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Mechanical Properties of Single and Polycrystalline Solids
from Machine Learning

Faridun N. Jalolov, Evgeny V. Podryabinkin, Artem R. Oganov, Alexander V. Shapeev,
and Alexander G. Kvashnin*

Calculating the elastic and mechanical characteristics of non-crystalline solids
can be challenging due to the high computational cost of ab initio methods
and the low accuracy of empirical potentials. This paper proposes a
computational technique for efficient calculations of mechanical properties of
polycrystals, composites, and multi-phase systems from atomistic
simulations with high accuracy and reasonable computational cost. The
calculated elastic moduli of polycrystalline diamond and their dependence on
grain size are determined using a developed approach based on actively
learned machine learning interatomic potentials (MLIPs). These potentials are
trained on local fragments of the polycrystalline system, and ab initio
calculations are used to compute forces, stresses, and energies. This
technique allows researchers to perform extensive calculations of the
mechanical properties of complex solids with different compositions and
structures, achieving high accuracy and facilitating the transition from ideal
(single crystal) systems to more realistic ones.

1. Introduction

Diamond is a widely usedmaterial in themanufacturing industry
due to its unique properties, particulary its unsurpassed hardness
(varying from 60 to 120 GPa[1–4] depending on conditions). Syn-
thetic diamonds,mainly used in industry, are usually synthesized
in a polycrystalline structure. The size of crystallites (grains) in di-
amonds can vary from a few nanometers to tens of microns, de-
pending on themethod of production and parameters of the tech-
nological process.[5] The mechanical properties of polycrystalline
diamond depend on the size of the grains.[6] When the grains
are large (about one micron), the specific volume of inter-grain
boundaries is not significant and the basic mechanical properties
of such diamonds are similar to those of single crystals. However,
the specific volume of inter-granular boundaries increases as the
grain size decreases, which significantly affects the mechanical
properties of diamonds. Huang and Irifune,[7,8] have shown that
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the elastic properties of polycrystalline di-
amond may even exceed those of single-
crystal diamond. Understanding the rela-
tionship between grain size and the prop-
erties of polycrystalline diamond is cru-
cial, particularly in the synthesis of poly-
crystalline diamonds from ultrafine dia-
mond dust. This study aims to compre-
hensively and accurately investigate the
impact of grain size on their mechani-
cal properties in polycrystalline diamonds.
Perhaps the most appropriate approach

to studying this problem is to simulate the
system at the atomistic level. However, se-
lecting a model for interatomic interaction
is crucial. Two traditional approaches for
such models are empirical potentials and
ab initio calculations. Empirical potentials
are used to simulate large atomistic systems
due to their computational efficiency. These
models have a fixed functional form that is

constructed with insight and include only a few fitting parame-
ters, which are chosen to replicate the fundamental properties of
single crystals and experimental results in simulations. The com-
monly used empirical potentials for diamond include the Ter-
soff potential,[9] the Brenner potential,[10] and the ReaxFF force
field,[11] each with its unique characteristics. However, it is im-
portant to note that empirical potentials may not accurately re-
produce the complex interactions within inter-granular bound-
aries. This is because the structure in these regions differs from
the regular crystal lattice that these potentials have been fitted for.
Erohin et al.[12] conducted a theoretical study on the ultrahigh

hardness of polycrystalline diamonds using molecular dynamics
simulations with the Brenner potential.[10] The authors analyzed
the evolution of the bulk modulus with grain size and identified
structures with a higher bulk modulus than that of single crys-
tal diamond. While the use of classical empirical potentials to
describe new atomic configurations in polycrystals is debatable,
this study suggests that the unusually high bulk modulus may be
caused by the anisotropic response of particular grains to hydro-
static stress. This hardening mechanism seems plausible, given
its agreement with experimental data.
Density Functional Theory (DFT)[13,14] is the most commonly

used quantum-mechanical method for describing material prop-
erties. DFT provides highly accurate calculations of energies and
forces, but it is only practical for atomistic systems containing
several hundred atoms, making it unsuitable for characterizing
inter-granular boundaries.
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Recently, there has been a rapid development and increased
popularity of machine learning-based models for interatomic in-
teraction. These models aim to combine the computational ef-
ficiency of empirical potentials with the accuracy of quantum-
mechanical models. Machine-learning interatomic potentials
(MLIPs) have a flexible functional form that allows for the approx-
imation of any potential energy surface with a predetermined
accuracy by increasing the number of parameters. MLIPs use
different representations of crystal structures, such as GAP,[15]

