
npj | computationalmaterials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01754-8

Substrate-aware computational design of
two-dimensional materials

Check for updates

Arslan Mazitov 1 , Ivan Kruglov1,2, Alexey V. Yanilkin1, Aleksey V. Arsenin 1,2, Valentyn S. Volkov2,
Dmitry G. Kvashnin 3, Artem R. Oganov 4 & Kostya S. Novoselov 5,6,7

Two-dimensional (2D) materials attract considerable attention due to their remarkable electronic,
mechanical and optical properties. Despite their use in combination with substrates in practical
applications, computational studies often neglect the effects of substrate interactions for simplicity.
This study presents a novel method for predicting the atomic structure of 2D materials on substrates
by combining an evolutionary algorithm, a lattice-matching technique, an automated machine-
learning interatomic potentials training protocol, and the ab initio thermodynamics approach. Using
the molybdenum-sulfur system on a sapphire substrate as a case study, we reveal several new stable
and metastable structures, including previously known 1H-MoS2 and newly found PmmaMo3S2, P�1
Mo2S, P21mMo5S3, and P4mm Mo4S, where the Mo4S structure is specifically stabilized by
interaction with the substrate. Finally, we use the ab initio thermodynamics approach to predict the
synthesis conditions of the discovered structures in the parameter space of the commonly used
chemical vapor deposition technique.

The discovery of graphene— a single layer of carbon atoms arranged in a
honeycomb lattice— in 2004markedamilestone in thefieldof 2Dmaterials
and sparked awave of research into this novel class ofmaterials1. Since then,
the family of 2D materials has expanded to include transition metal
dichalcogenides (TMDs), hexagonal boron nitride (h-BN), phosphorene,
and other layered materials, each with their own unique properties and
potential applications2–4. Moreover, this family is only getting larger5, and
many new 2D materials, such as Ru2SixOy, Cr2B2F2 and Ni2Si2O2 have
recently been discovered by large-scale computational studies, while the
stability of Ru2SixOy has been confirmed by further experimental synthesis6.
At the time of writing, the Computational 2DMaterials Database7,8 already
contains more than 16,000 entries.

The unique properties of 2D materials, such as high carrier mobility,
exceptional mechanical flexibility, and tunable bandgaps, have spurred
interest in exploring their use in a wide range of electronic and optoelec-
tronic devices2,9–13. For example, TMDs have emerged as promising candi-
dates for field-effect transistors, photodetectors, and light-emitting diodes
due to their large bandgaps and strong light-matter interaction2. Similarly,
the atomic thickness and excellentmechanical properties of graphenemake
it an ideal candidate for flexible electronics, transparent conductive

electrodes, and sensors14. Moreover, a wide range of ways to tune properties
of 2D layers using lateral and vertical heterostructures fabrication15–17,
chemical functionalization10,18, strain19–21, defect22,23 and substrate
engineering11, makes them ideal candidates for developing a new class of
electronic devices. According to the International Roadmap forDevices and
Systems24, the use of 2D materials and their heterostructures in the fabri-
cation of a new generation of transistors can improve the technological
process from ~ 5 nm to 1 nm by 2031. Moreover, many promising appli-
cations in the fields of photonics25, photovoltaics18,26, valleytronics27,
energetics28, and catalysis29 have already been realized in practice.

2D materials provide a versatile platform to study a large range of
physical phenomena. However, evenmore control can be achieved through
the manipulation of the interaction with the substrate. Indeed, the fabri-
cation of 2D materials typically relies on physical (PVD) and chemical
(CVD) vapor deposition techniques, molecular-beam (MBE) and atomic-
layer (ALE) epitaxy, or direct mechanical exfoliation method13,30, where the
material is either directly grown or finally placed on top of a substrate.
Substrate engineering not only offers higher-quality devices, as in the case of
graphene on hBN31,32, but also allows to modify the stability, electronic
structure, and mechanical properties of the 2D material-substrate system.
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For example, the choice of substrate can induce strain in the 2D
material, thereby modulating its electronic properties and band
structure17,23. The interaction with the substrate can also lead to a sig-
nificant reduction in graphene’s thermal conductivity on α-SiO2 com-
pared to the freestanding graphene due to enhanced phonon-phonon
scattering rate11. In addition, the substrate can influence charge transfer
processes33, affect device performance, induce semi-metal - metal
transition34, or even lead to the emergence of novel phenomena, such as
moiré patterns in heterostructures35.

In computational 2D materials design, substrate effects, however, are
often overlooked for the sake of simplicity. Most of the studies based on
high-throughput screening of 2D materials with machine learning and/or
ab initio techniques typically consider isolated 2Dmaterials without taking
into account the presence of substrates or other surrounding layers36. This
includes data-driven high-throughput ab initio screening of 2D materials
for properties optimization8,37–40, evolutionary and global optimization
methods for 2D materials discovery40–50, and machine learning based pre-
diction of new 2D materials51–54. In the case of crystal structure prediction
(CSP), predicting the structure of two-dimensionalmaterials in awide range
of stochiometries and in the presence of the substrate at the ab initio
accuracy was desired, yet previously inaccessible for a few reasons. First, the
periodic representation of the 2D layer and the substrate requires their unit
cells to be as close as possible to each other to avoid the unphysical mistfit
stress55. Since primitive cells generally do not meet this requirement, a
suitable supercell construction is necessary to minimize the lattice mis-
match. This inevitably results in structures with a large number of atoms,
which donot allowone touse conventional density functional theory (DFT)
calculations in a high-throughput manner.

