous properties, which 
for many years could not be explained. The explanation came with the discovery of a new 
phase of MgSiO3 (Oganov & Ono, 2004; see also Tages Anzeiger, 22 July 2004). This new 
phase has a layered CaIrO3-type structure. Its elastic anisotropy explains the seismic 
anisotropy of the D” layer, and the phase transition itself explains the D” discontinuity and 
the thickness of the D” layer (on average, 150 km) as well as the variations of this thickness 
in different regions.  
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a b 
 
 
 
 
 
 
 
 
 
 
 
 
 
c 
 
a) CaIrO3-type phase of MgSiO3, b) perovskite-type phases of MgSiO3. c) cubic perovskite 
structure of CaSiO3 in Earth’s lower mantle.  

 
Knittle and Jeanloz (1991) found that there might be a chemical reaction between the core 
and mantle. They experimentally observed a reaction, which can be schematically written as 
follows: 
(Mg,Fe)SiO3 + Fe = MgSiO3 + SiO2 + FeO + FeSi                          
 
Our understanding of the mantle mineralogy can be greatly increased by studies of mantle 
inclusions – e.g., Harte et al. (1999) found several lower-mantle minerals (among others, 
they found MgSiO3 inclusions with up to 10% Al2O3) in inclusions in diamonds. Most 
inclusions studied so far have upper-mantle or transition-zone origin, however.  
The transition zone (410-660 km) is quite diverse mineralogically, and might possess exotic 
properties. This region can host large amounts of water: both wadsleyite and ringwoodite can 
contain up to 2-3 wt.% H2O (see Fiquet, 2001 and references therein). It has also been 
suggested (Angel et al., 1996 and references therein) that unusual for inorganic compounds 
five-coordinate Si can play an important role in the transition zone, determining its transport 
properties.  
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a b  

c  
Transition zone minerals: a) wadsleyite, b) ringwoodite, c) garnet. 
 
The upper mantle consists predominantly of olivine, garnet, and pyroxenes. There are four 
particularly important features of the upper mantle: 1) Ultralow velocity zone at variable 
depths, roughly between 50-100 km and 220 km (Anderson, 1989), 2) A seismic 
discontinuity (Lehmann discontinuity) at the base of the ultralow velocity zone, 220 km 
depth, 3) Strong elastic anisotropy above the 220 km depth, and 4) Strong compositional 
heterogeneity in the upper 150 km (see Ringwood, 1991). The Lehmann discontinuity is, 
possibly, due to the Pbca-C2/c transition in pyroxenes (e.g. Mendelssohn & Price, 1997). 
The ultralow velocity zone is interpreted as a region of partial melting and low viscosity 
(asthenosphere) beneath the rigid lithosphere.  

a b  
Upper mantle minerals: a) olivine, b) pyroxenes. 
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Planetary interiors. It is very interesting to study the structure of materials of other planets, 
especially giant planets Jupiter, Saturn, Uranus, Neptune, as well as planets outside the Solar 
System – the so-called exoplanets.  

 
Systematics of known planets. For different compositions of planets, the radius-mass 
correlation is different. Solid line – H+He mixture, dashed line – water, dotted line – water-
silicon-iron, dash-dotted line – silicon-iron (terrestrial planets). Exoplanet CoRoT7b should be 
chemically similar to the Earth, but much larger and heavier.   
 
While Uranus and Neptune consist of a mixture of water, ammonia and methane, Jupiter and 
Saturn are made of a mixture of hydrogen and helium. These planets possibly have small 
cores made of roughly the same material as the Earth, but most of their volume is liquid. 
Temperatures and pressures inside these planets reach extremely high values (estimates up to 
~20000K and 8000 GPa have made for maximum P-T conditions inside Jupiter). Such 
conditions, of course, greatly change the properties of materials: 
-In Neptune and possibly Uranus, there is evidence for dissociation of CH4 with the 
formation of diamond. Diamond, being very dense, must sink – and this process seems to 
produce significant amounts of gravitational energy in Neptune (Ross, 1981). 
-In Jupiter and Saturn, the H-He mixture metallises at ~100 GPa and ~3000 K. These 
conditions correspond to quite shallow depths in these planets, implying that most of the 
material in these planets is a metallic fluid. Convection of this metallic H-He fluid produces 
remarkably strong magnetic fields of Saturn and especially Jupiter (Jovian magnetic field is 
~10 times stronger that the Earth’s magnetic field). The precise nature of this metallic fluid is 
still not known.  
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Model of the structure of the H-He fluid befoe metallization. One can clearly see H2 molecules. 
These molecules would be broken in the metallic phase.  
 