MTP,[16] NNP[17,18] etc. The use of machine learning (ML) tech-
niques in atomistic simulation ofmaterials has gained significant
momentum in recent decades.[17,19–34] Potential parameters are
typically identified during the training process to minimize the
deviation between predicted and first-principles-calculated forces
and energies for configurations in the training set. However, if
the atomistic configuration used for energy and forces calcula-
tions differs significantly from those in the training set, extrap-
olation occurs, which may result in an unacceptably high pre-
diction error. To address this issue, MLIPs must be able to iden-
tify configurations where extrapolation may occur. This can be
achieved through a “learning on-the-fly” approach as proposed
by Podryabinkin et al.[35] This method guarantees that there is no
extrapolation when computing the energy or forces for atomistic
configurations. Zhang et al.[36] propose the Deep Potential GEN-
erator (DP-GEN) “on-the-fly” learning procedure. This model is
capable of generating uniformly accurate deep learning-based po-
tential energy surface (PES) models in a way that minimizines
human intervention and computational costs for data generation
and model training.
Here, we present an active learningmethod for MLIPs that au-

tomatically constructs local configuration fragments. These frag-
ments allow for the extrapolation to a periodic configuration with
regular periodic joints. The size of these configurations is small
enough to be suitable for DFT calculations. The main objectives
of this work are: 1) to investigate the dependence of the elastic
properties of polycrystalline diamond on grain size with an ac-
curacy close to that of DFT, and 2) to assess the effectiveness of
the active learning method in handling local environments and
transforming them into periodic configurations.

2. Experimental Section

2.1. Machine Learning Interatomic Potentials

The development and proliferation of MLIPs had revolutionized
computational materials science. MLIPs made it possible to ad-
dress problems that were previously considered intractable or too
resource-intensive. In particular, MLIPs facilitate the simulation
of systems with a large number of atoms and problems that re-
quire the calculation of physical properties for a large number of
systems within a reasonable timeframe.
In particular, MLIPs had enabled the calculation of nanohard-

ness for various materials based on first principles,[37] high-
throughput screening, and the acceleration of crystal structure
prediction,[35,38] as well as the execution of extended molecular
dynamics simulations.[39]

In this work, the Moment Tensor Potentials (MTPs)[16] was
used as an interatomic interaction model. MTPs belonged to the
class of local machine-learning potentials, where the total energy

of the configuration was composed of the contributions V of in-
dividual atoms (site energies) as

Emtp(cfg) =
n∑
i=1

V(𝔫i) (1)

The site energy of the atom i depends on a local atomic neigh-
borhood𝔫i = zi, zj, rij, which is determined by the type of the cen-
tral atom zi, by the types zj, and the relative positions rij = rj − ri
of neighboring atoms within the cut-off radius rj − ri ≤ Rcut. The
site energies V(𝔫i) are calculated as a linear combination of the
basis functions B𝛼(𝔫i)

V(𝔫i) =
∑
𝛼

𝜉𝛼B𝛼(𝔫i) (2)

The coefficients 𝜉𝛼 of this linear combination were the sub-
set of the parameters of the potential and are found in the train-
ing procedure.
The definition of the basis functions is based on the moment

tensor descriptors:

M𝜇,𝜈(𝔫i) =
∑
j

f𝜇(|rij|, zi, zj) rij ⊗…⊗ rij
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜈 times

(3)

here rij ⊗…⊗ rij
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜈 times

is a tensor of rank 𝜈,

f𝜇(|rij|, zi, zj) = NQ∑
𝛽=1

c(𝛽)𝜇,zi ,zjQ
(𝛽)(|rij|) (4)

is a scalar radial function, where
{
c(𝛽)𝜇,zi ,zj

}
is the set of “radial”

parameters,

Q (𝛽)(|rij|) =
{

𝜑(𝛽)(|rij|)(Rcut − |rij|)2 |rij| < Rcut

0 |rij| ≥ Rcut

(5)

are the radial basis function
{
c(𝛽)𝜇,zi ,zj

}
, based on the Chebyshev

polynomials 𝜑(𝛽). B𝛼(𝔫i) are constructed fromM𝜇,𝜈(𝔫i) as various
convolutions of the tensors of different ranks yielding a scalar. In
addition to the energy of the configurations, the implementation
of the MTP allowed the calculation of the forces on the atoms
and the virial stresses of the configuration based on the analytical
derivatives of E with respect to the positions of the atoms.
The parameters of the radial functions