This paper introduces a method for substrate-aware computational
design of 2D materials. It is based on a combination of the evolutionary
algorithm (EA) USPEX56–58, a lattice-matching technique, and a machine
learning interatomic potentials (MLIP)-based relaxation protocol. This
combination is used to predict the possible stable 2D crystals in the presence
of a substrate,while the ab initio thermodynamicsapproach is employed as a
post-processing tool to study their possible synthesis conditions. Our
method allows one to automatically explore the entire space of 2D atomic
configurations and their compositions for a given chemical space, while
estimating their relative stability in the presence of the substrate, and linking
the calculated stability patterns to a realistic set of parameters controlled by a
specific experimental setup. As the training of the MLIP for CSP purposes

represents a crucial and non-trivial part of the computational pipeline, we
also introduce an automatic workflow for creating a robust interatomic
potential suitable for CSP. We demonstrate the reliability of our technique
bypredicting the stable two-dimensional crystals in themolybdenum-sulfur
system on a c-cut sapphire substrate. First, we create the interatomic
potential for theMo–S@Al2O3 system, which is suitable for both predicting
the structure of the freestanding two-dimensional molybdenum-sulfur
layers and those joined with the substrate. Next, we perform the evolu-
tionary search for stable two-dimensional crystals using the trained MLIP
for local relaxation and stability evaluation of the Mo–S structures. Finally,
we predict the synthesis conditions of all the stable structures in the para-
meter space of the commonly used CVD technique.

Results and discussion
Automatic self-consistent training of MLIPs
In order to train the interatomic potential used in our work, we developed
the automatic self-consistent training (ASCT) algorithm based on iterative
sampling of the new structures from the molecular dynamics (MD) tra-
jectories followed by ab initio calculations of their energies, interatomic
forces, and stresses. MLIPs offer several advantages, such as a reasonable
accuracy in predicting energies and forces, and a significantly lower com-
putational cost,whichallowsone to consider large structureswith lowvalues
of latticemismatch during the evolutionary search.Given our focus onCSP,
the training set of the ML potential typically requires covering a large
configuration space, handling the random 2D crystal structures generated
within the evolutionary algorithm and performing their structural optimi-
zation and/or MD annealing at a constant pressure and temperature. This
includesboth the freestanding2Dstructures, those joinedwith the substrate,
and the freestanding surface slab of the substrate due to the relaxation
technique used in our work (see Methods for details).

A schematic representationofASCT is given inFigure 1.At eachASCT
iteration, a set of seed atomic configurations is either generated by the
random structure generator of the USPEX code or selected from a user-
provided list of structures. These configurations are then used to initialize
the parallel MD sampling of the new configurations within the LAMMPS
package59,60 using the ML potential from the previous training iteration.
During theMDrun, each structure is compared to the existing training set of
the ML potential, and is saved if it gets beyond the corresponding region of
the configuration space. In order to avoid sampling unphysical configura-
tions while the potential is not fully trained, the sampling procedure is

Fig. 1 | Automatic self-consistent training workflow (ASCT). At each iteration of
the ASCT, a set of candidate structures is selected from theMD trajectory initialized
with either randomly generated crystals or a given list of desired atomic config-
urations. New structures are sampled using the ML potential from the previous
iteration based on the extrapolation criterion. Selected structures are used to update

the training set of the potential after calculating their energies, forces and stresses in
the DFT. Next, the MLIP is re-trained on the new data, and the training cycle is
repeated. Finally, the training stops if no new structures are sampled from the MD
runs for a certain number of cycles.

https://doi.org/10.1038/s41524-025-01754-8 Article

npj Computational Materials |          (2025) 11:270 2

www.nature.com/npjcompumats


usually interrupted if the structures start breaking a certain extrapolation
threshold of the ML potential. At the next step, all the configurations from
parallelMDruns are aggregated, cleaned fromduplicates, and their energies,
interatomic forces and stresses are calculated at the DFT level. Finally, the
new data set is merged with the training set from the previous iteration and
the ML potential is retrained. The configuration space of a given system is
considered to be fully explored (and thus the ASCT is converged) once the
new configurations are not sampled during the MD runs for a reasonable
number of iterations (usually about 10-15 iterations). ASCT allows for both
initializing the training with a pre-trained MLIP using a desired mini-
malistic training set, or “from scratch” with a bare potential and no user
input, thus effectively including all the random structures from the first
iteration to the initial training set. Our ASCT workflow is currently inter-
faced only with the Moment Tensor Potentials (MTP) framework61, which
was chosen as the primaryMLIP implementation in this work because of its
relatively high accuracy62,63, convenient code implementation64, and active
learning capabilities65. Moreover, it has been successfully used in many
recent computational studies for predicting the crystal structure of bulk
materials66, phase behavior of alloys67–70, and characterizing the phonon,
kinetic and mechanical properties of 2D materials71–73.

We used the ASCT framework to train the MLIP for the 2D Mo–S/
Al2O3 system, suitable for crystal structure prediction purposes. Since its
computational cost is much lower compared to DFT, the potential can
predict energies, forces and stresses for large structures, thus allowing one to
consider large cells with low lattice mismatch. We provide the technical
details of the training inMethods, and only demonstrate the final results in
this part of themanuscript. Table 1 shows the accuracy of the finalmodel in
predicting energies, interatomic forces and stresses of the structures in the
validation set. When interpreting these results, it is important to keep in
mind that the training set consistsmostly of random, and thushighlydiverse
and non-equilibrium structures, resulting in a huge range of energies and
forces to be fitted. The percentage values of the root mean square error
(RMSE) are derived as the ratio of the RMSE in models’ predictions to the
root mean square deviation of the target values from their mean. This
essentially gives an insight into how large the errors are compared to the
overall range of values of a corresponding target quantity. In Supplementary
Fig. 1, we also provide both training and validation pair plots for energies
and forces predictions.

Even though the errors presented in Table 1 are not negligible, the
trained MLIP can be used for a high-throughput screening of potentially
stable candidates in a given system, with a subsequent refinement of the
results within accurate DFT calculations. Nevertheless, as we show in the
following sections, the binary phase diagrams of theMo-S system, predicted
withMTP and recalculated withDFT are quite close. Thismay indicate that
the training error accumulates on highly non-equilibrium structures, while
the predictions on relaxed structures are more accurate.