 
 
11. Structure-property relations. 
Crystal structure is the basis for physical properties of a material. A primary important 
characteristics of all the physical properties of crystals is their anisotropy. Anisotropy of the 
structure determines the anisotropy (i.e. dependence on direction) of physical properties.  
Crystals with a molecular type of structure with weak bonds between the molecules have, in 
general, low hardness, low melting temperature, high compressibility.  
Materials with layered structures usually have perfect cleavage and platy habit of crystals.  
Metals and crystals with significant delocalisation of electrons (e.g., semiconductors such as 
graphite, pyrite, nickeline, galena) have metallic luster and often are ductile.  
Here we consider only a few examples of physical properties, most relevant to mineralogy: 
1) link between crystal symmetry and several properties (optical activity, pyroelectricity, 
piezoelectricity) of crystals,  
2) colour of minerals. 
Link between symmetry and properties.  
Optical activity: often, when polarised light travels through a crystal, the polarisation plane of 
light changes orientation (it rotates). In this case, we deal with an optically active crystal. 
Optical activity can be present only in chiral crystals – the direction of rotation (“left” or 
“right”) depends on whether the crystal is left or right. In chiral crystals, symmetry planes, 
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inversion centre, and 
−

4 axis cannot exist. All symmetry classes that do not contain these 
elements, can be optically active. Among minerals, the most famous examples of optical 
activity are quartz and cynnabar (HgS).  
Pyroelectricity: many crystals, e.g. tourmaline, when heated on fire, become electrically 
polarised (hence the name of the phenomenon – pyroelectricity, “pyros” means “fire” in 
Greek): opposite ends of a crystal acquire opposite electrical charges. On cooling, the charges 
reverse signs. This phenomenon can exist only in non-metallic crystals. For electrical 
polarisation to exist, there must be a unique polar direction in the structure not related by the 
symmetry elements to any other direction in the crystal. This automatically rules out all crystals 
with an inversion centre, and many acentric classes as well. Out of 32 crystallographic point 
groups, 21 are acentric (i.e. have no centre of inversion), but only 10 are pyroelectric – 1, 2, 3, 
4, 6, m, mm2, 3m, 4mm, 6mm.  
Piezolectricity is a similar phenomenon, where electrical polarisation appears as a result of 
mechanical deformation. Crystals belonging to 20 point groups can be piezoelectric – all 
acentric classes, except for 432. Like pyroelectricity, this phenomenon occurs only in non-
metallic crystals.  

  
Piezoeffect in quartz – a) undeformed structure, b) compressed along a twofold axis, c) 
stretched along a twofold axis. Under stress along the twofold axis, this direction becomes 
polar. (after Yegorov-Tismenko, 1992).  
 
Colour of minerals. Optical properties are also anisotropic: anisotropy of the refractive index 
(birefringence), is one of the manifestations of anisotropy. Colour can also be anisotropic. This 
latter property is called pleochroism. Perhaps, the most famous example of pleochroism is 
kunzite, a transparent precious variety of spodumene (LiAlSi2O6). In this rather extreme case of 
pleochroism, the difference in the colour can be easily seen when the crystal is viewed in 
different directions. Kunzite crystals from Afghanistan are truly beautiful! Look at the pictures 
to see pleochroism and a cut kunzite gemstone.  
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Demonstration of pleochroism of kunzite – its colour parallel to [001] is much stronger than in a 
perpendicular direction. 

 
Cut kunzite. The colour is delightful, but unfortunately it gradually fades away when kunzite is 
exposed to daylight. It can be restored by radiation. This indicates that the colour of kunzite is 
due to point defects and the associated electronic centres in its structure. Another interesting 
feature: irradiated by UV- or visible light, kunzite absorbs the energy and then radiates it back – 
creating impressive glowing effect in the dark! Such a glowing effect is called luminescence 
when its duration is long, or fluorescence if its duration is short.  
 
