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The thermodynamic mixing functions of MgSiO3–Al2O3 solid solutions in perovskite and ilmenite structures
were modeled based on the results of ab initio calculations applied to a set of supercell structures containing
64 and 48 exchangeable sites, respectively. The sampled structures were constructed from the supercells of
the end-members MgSiO3 perovskite and Al2O3 corundum by inserting double AlAl and MgSi defects,
respectively, at all possible distances. From these calculations the pairwise effective interactions were
derived and used to calculate enthalpy differences between successive configurations produced in Monte
Carlo simulation runs. The temperature dependent enthalpies of mixing of the solid solutions were evaluated
as averages over the Monte Carlo runs while the free energies of mixing were calculated with the method of
thermodynamic integration. The phase equilibria of perovskite, ilmenite and garnet in the Mg–Si–Al–O
system were calculated using the computed models of mixing and the standard thermodynamic properties
of the end-members from the data base of Fabrichnaya (1999). The obtained activity–composition models
are in good agreement with available experimental constraints, thereby showing that the thermodynamic
effects of mixing in silicate solid solutions with coupled substitutions can be reliably predicted based on ab
initio calculated total energies of a small set of supercell structures.
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1. Introduction

Phase equilibria in the Mg–Al–Si–O (MAS) system at high
pressures and temperatures form a reference frame which is
important for interpreting seismic discontinuities in the Earth's
mantle. The experimental and theoretical analysis of MAS is
complicated due to the poorly known thermodynamics of mixing of
MgSiO3–Al2O3 solid solutions in typical mantle minerals. For example,
the equilibrium between perovskite, ilmenite and garnet, which
might be responsible for the 660 km seismic discontinuity, is very
sensitive to the fractions of Al2O3 and MgSiO3 components in the
system (Irifune et al., 1996; Kubo and Akaogi, 2000; Hirose et al.,
2001). Recent theoretical (Yamamoto et al., 2003; Akber-Knutson and
Bukowinski, 2004; Zhang and Oganov, 2006) and experimental
studies (Stebbins et al., 2003;Walter et al., 2006) seem to agree that
the substitution of alumina into theMg silicates occurs via the charge-
coupled mechanism, MgSi=2Al. Due to the limited range of
investigated Al2O3 concentrations in perovskite and ilmenite, it is
difficult to assess thermodynamic mixing parameters of these solid
solutions solely on the basis of the available experimental data.
Moreover, the coupled substitution involving the cations of different
charge and size precludes the use of simple thermodynamic mixing
models. Recently, Panero et al. (2006) have estimated the enthalpy of
mixing in the MgSiO3–Al2O3 solid solutions in perovskite and ilmenite
based on ab initio calculations of excess enthalpies of several supercell
structures with various Al/Mg ratios. Their results achieved within the
assumption of regular model suggested that the degree of non-
ideality of mixing in the perovskite phase is smaller than in the
ilmenite phase. Here the conclusions of Panero et al. (2006) are tested
against DFT calculations performed on a more extensive set of super-
cell structures. The present set of the supercell structures is selected
on the basis of the double defect method (DDM) (Hoshino et al., 1993;
Vinograd et al., 2009), which has been recently successfully applied to
modeling the effects of ordering and mixing in the solid solution
between calcite, CaCO3, andmagnesite, MgCO3 (Vinograd et al., 2009).
Here the DDM is extended to the case of MgSi=2Al substitution,
where the mixing occurs on two sublattices. Monte Carlo simulations
based on the DFT results are used to map the temperature-dependent
thermodynamic mixing properties of MgSiO3–Al2O3 solid solutions
with ilmenite and perovskite structures and to investigate deviations
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from regular behaviour. The obtained models of mixing together with
the model of pyrope–majorite solid solution developed earlier
(Vinograd et al., 2006) and the assessed standard thermodynamic
properties of the end-members of perovskite, ilmenite and garnet
(Fabrichnaya, 1999) are used to predict phase equilibria in MAS in
the pressure range of 20–30 GPa and in the temperature range of
1773–2273 K.

2. DDM vs. random sampling

Recent progress in simulation studies of solid solutions was
stimulated by the development of methods of effective parameteri-
zation of the excess enthalpy. It has been shown that the excess
enthalpies of various supercell structures in a solid solution can be
accurately expanded in terms of energetic contributions from clusters
of different size and shape (Connolly and Williams, 1983; Sanchez
et al., 1984). In mineralogical studies the excess enthalpy of solid
solution phases has been often parameterized in terms of the
contributions from pair clusters only (Becker et al., 2000; Bosenick
et al., 2000; Warren et al., 2001; Becker and Pollok, 2002; Vinograd et
al., 2004; Vinograd and Sluiter, 2006; Vinograd et al., 2006, 2007a,b;
Palin and Harrison, 2007). The success of the simplified expansion
method is based on the notion that the typical applications in
mineralogical studies were concerned with oxides, where the
interactions between the exchangeable atoms (the cations) are
mediated by “inert” oxygen atoms, thereby decreasing importance
of many-body effects (Vinograd et al., 2009). When many-body
interactions can be ignored, the excess enthalpy of any configuration
of a binary AxB1− xR solution can be written:

ΔH = ∑
n
f nð Þ
AB J nð Þ

AB ; ð1Þ

where fAB
(n)

is the number of AB and BA pairs at the n-th distancewithin
a supercell and JAB

(n) is the enthalpy effect of the intracrystalline
reaction AA+BB=2AB, where the pairs of the exchangeable atoms
are considered at the same distance n within the lattice. Typically
the Js are assumed to be configuration independent. Therefore, JAB

(n)
is

the effective interaction at the distance n. When the Js are known the
temperature dependent properties such as the enthalpy, entropy and
Gibbs free energy of mixing can be reliably computed with the Monte
Carlo method (Bosenick et al., 2000; Warren et al., 2001).