Substrate-aware structure prediction of 2D crystals
While predicting the structure of the free-standing 2D crystals is a common
practice41–49, incorporating substrate effects into this type of simulation has
been challenging for several reasons. First, the primitive cells of a 2D crystal
and a substrate are usually not identical, which leads to the non-physical
strain caused by the lattice mismatch. One possible solution is to find a
suitable supercell representation matching both the 2D crystal and the
substrate. This reduces the effect of mismatch on the structure and prop-
erties of the considered material. Second, the resulting supercell size of
103–104 atoms does not allow for high-throughput DFT relaxations of the
crystals that are typically performed during the EA run. Machine learning-
basedmodels address this problemby combining the near ab initio accuracy
and low computational cost, but require a thorough preparation of the
trainingdata for eachparticular system.Wehave alreadydiscussed the latter
in theprevious section and focus on a robust and convenientway to perform
the CSP below.

The evolutionary search for the new stable structures in a 2D Mo–S/
Al2O3 system was performed with a modified version of the USPEX code.

USPEX iswidely used74 for predicting the crystal structure of bulkmaterials,
two-dimensional materials in a vacuum45, reconstructions of surfaces75 and
nanoclusters76, as well as for discovering stable materials with optimal
properties77,78.

The workflow of the developed algorithm is summarized in Fig. 2. In
each generation, a set of 2D crystal structureswith a constrained thickness is
first produced using either USPEX evolutionary operators or a random
structure generator79,80. These structures then undergo a preliminary
relaxation and annealing step first without a substrate with the trained ML
potential. Here, we assume that the equilibrium lattice parameters of the 2D
crystal are bygreater extent definedby its composition,while the effect of the
substrate is considered as a next-order correction. As the equilibrium lattice
parameters and atomic positions are determined,we join the 2Dcrystalwith
the substrate using the lattice-matching algorithm (seeMethods for details)
and perform a conjugate gradient relaxation of the atomic positions, fol-
lowedby evaluationof the total energy of the system.The contributionof the
freestanding substrate is then subtracted from the total energy by detaching
it from the structure and evaluating its energy, while keeping its atoms fixed.
Finally, each structure in the set is ranked according to its value of fitness,
which is calculated as an energy above hull in a binaryMo-S phase diagram.
We note, that the convex hull construction is valid precisely because of the
fixed thickness (see more details in ref. 50). The structures in subsequent
generations of EA are produced based on the set of best representatives
identified up to that point using heredity and transmutation evolutionary
operators (details are provided in Methods). Thus, the algorithm works
iteratively until the list of the best structures remains unchanged for a
reasonable number of generations.

Stable 2D Mo–S crystals on Al2O3 substrate
2DTMDs are typically manufactured using CVD techniques, in which tiny
flakes of the material are condensed from the gas phase of the precursors
onto the surface of the substrate, where they undergo a chemical reaction.
Sapphire substrates are often chosen for their durability and high chemical
stability81. We follow the outlined experimental setup and predict the stable
Mo–S crystals on the same c-cut sapphire substrate. Our main motivation
here is to computationally explore thepossible outcomesof theCVDgrowth
upon varying the growth parameters (e.g., partial pressures and tempera-
tures of precursors),which affect the chemical potentials of the elements and
can lead to stabilization of different 2D Mo–S phases.

The results of the evolutionary search for stable Mo–S crystals on the
Al2O3 substrate (see the details of the calculation inMethods) are shown in
Fig. 3. In order to study the relative thermodynamic stability of the predicted
Mo-Sphases,weuse a convexhull approach in thebinaryphasediagram56,57.
The convex hull, by definition, connects phases that have lower energy than
any other phase or any linear combination of phases at the same overall
composition. Therefore, by plotting different structures found in the EA
search as points in the formation energy-composition space, one can
determine the stable structures by identifying the smallest set of points that
form a convex hull.

The top left panel in Fig. 3 shows the convex hull for the freestanding
2D crystals, while the top right panel shows the convex hull for the crystals
attached to the substrate. The bottom panel contains top and side views of
the 2Dvisualization of eachMo–S structure from the convexhull. The green
shading around the convex hull segments represents the error of the MTP
potential in predicting the formation energy, which is equal to

ffiffiffiffiffiffiffiffiffiffiffiffi
3σ2MTP

p
andffiffiffiffiffiffiffiffiffiffiffiffi

4σ2MTP

p
for freestanding and substrate-bound structures, respectively

(whereσMTP is aRMSEper atomof theMTPpotential inpredicting energies
from Table 1). We chose the error window according to the errors sum-
mation rule for the formation energy formula (see Methods). For each
structure falling within this error window, we re-evaluated the formation
energies in DFT (relaxing both the atomic positions and cell parameters for
the freestanding 2D layers, while doing only single-point DFT calculations
for those joined with the substrate).

First of all, we note that the 1H-MoS2 structurewithP�6m2 space group
and a lattice parameter aMTP

MoS2
¼ 3:15 Å was successfully found during the
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EA search. The lattice constant predicted within theMTP relaxation is very
close to the experimental one, which varies from 3.12Å82 to 3.22Å83,84. This
observation indicates that despite being trained on random structures, our
MLIP can successfully identify the equilibrium. In addition, we found three
newMo–S structures, namelyPmmaMo3S2, low-symmetryP�1Mo2S,P21m
Mo5S3, and P4mmMo4S, which are either close to or located on the convex
hull sections and therefore are stable. The lattice parameters of the new
structures are listed in the Supplementary Table 1.