As mentioned above, the colour of kunzite is due to point defects in the structure, and this is a 
very common origin of colour of minerals. An example of an electronic centre is Cl vacancy in 
NaCl – the position of the vacant Cl- ion is occupied by a bare electron playing the role of the 
anion to maintain charge balance. This is the simplest electronic centre. Since the energy levels 
in such a defect differ from those in the bulk crystal, it can cause colour in crystals which are 
colourless in the absence of electronic centres. In NaCl, e.g., very small concentrations of 
electronic centres create deep blue colour – it can be seen in many natural samples. The colour 
is determined by the transition energies from one energy level to another – these determine the 
frequencies of the absorbed light. E.g., if yellow light is absorbed, crystals will be transparent 
for blue light and therefore will have blue colour. Other examples of colour due to the 
electronic centres – amethyst (variety of quartz, SiO2), fluorite (CaF2, having green, blue, violet 
colours), pink, black and smoky quartz varieties. Colours generated by electronic centres can 
disappear and reappear during irradiation, heating, etc. – unlike colours of other types. 
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Another cause of colour – transition metals. The energy levels of many transition metal ions in 
the crystal field are often close to the energies of quanta of the visible light – and thus can 
determine  colour. Even small impurities of transition metals can often give very strong colours 
– e.g., the deep-red colour of ruby is created by just a fraction of a percent of Cr3+ ions in 
corundum (Al2O3). No wonder that most minerals of transition metals are coloured. It is 
interesting that even small variation in the crystal field strength can produce different colours – 
depending on the crystal field, chromium ions (Cr3+) can give red colour (ruby), green 
(emerald), or blue colours. Likewise, copper ions Cu2+ can give blue (azurite Cu3(CO3)2(OH)2) 
or green (malachite Cu2(CO3)(OH)2) colours. Such ions are called chromophores (greek 
‘carrying colours’). 
 
Yet another cause – electronic band transitions. This is a very common cause of colour in 
semiconductors, where energy band gap between the valence and conduction bands is 
sometimes similar to the energy of the visible light – again, defining which frequencies will be 
absorbed. No defects or ions-chromophores are necessary for this type of colour. Examples of 
colour of this origin – e.g., deep-orange realgar AsS, yellow orpiment As2S3, deep-red cynnabar 
(HgS). Note that ionic insulators with wide band gaps (>1-2 eV) will be always colourless 
(unless they contain transition metal ions or electronic centres). So, colour can tell us 
something even about the chemical bonding and band structure! 
 
Finally, colours can be simply due to microscopic coloured inclusions – e.g., inclusions of 
green amphiboles in quartz can make quartz green! Non-crystalline bitumen inclusions in 
(normally yellow) sulphur crystals are responsible for the black and brown colours of such 
varieties, and give important information about the conditions under which the crystals of 
sulphur grew! 
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12. Simulating & predicting structure and properties of crystals. 
Crystals choose their structure so as to minimise their free energy. The most stable 
structure of a compound at given conditions has the lowest possible free energy. Many 
properties of crystals can be found by calculating the derivatives of the free energy – e.g., 
the elastic constants are second derivatives of the free energy with respect to lattice 
parameters.  

 
Illustration of how the deepest free energy minimum determines the stable crystal 
structure. Metastable crystal structures correspond to local minima. 
 
The Gibbs free energy: 

G = E + PV – TS 
 (E is the internal energy, P, V, T, S are the pressure, volume, temperature and entropy, 
respectively), when minimised with respect to lattice parameters and atomic coordinates 
at given pressure P and temperature T, yields the equilibrium crystal structure at given P-
T conditions.  
 
Statistical physics guarantees that if we can calculate the internal energy as a function of 
structure, we can calculate all the other thermodynamic properties including the entropy 
and the free energy. Therefore, the ability to calculate the energy of each given structure 
is crucial. There are two ways of calculating the energy: 1) quantum-mechanical, by 
solving the Schrödinger equation or its analogues, 2) semiclassical, by expressing the 
total energy as a sum of atom-atom potential energy terms. In the first approach, one 
explicitly considers electrons and nuclei (and hence it is possible to calculate electron 
density maps, study the electronic and magnetic structure, etc.), but since the Schrödinger 
equation cannot be solved exactly for many-electron systems like crystals, the solution is 
always approximate. In the second approach, one only considers the atoms as entities – 
this makes calculations much faster, but also much more approximate. Additionally, all 
information about the electronic and magnetic structure is lost.  
 
For example, when modelling silicates, we can assume that the atoms interact in a 
pairwise fashion, so that the total energy is just a sum of pair interactions: 
a. Coulombic energy between charged atoms. Experimental studies of electron 
distribution in silicates usually reveal charges of +1.5 to +2.5 for Si. Although this is 
much smaller than the formal ‘ionic’ charge of +4, ionic forces are essentially important 
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(the best model of the Si-O bond would be about half ionic and half covalent – see, e.g., 
L. Pauling’s classical book ‘The nature of the chemical bond’).  
b. Atom-atom repulsion. Apart from Coulombic repulsion between like-charged 
atoms, we also have shorter-range repulsion due to the overlap between electron clouds 
belonging to neighbouring atoms.  
c. Van der Waals forces. In ionic systems, although always present, they are not 
crucial – unlike in solid noble gases, graphite, and many molecular crystals. 
The energy of interaction of two ions is then: 