The usual approach to the evaluation of the Js is to calculate the
excess enthalpies and fAB

(n)
for several hundred of randomly varied

configurations and to apply a least squares fit. The calculation of the
excess enthalpies of several hundred supercell structures is usually a
formidable task, therefore, force-field approaches have been often
employed. Recently, it has been shown that the number of the
supercell structures to be tested can be greatly reduced when the
configurations are selected based on a deterministic principle, namely
the DDM (Hoshino et al., 1993; Vinograd et al., 2009). The structures
required for the DDM calculations are constructed from the supercells
of the end-members AR and BR by inserting double defects of BB and
AA types, respectively, at all possible interatomic distances. In
supercells of reasonable size (∼1000 Å3) the number of such distances
does not exceed 10–20, so that about 20–40 structures are to be
processed.

The double defect method (DDM) is based on the notion (Hoshino
et al., 1993) that in the composition limit of the end-member AR the
effective pair interactions in a binary (AxB1− x)R solid solution can be
calculated with the equation

J nð Þ
AB=A = H nð Þ

AB + H nð Þ
BA−H nð Þ

AA−H nð Þ
BB ð2Þ

where Hij
(n)

is the total energy of a supercell structure prepared from
pure “A” composition by inserting an IJ pair at the distance n. One
notes also that the A atoms, which belong to the pairs, are
indistinguishable from the A atoms of the matrix. Hence, the AA
pair disappears, while the AB and BA pairs reduce to single B-type
defects within the A-matrix. Therefore Eq. (2) can be written in more
simply as

J nð Þ
AB=A = 2HB−H Að Þ−H nð Þ

BB ; ð3Þ

where JAB/A
(n)

is the pair ECI at the distance n in the limit of pure “A”, HB

and HBB
(n) are the enthalpies of the supercells with single B- and double

BB-defects, respectively and H(A) is the enthalpy of pure “A”
supercell. By adding and subtracting twice the energy of the
mechanical mixture 2(H(A)xA+H(B)xB) to the right-hand side of
Eq. (3), where xB=1/N and N is the number of sites in the supercell,
Eq. (3) can be rewritten in terms of the excess properties of the
supercells (Vinograd et al., 2009)

J nð Þ
AB=A = 2ΔHB−ΔH nð Þ

BB : ð4Þ

Here ΔHB and ΔHBB
(n)

are the excess enthalpies of the supercells
with single B- and double BB-defects, respectively. Similarly, in the B-
limit

J nð Þ
AB=B = 2ΔHA−ΔH nð Þ

AA : ð5Þ

In the case of periodic boundary conditions Eqs. (4) and (5)
transform as follows

J nð Þ
AB=A = 2ΔHB−ΔH nð Þ

BB

� �
=Dn; ð6Þ

J nð Þ
AB=B = 2ΔHA−ΔH nð Þ

AA

� �
=Dn; ð7Þ

where Dn is the degeneracy factor, which is an integer typically found
in the range of 1–8. Further considerations (Vinograd et al., 2009)
permit to substitute 2ΔHB and 2ΔHA terms in Eqs. (6) and (7) with the
effective parameters ΔHBB

(∞) and ΔHAA
(∞) which have the meaning of the

energies of hypothetical supercells with the pairs of defects at infinite
separation:

J nð Þ
AB=A = ΔHBB

∞ð Þ−ΔH nð Þ
BB

� �
=Dn; ð8Þ

J nð Þ
AB=B = ΔHAA

∞ð Þ−ΔH nð Þ
AA

� �
=Dn: ð9Þ

Thevaluesof theseparameters are obtained fromthefit to the excess
energies of the single- and double-defect structures via Eq. (1). The two
sets of the Js characterize the pair ECIs at two extremes along the
composition axis. The variation of the Js at intermediate compositions is
assumed to be a linear combination of the Js calculated in A- and B-
limits:

J nð Þ
AB = xA J

nð Þ
AB=A + xB J

nð Þ
AB=B: ð10Þ

The DDM has been successfully applied to predict phase relations in
the calcite–magnesite system (Vinograd et al., 2009) where a 3×3×1
supercell of R3̄c calcite (a=14.964 Å, c=17.061 Å) containing 54
exchangeable sites was considered. The enthalpies of the single- and
double-defect structures were calculated using the force-field model of
Austen et al. (2005) and the program GULP (Gale, 1997; Gale and Rohl,
2003). The calculations permitted a nearly quantitative description of
the experimental subsolidus phase diagram (Goldsmith and Heard,
1961).