Since our study is mainly focused on the overall effect of the substrate
on the properties of 2D materials, we next analyzed the way substrate
changes the stability of 2D structures. Indeed, the set of stable structures on a
convexhull is changedunder the effect of the substrate: inboth theMTPand
DFT cases, a new Mo4S structure appears on the convex hull after joining
with the substrate (see the upper right panel in Fig. 3), while Mo2S loses its
stability in the MTP case. The presence of structures such as Mo4S on a
convex hull indicates that chemical bonding with the substrate saturates a
certain fractionof the bonds in the 2D layer, stabilizing structures thatwould
notbe stable in a freestanding2Dcase (see SupplementaryFig. 7).Moreover,
the relative formation energies of the phases alter upon joining with the
substrate (see Supplementary Table 2), therefore allowing one to favor a
desired phase during experimental fabrication by choosing a suitable sub-
strate and adjusting the synthesis parameters. For example, changes in the
slope of the convex hull sections are directly related to the changes in the

chemical potentials of molybdenum and sulfur, and thus to the partial
concentrations of CVD precursors under which a specific phase of the
material can be stabilized.Wediscuss the synthesis conditions under a given
range of chemical potentials in more detail in the following sections and
in the SI.

Despite the certain inaccuracy of theMLIP, the sets of stable structures
predicted by the DFT and MTP overlap significantly. This justifies the
proposed pipeline for high-throughput stability studies a preliminary
MLIP-based screening of the configuration space within the evolutionary
search is performed first, and then followed by a re-evaluation of the for-
mation energies of a subset of stable structures falling within the window of
MLIP errors. This approach reduces the overall cost of the study by several
orders of magnitude and allows one to achieve the scaling of the system size
that is typically inaccessible in a pure DFT approach.

The last limitation we want to discuss here is the use of potential
energies to analyze the relative stability of the structures. Realistic experi-
mental setups require Gibbs formation energy calculations and considera-
tion of entropy effects. In this study, for simplicity, we focused on potential
energy contributions and analyzed the substrate effect in terms of a single
well-understood quantity, leaving more accurate energy calculations to
future research. As our recent work has shown (see ref. 85), the most
laborious part here is the calculation of the vibrational entropy contribution,
sinceonemust use accurate large-scaleMDsimulationswith thepre-trained
MLIPs toobtain accurate results. Fortunately, a suitableMLIP for theMo–S/
Al2O3 system has already been trained in this study, allowing us to account
for the entropy effects in the future.

We also compared our results with the study of the stable freestanding
2D Mo–S structures86, where the standard DFT approach was used to
perform the local relaxations and energy evaluations. We note that most of
these reference stable structures (exceptMo5S andMo5S4) were successfully
found in our simulations. In Supplementary Fig. 8, we compare our results
with those reproduced from ref. 86. All these reference structures appear to
be above the convex hull, indicating their thermodynamic instability. There
could be several reasons for such a discrepancy. First, there is no robust and
trustworthy way to determine whether the evolutionary algorithm has
successfully found the globalminimum.Compared to ref. 86, we performed
the relaxation of the structures at finite temperature. This usually leads to a
smoother potential energy landscape and eliminates some of the local
minima that exist in the zero temperature DFT relaxation85 and could cause
the evolutionary search to get stuck. Another related reason is a dynamical
instability of some of the thermodynamically stable structures found in

Table 1 | Performance of the trained MTP potential for the
Mo–S/Al2O3 system in predicting energies, forces and
stresses on a validation set

Energies,
meV/at.

Forces,
meV/Å

Stresses, kbar

MAE 37.9 307.4 2.11

RMSE 50.6 442.6 3.37

RMSE, % 6.5 0.64

Total number of
configurations

3240

Total number of atoms in
all configurations

283059

Themean absolute error (MAE) and rootmean square error (RMSE) are shown alongwith the ratio of
the RMSE to the overall range of forces and stresses in the data set.

Fig. 2 | Evolutionary algorithmworkflow.At each iteration, a set of 2D structures is
generated using the evolutionary operators in a given chemical space. After a pre-
liminary relaxation of the atomic positions and lattice parameters, these structures
are joined with the substrate using a lattice-matching algorithm that ensures no

lattice mismatch. Finally, the structures are ranked by their fitness value, and the
cycle is repeats. The calculation stops when the set of best structures remains
unchanged for a given number of iterations. A detailed explanation of the algorithm
and evolutionary operators used is given in Methods.
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ref. 86, such as Mo5S and Mo5S4. Due to the finite temperature relaxation,
the structures located at saddle points on the potential energy surface could
undergo the structural transformation and thus never be found during the
evolutionary search.

Electronic and phonon properties
In addition to stability study, it is important to analyze the electronic and
phonon properties of the discovered phases. In Supplementary Fig. 9, we
show the DFT-calculated electronic band structures of all five Mo–S struc-
tures presented earlier. Most of the stable structures found during the cal-
culationexhibit metallic behavior, except for the semiconducting MoS2. The
latter has a directDFTband gap of 1.8 eV, which is in perfect agreementwith
existing DFT results in the literature87. The special feature of the MoS2
monolayer is that its DFT band gap value is nearly identical to that obtained
from photoluminescence (PL) and optical absorption experiments88

(1.85 eV). Although DFT calculations are known to underestimate the band
gap values due to the lack of electronic correlations, here they provide better
agreement with the experiment compared to the GW approach (2.8 eV)87.
However, this ismostly explainedby a strong exciton binding (~ 1 eV),which
compensates the lack of correlations and can be observed in more accurate
first-principles methods (e.g. solving the Bethe–Salpeter equation (BSE))89–91.

Since other stable phases are rich inmolybdenum, the electron density
is mostly concentrated on the molybdenum atoms, therefore determining
the metallic behavior of the corresponding structures. This property can be

extremely useful in fabrication of low-dimensional electronic and optical
devices. For instance, the Mo3S2 andMo5S3 layers can actually coexist with
MoS2 according to the convex hull (as shown in Fig. 3), thus allowing for
creation of 2D metal-semiconductor lateral heterostructures, where the
metallic phase can act as an electrode86.