Eij = 
z z
R
i j

ij

  
 + bij exp(- Rij

ijρ  ) - 
c

R
ij

ij
6  ,              

where the first, second, and third terms represent contributions a, b, c, respectively. Zi and 
Zj are atomic charges, Rij the interatomic distance, and bij and Cij parameters. These 
parameters can be fitted to experimental data (structures, properties) or quantum-
mechanical calculations.  
Lattice energy is found by summing over all pairs of atoms; optimal crystal structure is 
then found by minimising this energy with respect to atomic positions. Studying crystals 
at high pressures and temperatures, we have to minimise the free energy, i.e. include the 
entropy term (-TS) and the PV-term. 
Differentiating the free energy with respect to lattice parameters, we get the elastic 
constants. By similar procedures, dielectric and piezoelectric properties can be easily 
studied as well. Such simulations play an important role in explaining and predicting 
properties of materials, mechanisms and thermodynamics of phase transitions, etc.  
 
Over the last 10 years, the accuracy and capabilities of quantum-mechanical calculations 
increased dramatically. Now it is possible, with routine calculations, to predict lattice 
parameters within 1%, elastic and dielectric properties within 15%, vibrational 
frequencies within 5% of their experimental values. At high pressures and temperatures, 
when experiments become more difficult and for many properties there is a large 
uncertainty, theory can provide a more convenient route for exploring materials.  Just to 
list some key applications: 

• Discovery of a post-perovskite phase of MgSiO3, the main mineral of the core-
mantle boundary region (Oganov & Ono, 2004).  

• Determination of the high-pressure melting curve of iron (Alfe et al., 1999-2002) 
and of the temperature of the Earth’s core – about 5600K in the centre. 

• Elucidation of the thermal structure of the Earth’s mantle (Oganov et al., 2002). 
• Explanation of the elastic anisotropy of the Earth’s solid inner core (Gannarelli, 

2003). 
 
To demonstrate the accuracy of such calculations, I show two examples – MgSiO3 
post-perovskite (its stability field and crystal structure – Oganov & Ono, 2004) and 
CaO (phase transition pressure and equation of state – Jung, 2004).   
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High-pressure phase diagram of MgSiO3. Line – theory, symbols – experimental data 
(circles – perovskite, squares – post-perovskite). 
 
Table. Lattice parameters (in Å) of MgSiO3 post-perovskite at 120 GPa 
(orthorhombic, Cmcm) 
 Theory Experiment 
a 2.474 2.471 
b 8.121 8.091 
c 6.138 6.110 
 
Table. Comparison of theory and experiment for CaO – transition pressure (from 
NaCl- to CsCl-type structure) and the equation of state (for the NaCl-type phase)*.  
 Theory Experiment 
Ptr, GPa 64 65± 5 
V0, Å3 28.31 27.75 
K0, GPa 109 125 
K '

0  4.22 3.6 

* V0, K0, K '
0  are the volume, bulk modulus, and its pressure derivative at zero pressure. 

(bulk modulus is the inverse of the compressibility β=
dP
dV

V
1

− ). 

 
Crystal structure prediction. Once a starting model of a crystal structure is known, it is 
easy to optimize it – e.g. by moving the atoms in the direction of forces acting on them. 
Now, what if one does several such optimizations starting with several very different 
initial structures? Generally, the results will be different depending on the starting 
structure – this way one obtains a number of different structures corresponding to local 
minima of the energy. How many different local minima are possible? In principle, an 
infinity, but it is the lowest, so called global, minimum that is of main interest.  
How to find the most stable structure at given P-T conditions knowing just the chemical 
formula? Rules of crystal chemistry are definitely helpful in restricting the class of 
possible structures, but these rules are not enough to obtain one most stable structure. One 
could compare the (free) energies of all possible structures and find the lowest-energy 
structure, but this requires an unfeasible computational effort – to predict the structure 
containing only 10 atoms in the unit cell would take about 1000 years on today’s 
computers! Such computing costs can in principle be avoided. Several methods have been 
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devised to solve this problem, but none seem to have showed satisfactory results. In fact, 
this problem is often considered to be impossible to solve. A very promising method was 
developed recently (Glass et al., 2006; Oganov & Glass, 2006). This method combines an 
evolutionary strategy and quantum-mechanical simulations. In this method, one starts 
with randomly generated structures, which are evaluated using quantum-mechanical 
calculations of their free energies. The best structures are selected to produce the next 
generation of structures – using “genetic” crossover of their elements, as well as through 
mutation. From generation to generation, increasingly favourable structures are found this 
way.  