Here the DDM is extended to a more complex case of a coupled
substitution AαCβ=BαDβ, where themixing occurs on two sublattices.
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While in an (AxB1− x)R solid solution there is only one ordering
reaction of AA+BB=2AB type, in the case of a coupled substitution
one needs to consider three ordering reactions, namely AA+BB=2AB
and CC+DD=2CD, which occur within α and β sublattices,
respectively, and the cross-sublattice interaction AC+BD=AD+BC.
The excess enthalpy per supercell of a binary (AC)x(BD)1− xR solution
can be written:

ΔH = ∑
n
f nð Þ
AB J nð Þ

AB + ∑
k
f kð Þ
CD J

kð Þ
CD + ∑

l
f lð Þ
AD+BC J

lð Þ
AD+BC ð11Þ

where n and k run over the pairs within α and β sublattices,
respectively, and l runs over the pairs across the two sublattices. Note
that fAB

(n)
and fCD

(k)
include pairs in (AB and BA) and (CD and DC)

configurations, respectively, while fAD+BC
(l)

includes the cross-sub-
lattice pairs exclusively in AD or BC configuration. By analogy with
Eqs. (8) and (9) the Js are the differences between the excess energy
of supercell structures with double defects of certain types and the
excess energies of hypothetical supercells with the same defects at
infinite separation. The energies of these hypothetical structures play
the role of the effective parameters. Here we assume that in MgSiO3–

Al2O3 solid solutions with ilmenite and perovskite structures the
mixing of Mgwith Al and Si with Al occurs within separate sublattices,
hereafter referred to as “Mg” and “Si”. Three types of pairwise
interactions can thus be distinguished: 1) the interaction MgMg+
AlAl=2AlMg within the “Mg” sublattice, 2) the interaction SiSi+
AlAl=2AlSi within the “Si”-sublattice, and 3) the cross-sublattice
MgSi+AlAl=MgAl+SiAl interaction. To determine these interac-
tions both in the “MgSi” and “AlAl” limits one needs to consider six
types of double defects. To be able to determine all the six adjustable
parameters (and thus the absolute values of all pairwise interactions)
a few additional structures with quadruple Al2Al2 and Mg2Si2 defects
were processed. Such structures, being charge neutral, contain both
intra- and cross-sublattice defect pairs and thus their excess energies
can be fitted together with the structures with the cross-sublattice
double defects. The next sections describe the results of such
calculations for perovskite and ilmenite. However, all calculated
perovskite structures in the Al-rich side with MgSi defects were
thermodynamically so unstable, that during optimization they
transformed into another space group. Thus being unsuitable for the
DDM fitting. In the Al-rich side, the corundum and Rh2O3(II) structure
types are heavily favoured over the perovskite structure type. The
total energy of the structures with such defects appeared lower than
the energy of the mechanical mixture of MgSiO3 and Al2O3

perovskites. Thus, in the perovskite case only MgSi-rich compositions
have been considered. Consequently, we had to postulate that the
mixing in perovskite is symmetric with respect to xAl2O3=0.5.

3. Ab initio calculations

Static density functional calculations were performed with the
VASP (Vienna ab initio simulation package) code (Kresse and
Furthmuller, 1996). The generalized gradient approximation (GGA)
(Perdew et al., 1996) together with the projector augmented wave
(Blöchl, 1994; Blöchl et al., 2003) method was used to calculate
energies of the supercell structures at zero Kelvin and 25 GPa. In all
calculations the following projector augmented wave (PAW) poten-
tials were used: Core region cut-off radii are 1.5 a.u. for silicon (core
configuration 1s22s2p6), 1.52 a.u. for oxygen (core configuration 1s2),
2.0 a.u. for magnesium (core configuration 1s22s2) and 1.9 a.u for
aluminium (core configuration 1s22s2p6).

A planewave cut-off energy of 500 eV for all calculations proved to
be reliable (convergence of the total energy to within 5×10−2 eV/f.u.,
convergence of pressure to within 0.4 GPa) and computationally
acceptable. Energy differences converge to within 8×10−4 eV. For the
Brillouin zone sampling theMonkhorst–Pack scheme (Monkhorst and
Pack, 1976) was used, and convergence of energy and stress with
respect to the mesh density was tested for each structure individually.

All perovskite and ilmenite structures were processed with a 160-
atom (32 f.u.) and 120-atom (24 f.u.) supercells, respectively and the
k-point sampling over a 2×2×2 Monkhorst–Pack grid. The ions were
relaxed with the conjugate gradient and the steepest descent
methods. The energy minimizations proceeded until self-consistency
within the prescribed tolerances (10−4 eV per unit cell for electronic
optimization and 10−3 eV per unit cell for ionic relaxation) was
reached. The cross-sublattice substitution does not change the charge
of the supercell and thus, does not require charge neutralizing
background corrections.

2Al3+↔ Mg2+ Si4+ ð12Þ

However, the determination of intra-sublattice interactions
requires to consider the interactions within each of the sublattices
separately:

2Al3+↔ Mg2+ Mg2+ + 2e ð13Þ

2Al3+↔Si4+ Si4+ − 2e: ð14Þ

The resulting double-defect structures have an unbalanced charge.
VASP allows to manually set the number of electrons, i.e. to change
the valence of an atom in the calculations. The total negative charge is
modeled as a homogeneous background charge. Coulomb interaction
between the charged defects within the cell and the defects in its
periodically arranged images changes the total energy of the system.