In order to study the dynamic stability of the predicted 2D structures
and examine the way they behave in realistic conditions, we performed the
calculation of the phonon band structures in a quasi-harmonic approx-
imationusing afinite-displacementsmethod for all the new freestanding 2D
crystals from Supplementary Table 2 using the trained MLIP and DFT for
energy and force evaluation (see Supplementary Fig. 10). Most of the
structures in the list have a certain number of imaginary frequencies asso-
ciated with the out-of-plane vibrational modes of the 2D layer in the DFT
results. However, the density of states corresponding to these frequencies is
often close to zero, resulting in a small contribution of these modes to the
total lattice vibrations. MLIP tends to overestimate the stability of the
structures and shows no imaginary modes in the majority of cases. This is
most likely due to the extremely large configuration space presented in the
training set, the coverage of which inevitably leads to a relatively worse
accuracy for structures close to equilibrium. Nevertheless, these results
demonstrate that with certain assumptions, the trained MLIP is capable of
both performing high-throughput search for stable structures within the
structure prediction protocol, and estimating the dynamical stability of the
stable candidates.

Fig. 3 | Results of the evolutionary search in the Mo–S/Al2O3 system. The upper
left panel shows the convex hull together with the set of stable (green andblue circles)
and metastable (orange circles) freestanding 2D Mo–S structures. The upper right
panel shows similar results, but for the structures joined with the substrate. The
green and blue convex hulls show the results predicted with MTP and recomputed

with DFT, respectively. The shaded green area represents the error of the MTP
potential in predicting the formation energies. Stable structures are visualized in the
lower panel, where molybdenum atoms are drawn as larger violet spheres and sulfur
atoms as smaller yellow spheres. The position of the substrate relative to the 2D
layers is shown schematically in a side view of each structure.
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Effect of substrate on phonon properties
The most interesting part, however, is identifying the effect of the substrate
on the dynamical stability of the structures. However, this requires using a
different method to calculate the phonon properties, since the finite dis-
placement approach typically requires solvinganeigenproblemof a 3N×3N
dynamicalmatrix, which is not accessible due to the large size of the systems
joined with the substrate. Therefore, we calculated the phonon DOS for the
MoS2 structure bothwith andwithout the substrate as theFourier transform
of the velocity autocorrelation function (see Methods for details). This
method not only allows us to compute the phonon DOS for large systems,
but also reveals a full anharmonic picture of the lattice vibrations. Our
results are shown in Fig. 4.

Interaction with the substrate leads to the energy transfer between
the 2D layer and the substrate itself, resulting in both shifting and
broadening of the DOS peaks. This can affect both the specific heat
capacity of the layer and its thermal conductivity, enabling the design of
desired vibrational patterns by choosing a suitable substrate. We also
note that similar effects can sometimes be observed when the lattice
vibrations are highly anharmonic. Here, however, the calculations were
performed in a fully anharmonic setup to eliminate this effect. A more
detailed discussion of the anharmonicity effect in the case of the 2D
MoS2 can be found in the SI.

Prediction of synthesis conditions
Although the evolutionary search yields a set of thermodynamically stable
structures, synthesizing these structures experimentally remains quite
complicated and, in fact, hardly related to the computational study we have
presented so far. In particular, even the synthesis of 2DMoS2 is represented
by at least six different techniques, includingCVDgrowth81,92, ALD93–95, and
electron-beam deposition (EBD)96–98. A comprehensive review of 2DMoS2
growth methods can be found in ref. 99.

Nevertheless, one of the key properties of the convex hull phase dia-
grams (Fig. 3) is the direct relationship between the slope of the convex hull
sections and the chemical potential value atwhich the corresponding phases
can be stabilized. In order to link the predicted binary phase diagram of the
2DMo-S systemwith the experimental synthesis conditions, it is necessary
to relate the values of the chemical potentials to the parameters that can
affect and control them in each specific experimental setup. In this case, a
key quantity that determines the stability of the structure is its Gibbs for-
mation energy Gf :

Gf ðP;TÞ ¼
1
N
ðGðP;TÞ � GsubðP;TÞ �

X
i

niμiðP;TÞÞ ð1Þ

where G(P, T) is a Gibbs energy of a structure joined with the substrate,
calculated at a given pressure P and temperature T, Gsub(P, T) is the Gibbs
energy of a clean substrate, ni, μi(P, T) are number of atoms and chemical
potential of atomic type i, andN =∑ini is a total number of atoms in the 2D
layer. For each value of μi, the most stable structure is then given by a
minimum value of the Gibbs formation energy among the set of considered
structures. For simplicity, we only consider the potential energy contribu-
tion to the Gibbs free energies of the structures and the substrate.

We used an experimental setup for the CVD synthesis of 2D MoS2
from ref. 81 to demonstrate how the synthesis conditions can be predicted
from the ab initio thermodynamics approach100. In this setup, sulfur is
vaporized from a sulfur boat and transferred to a furnace in a quartz tube
with a sapphire substrate and MoO3 precursor, leading to the formation of
MoS2 layers (see left panel in Fig. 5). The vaporization rate of sulfur (con-
trolledby the temperature of the sulfurboat), the temperature of the furnace,
and the carrier gas flow ratemostly determine the pressure and temperature
of the reaction components. Therefore, we linked the values of the chemical
potentials of molybdenum and sulfur to these quantities to identify the
stability regions of the structures presented on the convex hull (Fig. 3). First,
we assumed that the partial pressure of sulfur is determined by a certain
fraction of its saturated vapor pressure at the temperature of the sulfur boat
TSB, and sulfur is transferred to the reaction chamber without loss. Addi-
tionally, even though sulfur vapor can exhibit different molecular config-
urations (fromS2 to S8), we nevertheless considered only S2molecules, since
their concentration is predominant at T > 1000 K101. Similarly, the partial
pressure of MoO3 molecules is determined by a fraction its saturated vapor
pressure at the furnace temperature TF. Finally, we assumed that in the
thermodynamic limit, the reaction between MoO3 and sulfur leads to the
formation of molybdenum and SO2 gas:

S2ðgÞ þMoO3ðgÞ ! MoðsÞ þ SO2ðgÞ: ð2Þ

Weused the ideal gas approximation for sulfur vapor,MoO3 vapor and
SO2 gas, to derive the chemical potentials of molybdenum and sulfur, and
linked them to the stability patterns from the EA search. A detailed expla-
nation of the underlying calculations, as well as a theoretical background of
the ab initio thermodynamics is presented in the SI.