 
Prediction of the crystal structure of MgSiO3 at 120 GPa (20 atoms/cell). Free energy 
of the best structure as a function of generation is shown, together with perovskite and post-perovskite 
structures. Between 6th and 12th generations the best found structure is perovskite, but at the 13th 
generation the global minimum (post-perovskite structure) is found. This simulation used no experimental 
information and found both the stable and good metastable structures in a single simulation. Blue 
polyhedra – SiO6 octahedra; gray spheres – Mg atoms. 
 
Crystal structure prediction is very important for computational design of new materials, 
for investigating state of matter at extreme pressures and temperatures, etc. It is amazing 
that this problem – the central problem of crystal chemistry – remained open until so 
recently. Even now there are many open issues in this field.  
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13. Supplementary lecture: Crystallography of nanoparticles. 
 

By nanoparticles we understand atomic assembles, the size of which ranges between 1 and 100 
nanometres (1 nm = 10 Å). Nanoparticles thus occupy an intermediate position between typical 
molecules and bulk materials. By the number of atoms, the following rough order-of-magnitude 
estimates can be given: molecules: 1-10 atoms, nanoparticles: 10-106 atoms (radius up to 1000 Å), 
bulk materials >106 atoms. 
Studies of nanoparticles are important for several reasons:  
(i) They open up unique technological perspectives, if we can learn to manipulate atoms on 

nanoscale. Properties of nanoparticles depend on their size and structure and thus can be 
tuned, or manipulated. Nanoparticles often have unique properties. E.g., dislocations cannot 
exist in particles smaller than ~300 Å in diameter. In such particles deformation occurs 
through non-dislocation mechanisms, and such nanomaterials are mechanically much stronger 
than bulk crystalline materials. A striking example is given by carbon nanotubes, which 
display extremely interesting properties. Young’s modulus of carbon nanotubes is 1.2-1.8 
TPa, the value for steel is 0.21 TPa. Yield stress of a nanotube is 45 GPa, that of steel is 2 
GPa. The presence of carbon nanotubes in Damascus steel is believed (Reibold, 2006) to be 
one of the secrets of the unique mechanical properties of this material. Finally, depending on 
their structure, carbon nanotubes can be metallic or insulating. Metallic nanotubes have 
extremely high electrical conductivity, because these nanotubes are almost defect-free.  

 
Carbon nanotubes. 

 
(ii) Fundamental importance – theory of molecules and solids is well developed, whereas for 

intermediate sizes it is not mature and many new phenomena are expected. Structures of 
nanoparticles often differ from those of crystals and molecules (the same is often true also for 
surfaces), and can therefore bring new understanding of chemical structures and bonding. 
E.g., see discussion below on “magical numbers”.  

(iii) Processes of crystal growth and phase transformations involve nucleation – i.e. formation of a 
nanosize “critical nucleus” of the new phase. The total energy of a nucleus consists of two 
parts – surface energy (positive, proportional to r2) and volume energy (negative, 
proportional to r3). At small sizes surface term dominates and nuclei are energetically 
unfavourable and increases up to the critical radius r*. At large sizes the volume term 
dominates and crystals above certain size are energetically favourable. This model, however, 
is simplified – the structure of small particles may drastically differ from the bulk structure 
and that affects energetics.  
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Energy contributions for a nanoparticle, as a function of its radius. 

 
One of the radical differences between crystals and nanoparticles is that the latter can have non-
crystallographic symmetry elements. For instance, Al13 clusters (experimentally known to be 
particularly stable) can be either cuboctahedral (as in fcc- or hcp-structures) or icosahedral. 
Theoretical studies showed that icosahedral clusters (containing fivefold axes) are the most favourable 
ones. Icosahedral clusters are known to be stable for many other clusters (e.g. noble gases), which 
means that as these clusters grow, there must be a reconstruction into a crystal-like structure at 
sufficiently large cluster size.  

 
Possible structures of Al13 clusters (from Poole & Owens, 2003). 
 

 

Structures of noble gas clusters (from Suzdalev, 2005). 
 
Properties depend on the size – properties of an isolated atom are not the same as properties of a small 
molecule, or of clusters of various sizes, or of a large crystal. Both atomic and electronic structure 
change with size, sometimes quite dramatically. An example of reactivity is illustrated below for Fe 
nanoparticles. Japanese researchers have found that Au nanoparticles smaller than 3-5 nm in diameter 
are catalytically very active and have an icosahedral structure (unlike the fcc-structure of the bulk), 
and this was used in the design of a new air freshening devise using Au nanoparticles on the Fe2O3 
substrate.  
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Reactivity of Fe nanoparticles with hydrogen (from Poole & Owens, 2003).  
 