An analytical expression for the correction term (Leslie and Gillan,
1985; Karki and Khanduja, 2006):

ΔE = −αQ2

2ε0L
; ð15Þ

depends on is the lattice parameter, L, the Madelung constant, α, and
the charge, Q. For a large supercell adopted here this value is of the
order of 1 eV, which corresponds to about 30 meV/f.u. This exceeds
the convergence errors by a factor of 10. However, the correction error
is expected to be approximately the same for all structures with the
same type of the double defect. Since only the relative energies of the
double-defect structures are considered, the correction errors cancel
out.

4. The Results

Themain results are listed in Tables 1 and2andplotted in Figs. 1a–4b.
The complete set of data is given in the Supplementary materials.

4.1. Perovskite solid solution

Fig. 1a shows the excess energy of the cross-sublattice AlAl defects
in MgSiO3 perovskite as the function of the distance between the Al
atoms. The excess energies at all distances are positive. This means
that the mixing enthalpy, at least in the vicinity of MgSiO3, is positive.
It is also certain that the placing of two Al defects close together costs
less energy. Thus, the individual defects in the solid solution would
tend to segregate. The dashed line in Fig. 1a defines “no interaction”
limit. This would be the excess enthalpy of the double defect when the
Al cations are placed at an infinitely large distance from each other.
This energy is obtained by a fit to the excess energies of the double-
defect structures using Eq. (1). The Js are calculated as the differences
between the enthalpies of the structures with the double defects at
given distances and the enthalpy at the “no interaction” limit. The
fitting procedure uses the dual nature of the pairwise interactions:
The Js are not only the ordering enthalpies, but also the “excess



Table 1
The comparison between the total and excess energies of the supercell structures of
perovskite calculated with the DFT GGA and predicted with the Js-formalism (JF).

DFT absolute JF DFT excess JF

End-members
MgSiO3 −919.093 −919.093 0 0
Al2O3 −966.129 −966.129 0 0

Dist. Double defects, AlAl in MgSiO3

2.717 −920.263 −920.263 0.453 0.453
2.836 −920.224 −920.224 0.512 0.512
2.960 −920.210 −920.210 0.533 0.533
3.203 −920.173 −920.173 0.588 0.588
5.338 −920.127 −920.127 0.657 0.657
5.354 −920.152 −920.152 0.620 0.620
5.421 −920.086 −920.086 0.719 0.719
5.493 −920.074 −920.074 0.738 0.738
5.553 −920.102 −920.102 0.696 0.696
5.618 −920.067 −920.067 0.749 0.749
5.601 −920.161 −920.161 0.606 0.606
5.750 −920.094 −920.094 0.707 0.707
7.162 −920.058 −920.058 0.761 0.761
7.174 −920.069 −920.069 0.745 0.745
7.224 −920.070 −920.070 0.743 0.743
7.360 −920.080 −920.080 0.728 0.728

Quadruple defect structures
PQ1 −921.291 −921.254 1.119 1.174
PQ2 −921.119 −921.130 1.378 1.361

Disordered 50:50 structures
PD −939.544 −938.821 4.623 5.715

Ordered 50:50 structures
PO1 (P1) −944.768 −944.494 −3.251 −2.839
PO2 (Pc) −945.425 −944.530 −4.241 −2.893
PO3 (P 1) −944.133 −944.505 −2.295 −2.856
PO4 (P1) −943.122 −944.184 −0.770 −0.864

The values are in eV per supercell containing 160 atoms. The excess energies are in kJ
per one mole of the exchangeable atoms.

Table 2
The comparison between the total and excess energies of supercell structures of
ilmenite calculated with the DFT GGA and predicted with the Js-formalism (JF).

DFT absolute JF DFT excess JF

End-members
MgSiO3 −690.642 −690.642 0 0
Al2O3 −741.212 −741.212 0 0

Dist. Double defects, AlAl in MgSiO3

2.645 −691.913 −691.914 1.680 1.678
3.185 −691.877 −691.876 1.751 1.755
3.330 −691.845 −691.844 1.817 1.818
3.589 −691.852 −691.851 1.803 1.805
5.339 −691.707 −691.707 2.093 2.095
5.626 −691.809 −691.809 1.888 1.889
5.710 −691.751 −691.747 2.005 2.013
5.864 −691.639 −691.641 2.230 2.227
6.351 −691.560 −691.562 2.390 2.386
6.658 −691.542 −691.544 2.425 2.422
7.864 −691.546 −691.549 2.417 2.412
8.114 −691.554 −691.556 2.401 2.397

Dist. Double defects, MgSi in Al2O3

2.645 −738.296 −738.295 1.626 1.628
3.185 −738.198 −738.200 1.823 1.820
3.330 −738.203 −738.203 1.814 1.814
3.589 −738.199 −738.199 1.822 1.821
5.339 −738.058 −738.059 2.104 2.103
5.626 −738.163 −738.164 1.893 1.893
5.710 −738.024 −738.027 2.174 2.166
5.864 −738.037 −738.036 2.146 2.149
6.351 −737.970 −737.968 2.282 2.286
6.658 −737.953 −737.951 2.315 2.319
7.864 −737.963 −737.960 2.296 2.301
8.114 −737.972 −737.970 2.277 2.282