Our results are shown in the right panel of Fig. 5. For simplicity, we
assumed that the flow rate of the carrier gas is constant (the reliability of this
assumption is discussed further in the text), and only the temperatures of the
furnace TF and the sulfur boat TSB affect the chemical potentials of molyb-
denumand sulfur.As expected,MoS2 remains thermodynamically stable in a
wide range of temperatures, including the experimental synthesis conditions
(TSB ~ 800 K and TF ~ 1000 K)81. Both decrease in the temperature of the
sulfur boat (and thus decrease in the sulfur vaporization rate) and increase in
the furnace temperature (whichpromotes theMoO3 evaporation) can lead to
stabilization of the new structures with higher molybdenum content.

While interpreting these results, it is important tokeep inmind that the
predictions are made in a purely thermodynamic limit and do not take into
account the kinetics of the process. For this reason, altering the carrier gas
flow rate goes beyond the scope of our model. The specific values of the
temperaturesTF andTSB are thereforedescriptive in their nature, and should
serve as a guide to the actual experimental procedure rather than a solid
synthesis recipe. Nevertheless, the universality of the proposed approach
enables the construction of phase diagrams for nearly any experimental
setup, once the relationship between the synthesis parameters and the
chemical potential of components is established.

In this study, we have developed and demonstrated a compre-
hensive method for predicting the atomic structure and stability of
two-dimensional materials on arbitrary substrates, as well as their
experimental synthesis conditions. We integrated an evolutionary
algorithm with a lattice-matching subroutine and machine learning
interatomic potentials for relaxation to enable efficient exploration of a
wide range of atomic configurations and chemical compositions. The

Fig. 4 | Phonon density of states of the 2D MoS2 layer with (solid lines) and
without (dashed lines) substrate. The partial contributions of molybdenum and
sulfur atoms are shown in blue and orange, respectively. The effect of the substrate
leads to a broadening of the DOS peaks and a shift in their positions.
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proposed ASCT algorithm for MLIP training allow for the automatic
generation of fast and accurate interatomic potentials for arbitrary
simulation scenarios, including crystal structure prediction. Our
approach was validated on the Mo–S system on a c-cut sapphire
(Al2O3) substrate, demonstrating its efficiency in identifying stable 2D
crystal structures and evaluating their electronic and phonon prop-
erties. The evolutionary search revealed several new stable configura-
tions: Pmma Mo3S2, P�1 Mo2S, P21m Mo5S3, and P4mm Mo4S, where
the Mo4S structure is specifically stabilized by interaction with the
substrate. These structures extend the known landscape of 2D mate-
rials and open new possibilities for practical applications. Electronic
band structure calculations showed that all the new structures exhibit
metallic behavior. This suggests the potential to create 2D metal-
semiconductor lateral heterostructures, where the metallic phases
could serve as electrodes in electronic devices. Phonon calculations
demonstrated that some of the predicted structures show dynamical
instabilities associated with the out-of-plane vibrations of the 2D layer.
Interaction with the substrate was found to alter the phonon density of
states, potentially allowing modulation of the thermal and mechanical
properties of the 2D materials. Based on the ab initio thermodynamics
approach, we demonstrated the phase diagram of the predicted 2D
Mo–S structures in the parameter space of the CVD experimental
setup. Our results highlight the importance of including substrate
effects in computational studies to accurately predict the stability and
properties of 2D materials. The trained MLIP not only facilitates
accurate predictions but also significantly reduces computational
costs, making it feasible to study large systems that are otherwise
inaccessible within the conventional DFT methods. Overall, our
approach opens new horizons in 2D materials discovery, allowing to
find new substrate-stabilized phases even in well-known and thor-
oughly studied systems, obtain the configurations for characterizing
the substrate effect on various properties of 2D materials, and predict
the possible conditions for their synthesis to design the next generation
of electronic and optoelectronic devices. Future work will focus on
refining the MLIP training process further and extending the appli-
cation of thismethod to othermaterial systems and substrates, aligning
the computational approaches better with real experimental setups,
and experimental verification of newly discovered 2D materials.

Methods
MLIP training details for 2D Mo–S/Al2O3 system
2D Mo–S system. The ML potential for the Mo–S/Al2O3 system was
trained within the ASCT framework in three stages, where we first

prepared the MLIP for 2DMo-S system. Each iteration of the ASCT was
initialized with random 2D structures in the Mo–S system with 2 to 16
atoms in the unit cell, generated using the symmetry-based random
structure generator from a PyXtal package80. These structures were then
used to initialize the sampling in 20 parallel MD simulations. Each MD
run began with a replication of the unit cell in the in-plane directions to
obtain the structure with approximately 64 atoms in the unit cell. The
following steps were then performed for each structure:
1. A conjugate gradient relaxation of the atomic positionswith afixed cell

and a convergence criterion of 10−10 eV.
2. NPT annealing at T = 10 K and external stress of 1 bar for 10 ps
3. NPT heating from 10 K to 300 K at external stress of 1 bar for 50 ps
4. NPT anneal at T = 300 K and external stress of 1 bar for 50 ps