Since structure of nanoparticles depends on their size, electronic properties will also be size-
dependent, as illustrated below for boron clusters.  

 
Structure of boron clusters (from Poole & Owens, 2003). 

 
Theoretically calculated energy spectra of boron clusters (from Poole & Owens, 2003). 
 
Such variations of electronic structure imply variations of many other properties, e.g. optical 
properties, with size. For instance, the colour of Au nanoparticles is strongly size-dependent, as 
illustrated below.  
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a b  
(a) Dependence of colour on the size of Au nanoparticles. (b) Optical absorption spectra of 
gold nanoparticles of two sizes (20 nm and 80 nm diameter) in glass (from Poole & Owens, 
2003).  
 
This is related to a masterpiece of ancient Roman art, the famous Lycurgus cup, which remained a 
mystery for nearly 2 millenia. The cup is red when the source of light (candle) is placed inside it, but is 
green otherwise. The reasons for this have been understood only recently. The color of transmitted 
light (red in this case) is due to the absorption spectrum of gold nanoparticles – around 10 nm in this 
case. The green color is due to scattered light – the phenomenon of Rayleigh scattering, when 
wavelength of light (380-780 nm) is many times greater than the fluctuations of density, on which light 
is scattered (here, the size of gold nanoparticles, about 10 nm). Rayleigh scattering cross-section 
depends on the wavelength of light (it is inversely proportional to the fourth power of the wavelength, 
i.e. blue color is scattered more than red – this is why the sky is blue, when you don’t look at the Sun). 
Combination of scattered blue color and transmitted red color gives green color.  

 
 
As figure below shows, for Na clusters the ionisation potential is a non-monotonic function of the 
number of atoms. In particular, there are peaks at N=2,6,8. Peaks at N=2 and 8 can be explained if one 
considers a cluster as a “superatom” – in that case, they correspond to filled electronic shells.  
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Ionisation potential of Na clusters (from Poole & Owens, 2003).  
 
The idea of clusters-superatoms has been used to formulate the so-called “jellium” model, where the 
cluster is represented as a free-electron drop of finite size. Results of this model are shown below and 
indicate “magical” numbers 2, 8, 20, 40, 58, 92, 138,…, at which jelly particles are particularly stable.  

 
Energy of Na nanoclusters in the “jellium” model (from Suzdalev, 2005).  
 
“Magical numbers” (i.e. the numbers of atoms in a nanoparticle, at which the particle is especially 
stable) are a general feature of nanoparticles. As figure below shows, for Pb, the most stable clusters 
contain 7 and 10 atoms.  
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Mass-spectrum of Pb nanoclusters (from Poole & Owens, 2003). 
 
For small nanoparticles the magical numbers are determined by electronic effects (“electronic magical 
numbers”, providing optimal occupation of bonding orbitals), for large particles – by geometric effects 
(“structural magical numbers”, providing minimisation of the surface energy and creating maximally 
dense particles with maximally spherical shapes). 
E.g. for Na nanoparticles all the predicted magical numbers have been experimentally observed – 
electronic up to N=1220, and structural at N>1415. Noble gas clusters are an interesting special case – 
consisting of atoms with filled electronic shells, these clusters do not have electronic magical numbers, 
only the structural ones. Experiments confirm that particularly stable clusters of Ar and Xe contain 
N=13, 19, 25, 55, 71, 87, 147 atoms. For He quantum effects create a slightly more complicated case. 
3He has stable clusters at N=7, 10, 14, 23, 30, while magical numbers for 4He are N=7, 10-11, 14, 22, 
26-27, 30. 4He clusters containing 64 and 128 atoms were experimentally found to display 
superfluidity, which was previously observed by P.L. Kapitsa for liquid 4He.  
 