Quadruple defect structures
IQ1 −735.346 −735.301 3.322 3.483
IQ2 −735.363 −735.364 3.287 3.369
IQ3 −693.169 −693.161 3.391 3.741
IQ4 −693.274 −693.275 3.179 3.533

Disordered 50:50 structure
ID −709.522 −709.636 12.875 12.821

Ordered 50:50 structure
IO (R3) −713.216 −713.870 5.450 3.536

The absolute energies are in eV per supercell containing 120 atoms. The excess energies
are in kJ per one mole of the exchangeable atoms.
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enthalpies”, meaning that their integral effect, when it is summed
proportionally to the numbers of pairs of dissimilar cations, gives the
excess enthalpy of the configuration. Thus, the energy of “no
interaction” limit is, in fact, the sum of the ordering interactions at
all distances. Thismeans that the enthalpy of the “no interaction” limit
and the Js can be determined only together via a self consistent fitting
procedure. Intra-sublattice Js, those which correspond to the ordering
reactions MgMg+AlAl=2MgAl and SiSi+AlAl= 2SiAl, also contrib-
ute to the excess enthalpies. The absolute values of these Js depend on
the values of the effective parameters which correspond to the excess
enthalpies of hypothetical structures with intra-sublattice defects at
infinite separation. The problem is that, since the double-defect
structures with the intra-sublattice double defects are not charge
balanced, their excess enthalpies cannot be compared to those of the
cross-sublattice defects and thus cannot be used in the fit. Conse-
quently, there is insufficient data to simultaneously constrain the “no
interaction” energy limits of the intra and cross-sublattice interac-
tions. Therefore, we have calculated the excess energies of two
structures with quadruple defects. The excess energies of these
structures include intra-sublattice Js and thus all the adjustable
parameters can be constrained. The results of the fit are shown in
Fig. 1b and listed in Table 1. Fig. 1a shows that the intra-sublattice
interactions have similar magnitude to those of the cross-sublattice
ones. These interactions are generally negative, meaning that the
“mixed-cation” pairs of MgAl- and SiAl-type are preferred at nearly all
distances over the pairs with the same cations. The negative sign of
these interactions can be understood noting that the electrostatic
energy of two pairs of dissimilar cations is always lower than the sum
of the energies of pairs composed of the same cations.

As a result of the DDM calculations we have obtained three sets of
the J fromwhich the excess enthalpy of any configuration can trivially
be evaluated with Eq. (11) as a function of frequencies of pairs with
dissimilar cations. This equation has been then used to simulate
supercell structures with contrasting ordering states. By applying a
Monte Carlo algorithm with the Metropolis sampling scheme
(Metropolis et al., 1953) we could vary the cation distribution within
the supercell and make it dependent on the temperature-like
parameter. Such a simulation does not have true thermodynamic
meaning, because the size of the supercell (64 exchangeable atoms) is
too small. Nevertheless, it can be used to find ground states. By
gradually decreasing the temperature within the supercell of the
50:50 composition we could find the ordered structure (Fig. 2) which
has the space group symmetry Pc, and gives upon relaxation the
lowest excess enthalpy (−4.241 kJ/mol with VASP, −2.893 kJ/mol
with Eq. (11)). By slightly shifting the values of the Js we have found
three additional ordered structures, two of which have the space
group P1 and one the space group P1

�
. Due to the ordering the

supercell size can be reduced. Thus, the atomic arrangements of all the
four structures can be shown within a 1×1×2 supercell. The atomic
coordinates of these structures are given in the Supplementary
materials. By setting the temperature equal to 100000 K, we
simulated a structure with essentially disordered cation distribution.
The static energies of the ordered and disordered structures were
calculated with VASP and used to test the accuracy of Eq. (11). The
predicted excess energies (in kJ/mole of 1/2 MgSiO3) are compared to
the DFT results in Table 1. Clearly, Eq. (11) performs well in predicting
the excess enthalpies of the states with the contrasting ordering
schemes.



Fig. 1. a) The excess energies of the supercell structures with the AlAl defects in MgSiO3

perovskite as the function of the distance between the individual defects. The dashed
line corresponds to the “no interaction” limit, i.e. the enthalpy of a hypothetical
structure with the defects placed at an infinitely large distance from each other. b) The
pair-wise effective interactions in the perovskite solid solution recalculated from the
energies of the double-defect structures.

Fig. 2. The structure of the ordered intermediate compound, 50:50-2, with the lowest
excess enthalpy shown in the 1×1×2 supercell. It belongs to the Pc space group. The
dark-yellow and pink polyhedra are filled with Si and Al atoms respectively, the Mg and
O atoms are shown as light-blue and red balls, respectively.