A time step of 1 fs was used for all simulations, and the external stress
was only applied along non-periodic dimensions. The MTP extrapolation
grade thresholds for sampling and run interruption were set to 3 and 10,
respectively. The cutoff radius for the local atomic environment repre-
sentation was 5 Å. The complexity of the model in terms of the size of the
basis set was fixed by selecting the 24g.mtp initial potential file. Each
iteration of training was performed with weights of 10, 0.01, 0.001 for
energies, forces, and stresses contributions in the loss function, while the
weight scaling for energies and forces was set to 2 and 1, respectively. The
ASCT convergence criterion was set to 25 iterations. Although it is tech-
nically possible to initialize the ASCT with a pre-trained potential, in this
work, we did not use pre-training and instead explored how the ASCT
algorithmnaturally builds thepotential fromscratch.Thiswas done to show
that a sufficiently accurate potential can be obtained automatically without
user involvement. Therefore, during the first few ASCT iterations, all gen-
erated random structures entered the training set immediately until suffi-
cient coverage of the configuration space was achieved to begin sampling
fromMDtrajectories. Finally, theMLpotential for the 2DMo–S systemwas
obtained after 41 iterations of the ASCT and the training set contained
727 structures.

Al2O3 surface slab. In the second stage, the c-cut surface slab of α-Al2O3

with 48 Al and 72 O atoms and a thickness of 10 Å was used to initialize
the sampling and to train a separate interatomic potential. The ASCT
routine andMTP training parameters were almost identical to those used
in the case of aMo–S system, except for the replication of the unit cell and
a lower convergence criterion of 15 iterations. Thus, the potential was
obtained in 27 iterations of ASCT with a total of 1140 structures in the
training set.

Fig. 5 | Schematic representation of the CVD synthesis of MoS2 using sulfur and
MoO3 precursors (left) and the phase diagram of the 2DMo-S system (right). In
an argon atmosphere, sulfur is vaporized from a sulfur boat and transferred to a
furnace in a quartz tube with a sapphire substrate and MoO3 precursor. As the
precursors react,MoS2 layers grow on the substrate, and by-products (such as Sx and
SO2 molecules) are removed from the reaction chamber. By controlling the

temperature of the furnace (TF) and the sulfur boat (TSB), it is possible to alter the
chemical potentials of sulfur and molybdenum. Phase diagram of the 2D Mo–S
system from the evolutionary search is plotted in (TF, TSB) coordinates. At the
experimental conditions ofMoS2 synthesis (TSB ~ 800 K and TF ~ 1000 K)81, MoS2 is
predicted to be stable. By increasing the TF and decreasing the TSB, it is possible to
stabilize other Mo–S phases found in this work.
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2D Mo–S/Al2O3. In the final, third stage, the training sets for the Mo–S
and Al2O3 systems were merged to train the initial version of the desired
Mo–S/Al2O3 potential. This time, the MD sampling part of ASCT was
initializedwith the randomMo–S structures containing up to 16 atoms in
the unit cell, stacked with a surface plate of Al2O3 using a latticematching
algorithm (see details below). To avoid abnormally large structures, we
did not apply lattice multiplication in this step and just put the generated
random structure into the fixed unit cell of theAl2O3 surface slab. Despite
the latticemismatch strain induced by this operation, these structures are
still suitable for training the interatomic potential, especially given their
“random” nature. The rest of the training was done in the same way as in
the previous cases. The convergence criterion of ASCT was 15 iterations,
and the trainingwas done in a total of 37 iterationswith 3218 structures in
the training set.

Details of the ab initio calculations
Calculation of data for MLIP training. Training data on energies,
interatomic forces and stresses of the new configurationswithin theASCT
workflowwere obtained at the density functional theory (DFT) level using
the VASP package102,103. The convergence criteria for an electronic self-
consistent cycle was 10−6 eV, and the cutoff energy for a plane-wave basis
set was 600 eV. We used a Gaussian smearing scheme with a width of
0.05 eV to represent the band occupancy. The first Brillouin zone was
represented by a Γ-centered uniformgridwith a density of 2π ⋅ 0.03Å. The
behavior of the core electrons and their interaction with the valence
electrons was described within Projector-Augmented Wave (PAW)
pseudopotentials104 with 12 [4p5s4d], 6 [s2p4], 3 [s2p1], and 6 [s2p4]
valence electrons for Mo, S, Al, and O, respectively. The electronic
exchange correlation effects were modeled within a generalized gradient
approximation (Perdew-Burke-Ernzerhof functional)105. A vacuum layer
of 20 Å was added to all structures along the direction normal to the
surface plane to avoid surface interactions due to periodic boundary
conditions.Due to the short-range nature of the trainedMLIPand the lack
of explicit dispersion corrections in the MTP package, dispersion cor-
rections were not included in the DFT setup. While this approach may
limit the overall accuracy of the predictions, it is not possible to properly
describe long-range interactions using the short-range MLIP approach.
Therefore, usingDFTwith vanderWaals (vdW) functionals as a source of
training data would lead to systematically worse prediction errors.

Bandstructure calculations. The electronic band structure calculations
were performed at the DFT level using a RelaxBandStructureMaker
utility implemented in the atomate2 package106 and the VASP backend.
All crystal structures (i.e. their positions and cell parameters) were first
relaxed until all interatomic forces were less than 2 ⋅ 10−2 eV/Å. Next, the
standard SCF calculation was performed to obtain the Kohn-Sham
orbitals on a coarse k-point grid with a spacing of 0.3Å−1. Finally, a band
structure calculationwas performed for a specific k-path generated by the
SeeK-path utility107 based on crystal symmetry. We used the same set of
PAW potentials as for MLIP training and evaluation, but chose a slightly
higher cutoff of 680 eV to accurately describe the surface effects of the
electrons. We also switched to the PBEsol functional108 to describe the
exchange-correlation effects of the electrons, as this usually results in
more accurate electronic band structures. Partial occupancies of the
orbitals were set using a Gaussian smearing method with a width
of 0.01 eV.