14. Supplementary lecture: Structure of crystalline surfaces.  
 
In this course we mainly considered the ideal crystal. This simplification (infinite, strictly periodic 
defect-less solid) enables deep understanding of solids, but of course in reality we never deal with 
infinite crystals and periodicity is perturbed by atomic motion and defects. Defects can be 0-D 
(substitutions, vacancies, interstitials), 1-D (dislocations) and 2-D (surfaces). Here we consider surfaces. 
In fact, in the very beginning of this course we already discussed surface energies and their role in 
defining the equilibrium morphology of crystals. Now let us explore the structure of surfaces of crystals 
– this knowledge is more recent compared to the knowledge of bulk structures, because special 
experimental methods (in particular, electron microscopy) had to be developed in order to obtain this 
knowledge.  
Surface is a special case of an interface – the former term is usually applied to the boundary layer 
between a crystal and gas, and the latter means the boundary between two solids, or between a solid and 
a liquid. Solid-solid interfaces are more difficult to study, and our knowledge about them is still not well 
developed.  
Surfaces (and interfaces) are important for many reasons: 

(i) Surface energies determine the morphology of crystals and the size of the critical nucleus.  
(ii) Most catalytic processes occur on solid surfaces. Understanding of catalysis without 

understanding surface structures is impossible.  
(iii) Surfaces often have structures and properties different from the bulk, and different surfaces of 

the same crystal may possess very different properties – this opens up avenues for engineering 
the desired properties.  

(iv) Surfaces and interfaces are particularly important for microelectronics – for instance, to 
increase the density of transistors in computer chips, already by end of 2000s computer 
companies are pushed to the nanometer scale where surface effects are crucial.  
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(v) Understanding surface structures will lead to a more complete understanding of the structure of 
matter, and structure-property relations. In many ways, surface crystallography is just a 2D-
extension (or reduction) of our usual 3D-crystallography and many of the concepts we have 
developed can be applied to surfaces as well.  

 
Surface can be viewed as a „suffering“ crystal – a crystal where many bonds have been broken. These 
„dangling bonds“ are unfavourable - as we know, surface energies (measured in units of energy per area 
– e.g. J/m2) are always positive (i.e. destabilising) and there are several ways to mininise this surface 
energy: 

1. Relaxation – in this case, the structure of the surface is very similar to the bulk structure, the 
only differences are small shifts of the atoms, mainly in the direction perpendicular to the 
surface. Almost all known metals surfaces and surfaces of ionic crystals belong to this category. 

2. Reconstruction – bonding topology differs from that of the bulk. Surfaces of covalent crystals 
(semiconductors) are typically reconstructed. 

3. Chemisorption and physisorption – in these cases foreign atoms or molecules attach themselves 
to the surface, either by van der Waals (physisorption) or stronger (chemisorption) interactions. 
In the latter case, this allows „dangling bonds“ to be saturated and one can talk about the 
formation of new compounds at the surface – surface phases. One example of a surface phase is 
the oxidised layer (Al2O3) on the surface of aluminium – it is because of this layer that 
aluminium is chemically relatively inert (without it, Al would vigorously react with water!). 
Another example – Al(OH)3 layer on the {0001} surfaces of corundum – it is because of this 
layer that corundum crystals grown in basic OH--rich environment have platy habit.  

 
Relaxation is quite a trivial phenomenon, while chemisorption and physisorption would lead us far away 
from the topic of crystallography. So, let us discuss surface reconstruction as an example of the 
fascinating phenomena in surface science. Our discussion will closely follow the book of Oura et al. 
(2003), where the reader is referred for more details (and discussions of physisorption and 
chemisorption).  
 
One of the few metals whose surfaces reconstruct is Pt, in its normal fcc-phase. The unreconstructed 
Pt(100) surface is not close-packed, and reconstruction transforms it into a nearly close-packed structure. 
This leads to an increase of atomic density by ~20%. The bulk substrate and surface now have different 
atomic densities and symmetries, which leads to a tension - a compromise is the formation of long-period 
(20x5 or 29x5) or even incommensurate structures. This is a manifestation of a general principle – 
competing interactions often lead to complex structures. Similar quasi-hexagonal reconstructions were 
observed for Ir(100) and Au(100) surfaces.  

 
Illustration of the Pt(100) surface. Gray atoms – surface, white – substrate. From (Oura et al., 
2003).  
 
Another example is the Pt(110) surface, which is again not close-packed but reconstructs to a “missing-
row” structure that can be represented as microfacets of the close-packed Pt(111) surface.  
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Pt(110) surface structure showing an unreconstructed surface (left) and the 1x2 reconstruction. 
From (Oura et al., 2003).  
To finish our small tour of reconstructed metallic surfaces, we present the W(100) surface. At normal 
conditions W adopts the bcc structure. Below the room temperature, it adopts a 2x2 reconstruction with 
moderate (~0.2 Å) displacements of the atoms so as to form zigzag chains along [110] directions. This is 
a sign of directional bonding.  

 
W(100) surface structure (left – unreconstructed, right – 2x2 reconstruction). From (Oura et al., 
2003).  
 