481D.Y. Jung et al. / Earth and Planetary Science Letters 295 (2010) 477–486
4.2. Ilmenite solid solution

The DDM calculations for the ilmenite solid solution followed the
scheme described for the perovskite. However, in this case we
considered not only the AlAl defects in the MgSiO3 host, but also MgSi
defects in the Al2O3 corundum. Fig. 4a shows the excess energies of
the defect structures with cross-sublattice defects as a function of the
distance and the “no interaction” limits obtained with the least
squares fit. To avoid the uncertainty of the “no interaction” limits of
the intra-sublattice Js, four structures with quadruple defects were
included in the fit. The complete set of the Js is plotted in Fig. 4b.
Similarly to the perovskite case, Fig. 4a shows that the excess energies
of the cross-sublattice defects are positive. The energies of the “no
interaction” limits are much larger than those in perovskite. This
means that in the limit of infinite dilution, when the defects are too far
from each other to experience forces of ordering, the ilmenite solid
solution has a much stronger tendency to phase separation than the
perovskite. Fig. 4b shows that the Js in the both solid solutions show
the similar pattern: the cross-sublattice interactions are positive and
the intra-sublattice interactions are negative. To test the accuracy of
Eq. (11) for the ilmenite, DFT calculations for structures with ordered
(Fig. 3) and disordered configurations were performed. These
structures were found with the procedures analogous to that
described in the previous section. The coordinates of the ordered
structure (space group R3) are given in the Supplementary materials.
The excess enthalpy of this structure is higher than the mechanical
mixture of MgSiO3 and Al2O3 ilmenites. This metastable structure can
be simulated only within a small supercell. The predicted excess
energies of these structures are compared to the DFT results in Table 2.

5. Monte Carlo simulations

The double-defect calculations show that the mixing in the
ilmenite solid solution is more non-ideal than for the perovskite.
The calculations show also that the excess enthalpy in both solid
solutions is composed of interactions of different strength. The large
variance in the interaction energies implies the existence of strong
ordering tendencies whichmight significantly affect the free energy of
mixing at intermediate compositions and low temperatures. This
implies that to be able to discuss the mixing quantitatively at any
temperature and composition of interest one has to simulate the
Boltzmann distribution of the configurational states. This has to be
performed for a reasonably large supercell, because in small supercells
the contribution from low-energy states is overestimated. Our
experience shows that supercells containing 2–3 thousand of the
exchangeable sites permit reliable estimates of the thermodynamic
properties. For example, the predicted temperature of the order/
disorder transition in dolomite becomes insensitive to the supercell
size in supercells containing more than 2600 exchangeable sites
(Vinograd et al., 2007a). Here we considered the supercells of
perovskite and ilmenite containing 4096 and 3072 sites respectively.



Fig. 3. The structure of the ordered intermediate ilmenite compound R3with the lowest
excess enthalpy. The dark-yellow and pink polyhedra are filled with Si and Al atoms
respectively, the Mg and O atoms are shown as light-blue and red balls, respectively.

Fig. 4. a) The pair-wise effective interactions in the perovskite solid solution. b) The
pair-wise effective interactions in the perovskite solid solution.
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The temperature was varied in the intervals 373–2673 K and 1373–
2673 K for perovskite and ilmenite, respectively, with a step of 100 K.
The composition was varied with the steps of 0.03125 for perovskite
and 0.04167 for ilmenite. The number of Monte Carlo steps in each run
was 3×107 and only the last 1.5×107 steps were used in the
averaging. The free energies of mixing were calculated with the
method of thermodynamic integration (Warren et al., 2001), where
the properties of the system are, at first, simulated in the state of
complete disorder (λ=0) and then are gradually driven to the
equilibrium at a given temperature by increasing the value of λ. Each
point in the temperature–composition space was therefore simulated
not only with the nominal values of the Js, but also with the Js scaled
with the λ parameter. λ was varied in the interval 0–1 with a step of
0.04.

ΔG = ΔG0 + ∫λ

0
ΔHλdλ; ð16Þ

where ΔHλ is the average excess enthalpy of the supercell summed
over the states, which correspond to a given value of λ and ΔG0 is the
free energy of mixing of the solid solution per 1 mol of exchangeable
atoms in the state of complete disorder:

ΔG0 = H0 + RTðxMglnðxMgÞ + xAllnðxAlÞÞ; ð17Þ

where H0 is obtained from Eq. (11) by substituting fij
(n)

with values
proportional to the probabilities of finding IJ pairs in the completely
random mixture.

The enthalpy isotherms in perovskite and ilmenite are shown in
Fig. 5a and b, respectively. The Gibbs free energies of mixing are
plotted in Fig. 6a and b. The configurational entropies were calculated
from the enthalpies and free energies of mixing with the relation:

ΔS = ΔH−ΔGð Þ= T: ð18Þ

These functions are plotted in Fig. 7a and b.

6. Activity–composition relations

To simplify applications of the calculated free energy functions in
petrological studies we have fitted them in the intervals of 1673–
2673 K with the Redlich–Kister polynomials:

Gexcess = x1x2 ∑
n

i=0
Ai x1−x2ð Þi; ð19Þ

where Ai are further expanded as functions of temperature Ai=Ai
h−TAi

s

and x1 is the mole fraction of Al2O3.
The coefficients of these polynomials are given in Table 3. The free

energy values nominally correspond to 25 GPa. We assume, however,
that the models can be used in a wider pressure interval (20–30 GPa).
Our experience with other oxide solid solution systems shows that
changes in the pressure of the order of 5 GPa do not significantly affect



Fig. 5. a) The enthalpy of mixing isotherms in the perovskite solid solution simulated
with the Monte Carlo method. b) The enthalpy of mixing isotherms in the ilmenite solid
solution simulated with the Monte Carlo method.