Phonon properties calculations. For the free-standing 2D crystals,
phonon band structures and densities of states were calculated in a quasi-
harmonic approximation with a Phonopy package109–111. We used both
VASP- and MTP-based relaxation and force constant evaluation to
evaluate the accuracy of the trainedML potential. First, the positions and
cell parameters of all crystals were relaxed until the interatomic forces
were less than 5 ⋅ 10−4 eV/Å. Next, the set of symmetric nonequivalent
finite displacements was generated using Phonopy utilities, and the

resulting interatomic forces were calculated to evaluate the dynamical
matrix. This matrix was finally diagonalized to obtain a set of eigen-
frequencies for the corresponding set of wavevectors. Compared to
previous DFT calculations, we used a slightly denser k-point grid with a
spacing of 0.2 Å−1, but a larger electronic smearing of 0.05 eV, as this
helped to obtain better converged results.

For the systems connected to the substrate, we used a different
approach to calculate phonon density of states based on the Fourier
transform of the velocity autocorrelation function (VACF) (Eq. (3)).

gðνÞ ¼ 4
Z 1

0
cosð2πνtÞ hvð0ÞvðtÞi

hvð0Þ2i
dt ð3Þ

VACF was calculated during NVE molecular dynamics simulation
(with trained MTP potential) for each studied system. It allows one to
calculate the phonon DOS in the full anharmonic picture and is generally
more accessible for large systems than a finite displacement method.

We also used the same approach to calculate the phonon DOS for the
freestanding 2D layers, in order to identify the effect of the substrate and the
potential influence of the anharmonicity.

Details of the evolutionary search
The evolutionary search for the new stable structures in a 2DMo–S/Al2O3

system was performed with a modified version of the USPEX code. During
the search, the structureswere allowed tohave from4 to16atomsof variable
Mo–S composition in the unit cell, while their thickness was constrained to
6Å. Each generation of the evolutionary search consisted of 120 structures,
except for the first one, which had 180 structures. The first generation was
generated with a symmetry-based random structure generator, while
structures in all subsequent generations were generated with a heredity
(40 %) and transmutation (30 %) evolutionary operator using the subset of
the best structures from the previous generation. The heredity operator has
beenadapted to 2Dcrystals from its 3Danalog in theUSPEXcode56,57. Itfirst
slices two parent structures along a random direction and then alternately
combines the slices to create a new structure. The transmutation operator
uses only one parent structure and creates a new one by randomly assigning
new chemical identities to a group of atoms. The remaining 30 % of the
structures in each generationwere generated randomly.The total number of
generations was limited to 150, while the evolutionary search was con-
sidered to converge when the list of best structures remained unchanged for
25 consecutive generations.

Local relaxation of the structures was performed in three steps. In the
first step, the generated 2DMo–S configurations were relaxed and annealed
with the pre-trainedMTP potential and a LAMMPS package, following the
same protocol used to train the MLIP (see section 8). Next, the relaxed 2D
structures were joined to the Al2O3 substrate using a lattice-matching
algorithm (see details below) with an initial gap value of 2.0Å, a maximum
mismatch criterion of 5 × 10−3, and a maximum value of the resulting
substrate area of 1000 Å2. This joint structure was again relaxed and
annealed in the same manner, while all the atoms of the substrate located
3.0 Å below the surface were frozen. In the last step, the resulting config-
uration of the substrate was used for a single-point calculation of the sub-
strate energy for further calculation of the fitness function of the structures.
Finally, as the relaxation is done, the fitness function of the structures was
calculated in terms of the energy over the composition convex hull. To do
this, we first calculate the formation energy ΔEf of each structure
ΔEf ¼ 1

N ðE �P
iniEiÞ, where E is the energy of the structure, ni, Ei are the

number of atoms and energies of each pure component, andN =∑ini is the
total number of atoms in the structure. The energy of the structure is either
equal to the total energy from the DFT calculation Etot, or to the difference
between the total energy and the clean substrate energy Esub: E = Etot− Esub,
depending on whether the free-standing 2D layers or those joined with the
substrate are considered. Finally, we build the convex hull in the (ΔEf -
composition) space and evaluate the energy over the convex hull to deter-
mine the stability of the structure.
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Lattice-matching algorithm
Toobtain the appropriate supercell representation of the 2Dmaterial on top
of the substrate, we adapted the Zur-McGill lattice matching algorithm112

implemented in the PyMatGen package113. The algorithm essentially builds
a set of supercell matrices for both substrate and 2D layer unit cells by
considering arbitrary linear combinations of the lattice vectors in the plane
to eventually generate two roughly equal supercells of similar shape with a
desired value of the estimated mismatch based on a ratio of the areas of the
resulting lattices. We also constrain the maximum area of the supercells to
obtain a Pareto optimal solution in terms of lattice mismatch and system
size. This requires a series of trial runs of the algorithmwith different values
of the maximum area, followed by an analysis of the resulting lattice mis-
match.Usually, large values of themaximumarea lead to structureswith low
mismatch but a large number of atoms. It is therefore necessary to choose
appropriate parameters before starting the calculations, depending on the
desired level of accuracy and the available computational resources. As the
supercells are generated, the algorithm connects the 2D layer to a substrate
at a given gap distance.

Data availability
All the data produced in this work is available at the Materials Cloud
Archive114. This includes the training set with Mo–S/Al2O3 structures, the
trained MTP potential, and the results of the evolutionary search.

Code availability
The code will be merged into the next release of the USPEX code (https://
uspex-team.org/).
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