The most diverse and dramatic surface reconstructions are known in semiconductors. Without 
reconstruction, there would be two dangling bonds per Si atoms on the Si(100) surface. The observed 
2x1 reconstruction leads to pairing of the Si atoms, which reduces the number of dangling bonds per 
atom to only one. Pairing is one way to stabilize surfaces. Another way is charge transfer – this has been 
seen in Ge(111) surfaces, where electron transfer to the most underbonded atoms lowers the energy.  

 
Si(100) surface structure (left – unreconstructed, right – 2x1 dimeric reconstruction). From (Oura 
et al., 2003).  
 
It turns out that the structure described above is only a dynamical average and on cooling the dimers 
adopt an inclined orientation (angle of 18˚ with the horizontal plane) and periodicity doubles – now the 
4x2 reconstruction is formed. The same reconstruction is known for the Ge(100) surface.  
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Si(100)4x2 surface reconstruction. From (Oura et al., 2003).  
 
The Si(111) surface also undergoes interesting reconstructions. The 2x1 reconstruction is obtained by 
cleaving the crystal along (111). This reconstruction is metastable and irreversibly transforms into the 
7x7 reconstruction when annealed above 700 K. The 7x7 reconstruction is stable up to 1000 K, above 
which it undergoes an order-disorder transformation into the 1x1 structure.  
The 2x1 reconstruction contains 5- and 7-fold rings of carbon atoms between the surface and substrate. 
The same reconstruction is known for diamond (111) surface. Such 5+7 structure for the bulk Si and C 
was actually seen in calculations of Oganov & Glass (2006) and found to have rather low energy (but 
metastable).  

 
Si(111) surface structure (left – unreconstructed, right – 2x1 reconstruction). From (Oura et al., 
2003).  
 
In fact, a whole homologous series of very complex reconstructions was found for Si(111) surfaces. 
These (2n+1)x(2n+1) reconstructions, the most stable of which is 7x7,  are shown below.  
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Si(111)7x7 surface reconstruction. From (Oura et al., 2003).  

 
Family of Si(111) reconstructions (2n+1)x(2n+1). From (Oura et al., 2003).  
 
Let us move on to a more complex case – GaAs. This material has the zincblende structure, which is 

non-centrosymmetric and therefore (111) and (
−

1
−

1
−

1) surfaces are non-equivalent. By convention, (111) 

surfaces are terminated by Ga, and (
−

1
−

1
−

1) surfaces are terminated by As. Let us recall that in the bulk, 
Ga and As occupy the same Wyckoff positions and interchanging them would change nothing. 
Nevertheless, these two surfaces have entirely different reconstructions!  
The GaAs(111)2x2 reconstruction has every fourth Ga atom missing and the terminating layer is 
distorted into a flat configuration. Stability of this structure, containing Ga and As atoms in the exotic 
planar threefold coordination, is enhanced by additional charge transfer from Ga to As.  

The GaAs(
−

1
−

1
−

1)2x2 reconstruction is formed at conditions of excess of As (when the chemical 

potential of As is low, another reconstruction is formed - 1919x ) and contains As3 trimers, in 
which each As atom is connected to one additional As atom outside of the trimer.  

 

GaAs (111) and (
−

1
−

1
−

1 ) 2x2 reconstructed surfaces. From (Oura et al., 2003).  
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As is clear from our discussion, some of the structures we saw are extremely exotic and some 
phenomena seen for surfaces are new. However, many of the traditional concepts of crystallography are 
perfectly applicable to surfaces – we saw several examples of phase transitions and homologous 
structures, the formation of long-period and incommensurate structures, and a few interesting 
illustrations showing that metals tend to form close-packed structures also on their surfaces.  
 
Surfaces are anomalous in many ways. For example, thermal conductivity of the surface is usually 
several times lower than that of the bulk. It is well known that melting begins at surfaces. Atoms 
experience much more vigorous thermal motion at the surface, and at temperatures well below Tm, the 
surface may already be molten.  

 
Atomic trajectories in Si(100) surface at (a) 1003 K and (b) 1683 K. From [Vladimirov, 2016]. 
 
Often, new compounds (“surface compounds”) can be formed, which have no bulk analogs. E.g., Cu and B 
do not form bulk compounds, but do form copper borides on the surface (when a surface of Cu is 
bombarded by B atoms). Example of a complex surface phase diagram: Sr on W(110) surface. Ordering 
occurs already at low concentrations of Sr (at low T). Stoichiometric surface compounds are formed. At 
high concentrations, incommensurate close-packed layer of Sr is formed.   

 
Phase diagram of Sr on W(110) surface and corresponding structures. From [Vladimirov, 2016]. 
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