Fig. 6. a) The Gibbs free energy of mixing isotherms in the perovskite solid solution
simulated with the Monte Carlo method. b) The Gibbs free energy of mixing isotherms
in the ilmenite solid solution simulated with the Monte Carlo method.
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the thermodynamicmixing functions. Thesepolynomials are used in the
next section to calculate the thermodynamic activities of MgSiO3 and
Al2O3 components in perovskite and ilmenite phases in equilibrium
with garnet.
7. Phase equilibrium calculations in MAS

The derived thermodynamic models were applied to calculate
phase equilibria of perovskite, ilmenite and garnet in the MAS system
in the pressure interval of 20–30 GPa. The activity–composition
model of the pyrope–majorite solid solution in the garnet phase
was adopted from the study of Vinograd et al. (2006). The standard
thermodynamic properties of the end-members were taken from the
data base of Fabrichnaya (1999). The calculations were performed
with the Thermo-Calc program (Andresson et al., 2002). The use of the
new activity–composition models requested an adjustment of the
standard enthalpy of Al2O3 perovskite. The new value is 10 kJ higher
than that in data base (Fabrichnaya, 1999).

The results of the calculations at 1873, 2023and 2273 K are shown in
Figs. 8–10, respectively. The predicted pressures of the reaction
perovskite+corundum=garnet are 0.5 GPa lower than those deter-
mined in the experiments of Kubo and Akaogi (2000) and 2 GPa higher
than those of the experimental data of Hirose et al. (2001). Calculations
of garnet decomposition pressure at 1773 K show good agreementwith
the results of Irifune et al. (1996). The comparison of the results of
Hirose et al. (2001) with the above mentioned experimental data
indicates a systematic shift of about 2.5 GPa to lower pressures.

8. Discussion and conclusions

The present study is consistent in general with the conclusion of
Panero et al. (2006) that the deviation from ideal mixing, measured in
terms of regular model, in the ilmenite solid solution is much greater
than in the perovskite phase. However, in detail, our simulations show
that both phases reveal a more complex mixing behaviour. In the
perovskite solid solution the enthalpy of mixing is greatly decreased
at the intermediate composition due to the stabilization of the
ordered phase. The decrease in the enthalpy of mixing due to the
ordering is associated with a decrease in the configurational entropy.
The entropy isotherms, both in the perovskite and ilmenite cases,
deviate significantly from the ideal mixing curve (Fig. 7a and b). Thus,
both solid solutions obey regular mixing only in the high-temperature



Fig. 7. a) The configurational entropy isotherms in the perovskite solid solution
calculated with the thermodynamic integrationmethod. b) The configurational entropy
isotherms in the ilmenite solid solution calculated with the thermodynamic integration
method.

Fig. 8. Calculated phase diagram of the MgSiO3 and Al2O3 system at 1873 K using the
activity–composition models derived in this study. The properties of the pure phases
are adopted from the data base of Fabrichnaya (1999) Symbols are phase compositions
determined by EPMA analysis (Kubo and Akaogi, 2000).
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limit. This prediction is at variance with the conclusion of Panero et al.
(2006) that the entropy in the both solutions is essentially ideal.
Panero et al. (2006) have arrived at this conclusion following the
approach of Akber-Knutson and Bukowinski (2004) where thermo-
Table 3
The parameters of Redlich–Kister polynomials for the excess free energy of mixing in
perovskite and ilmenite solid solutions.

i Ai
h

(J/mol)
Ai
s

(J/K/mol)

Perovskite s.s.
0 29,339 −5.4
1 2001 −0.0373
2 12,921 +1.8132
3 4855 +3.4275

Ilmenite s.s.
0 9235 −2.759
2 12,564 +2.642
4 −1115 −0.937

The values are per AlO1.5 formula unit.
dynamic mixing properties of a solid solution are evaluated by
sampling a small subset of the accessible states. Panero et al. (2006)
considered a subset of 2000 randomly chosen configurations within
∼3.8×108 available for a 120 atoms supercell and assumed their
energy distribution to be representative for the whole set. The
energies of individual configurations were calculated with a force-
field model. The problem is, that this approach is bound to predict a
nearly ideal entropy because the probability distribution function has
a sharp maximum at the average enthalpy and thus there is a very
high probability that the energies of the configurations sampled at
random will be very close to the average value. When the enthalpies
of the sampled configurations (and thus their probabilities) deviate
little of each other, the entropy of the subset approaches the
maximum. The Monte Carlo approach does not have such a drawback.

Consistently with the earlier study of Yamamoto et al. (2003), we
find that the excess enthalpies of the cross-sublattice double defects
Fig. 9. Calculated phase diagram of the MgSiO3 and Al2O3 system at 2023 K. Empty
symbols are phase compositions determined by monitoring changes of XRD and Raman
spectra (Hirose et al., 2001). Filled symbols are data from Hirose et al. (2001) corrected
by 2 GPa to be consistent with phase transformations in pure MgSiO3 (Fabrichnaya,
1999).



Fig. 10. The phase relations in the MAS system at 2273 K. Symbols are the same as in
Fig. 9.
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are smaller at short interatomic distances. When the distance
between the defects increases, the excess enthalpies approach a
higher value, which we call the “non-interaction” limit (Figs. 1a and
4a). This is the enthalpy of mixing not perturbed by ordering. This
limit is reached at an infinitely high temperature, when the difference
in the excess enthalpies of the double-defect structures is incompa-
rably small relative to the temperature factor. The system in this state
obeys regular mixing. The excess enthalpy in the regular limit can be
estimated by calculating the excess energies of the double structures
with the defects at the maximum possible distance. On the contrary,
when one aims to estimate the enthalpy in the low-temperature limit,
one should use the excess energy of a double-defect structure with the
lowest excess energy. In the cases of perovskite and ilmenite these are
the structures with the defects at the shortest distance. To assess the
mixing behaviour at a given temperature one needs to sum the
contributions from all double defects according to the Boltzmann
factors. However, one should keep inmind that this weightingwill not
give an accurate result because the supercell is too small to provide
correct statistics. The only sensible alternative is to increase the
supercell and to use a Monte Carlo algorithm. Attempts to estimate
mixing enthalpy from the double defects without the use of theMonte
Carlo method are futile.

Random sampling approaches, when they applied to intermediate
compositions, permit to estimate the enthalpy in the high-temperature
limit only. Our values for the excess enthalpy of the disordered 50:50
structures in perovskite and ilmenite at 25 GPa are 4.623 and
12.875 kJ per formula unit with one cation, respectively (Tables 1
and 2). These values when recalculated to eV per formula unit with
two cations (0.096 and 0.267 eV) are marginally consistent with the
values reported by Panero et al. (2006) (Fig. 5a in Panero et al., 2006)
which are of the order of 0.06 and 0.20 eV, respectively. The values
obtained by Panero et al. (2006) are slightly lower consistently with
their strategy to plot the lowest values found for each composition.
We should note also that our model of the perovskite solid solution
cannot be compared to the recent result of Tsuchiya and Tsuchiya
(2008) obtained with the random sampling approach. This is due to
the fact, that we considered perovskite as an isostructural solid
solution, while Tsuchiya and Tsuchiya (2008) treated is as a
"crossover" between perovskite and Rh2O3 end members.

The DDM coupled with the Monte Carlo algorithm allows to map
the functions of mixing within a wide temperature interval. No a
priori assumption of regular mixing was required. The method makes
it possible to investigate the most likely ordering schemes by direct
sampling of the most important pairwise interactions. We find that
the cross-sublattice interactions in both phases are positive showing
that the AlAl andMgSi pairs are preferred over the AlMg and AlSi pairs
at all distances. Since the formation of some AlMg and AlSi pairs is
unavoidable due to mixing, there is always a positive contribution to
the excess enthalpy. On the other hand, the inter-sublattice interac-
tions are negative showing that the AlSi and AlMg pairs are always
preferred over the AlAl+SiSi and AlAl+MgMg groupings, respec-
tively. This creates the possibility of decreasing the enthalpy of mixing
due to the ordering of Al,Si and Al,Mg within the sublattices. Such an
ordering is particularly effective at intermediate compositions where
the numbers of AlSi and AlMg groupings increase. When the effects of
the ordering within the sublattices overcome the effect of the increase
in the number of AlMg and AlSi pairs across the sublattices, an ordered
phase can form.

Even though the signs and the magnitudes of the ordering
interactions in perovskite and ilmenite are similar, the phase relations
are very different. In ilmenite the tendency to demixing prevails. The
difference in the ordering behaviour of the two solutions is certainly
related to the different structure types. We observe that in the
ilmenite structure the numbers of the cross-sublattice AlSi and AlMg
pairs introduced by a single defect pair at the second, third and fourth
nearest-neighbor distances are three times larger than in the
perovskite structure. This suggests that it is generally more difficult
to avoid the formation of the unfavorable cross-sublattice interactions
in the ilmenite phase.

Our study allows also to estimate the degree of asymmetry of the
mixing functions. The similarity between the fitted values of the excess
enthalpies in the limit of infinite separation computed for the double-
defect structures with the contrasting compositions suggests that the
asymmetry in the ilmenite phase is small. It is interesting to observe that
the peculiar shape of the excess enthalpy of the AlAl defects in MgSiO3

vs. the defect separation is reproduced nearly exactly with the MgSi
defects in Al2O3 (Fig. 4a). This similarity is probably due to the fact that
AlAl pair in the MgSiO3 host and the MgSi pair in the Al2O3 host
experience approximately the same structural tension due to the same
misfit between the same combination of the cations. It is conceivable
that the same similarity would exist in the perovskite phase, if theMgSi
defects in Al2O3 were stable. This supports the present symmetric
treatment of the perovskite solid solution.

The predicted phase separation in the ilmenite phase is consistent
with the experimental phase relations at high pressures in MAS,
which require the existence of two ilmenites with contrasting
compositions (Fig. 9). On the other hand, the phase relations are
consistent with the existence of only one perovskite phase. The ease
with which the experimental phase relations can be fitted with the
newmixing models shows that the presently simulated excess effects
are reasonable. These models are recommended to be used in
petrological calculations.

The most important conclusion of this study is that with the
implementation of the DDM the already available computational
resources appear to be sufficient for the calculation of mixing effects
in complex petrologically relevant phases with ab initio accuracy. This
opens the perspective of creation of internally consistent thermody-
namic data bases for petrological materials with externally parame-
terized mixing models. Such data bases could gradually substitute the
currently available ones, in which the standard properties of pure
phases and the parameters of mixing models are assessed together
with the effect of strong correlation between these types of data and,
consequently, their low accuracy.
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