{
c(𝛽)𝜇,zi ,zj

}
together with

the linear parameters 𝜉𝛼 form a set of parameters 𝜃 of the MTP,
whichwere found in the training procedure. This proceduremin-
imized the standard deviation between the energies, forces, and
stresses computed by DFT and MTP over a set of configurations
(training set):

c
K∑
k=1

[
we

(
Emtp(cfgk; 𝜃) − Edft(cfgk)

)2

+wf

Nk∑
i=1

|||fmtp
i (cfgk; 𝜃) − f dfti (cfgk)

|||2 (6)
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+ws
|||𝜎mtp(cfgk; 𝜃) − 𝜎dft(cfgk)

|||2
]
→ min

𝜃
(7)

The second-order Newton’s method is used as a minimiza-
tion algorithm.

2.2. Active Learning On-The-Fly with Local Atomistic
Environments

Arguably, one of the main challenges in usingMLIPs was related
to their transferability. MLIPs calculated energies and forces by
interpolating these quantities over the training set. Therefore, it
was crucial that the training set comprehensively covers the con-
figuration space where energy and forces were to be calculated
to avoid extrapolation, which inevitably results in predictions of
notably low accuracy.
For example, a MLIP that was trained only on bulk configura-

tionsmay face difficulties when calculating energies and forces at
a free surface. Therefore, the use ofMLIPs required amechanism
for identifying such extrapolations, which was commonly known
as active learning methods. When an extrapolation was identi-
fied, the corresponding configuration could be computed using
density functional theory (DFT) and then added to the training
set. This process expands the training domain, preventing fur-
ther extrapolation by the MLIP.
It was important to note that duringmolecular dynamics (MD)

simulations, the trajectory may extend beyond the boundaries of
the training set, even if no extrapolation was apparent in the ini-
tial part of the MD trajectory. Therefore, one of the most efficient
methods of using MLIPs was to conduct MD simulations with
extrapolation control and dynamically update the potential dur-
ing the simulation. This practice was often referred to as ‘learn-
ing on-the-fly’.
Various MLIPs had their ownmethods for recognizing extrap-

olations. For instance, MLIPs based on Gaussian Processes, as
such a mechanism, use prediction variation estimation.[40] Neu-
ral network-based MLIPs, detect extrapolation based on monitor-
ing model committee disagreement.[41] For MTPs, the degree of
extrapolation was calculated from the principle of the maximum
volume of the domain in the configuration space spanned by the
training set and was computed with the MaxVol algorithm.[42]

The degree of extrapolation could be estimated for the whole
configuration, as well as for atomistic neighborhoods 𝔫 of in-
dividual atoms.[43] The second method allowed one to detect lo-
cal fragments of the configuration with potentially low accuracy
of force calculations. This was particularly useful when working
with configurations containing large numbers of atoms. How-
ever, the problems arise here with the obtaining of ab initio data
due to the practical impossibility of calculating large configura-
tions with DFT. This problem could be solved by somehow cut-
ting out the extrapolation fragments from a large configuration,
with the number of atoms suitable for DFT calculations (in prac-
tice, usually not more than a few hundred atoms).
In recent papers[37,44] the extrapolated atomistic environments

were simply cut out and further computed as non-periodic atom
clusters. Such an approach was reasonable when dealing with
free surfaces within the simulated system. However, in the the
work only bulk configurations were treated, and training the po-

tential on fragments with a free surface would lead to an unrea-
sonable extension of the training domain to non-relevant areas
with a subsequent decrease in the accuracy. Therefore, in this
paper, another approach based on the construction of periodic
configurations from cut fragments was realized. This is done as
follows:

1. The atomistic environments 𝔫 on which MLIP extrapolates
was identified (step (1) in Figure 1).

2. From the whole configuration, the atoms inside the cube con-
taining the cutoff sphere with the extrapolative environment
𝔫 were cut. The size of the cube could be slightly larger than
2Rcut (step (2) in Figure 1).

3. Next, a periodic supercell was constructed with this cube, hav-
ing cell parameters 0.5 Å larger on each side of the cube
than the cut one to avoid the appearance of extremely short
interatomic distances after applying periodicity (step (3) in
Figure 1).

4. In the resulting periodic configuration, the lattice vectors and
positions of all atoms outside the extrapolation sphere were
relaxed. The atoms inside the extrapolation sphere remain
fixed and did not change their positions, ensuring that the ex-
trapolation environment did not change during relaxation.

Relaxation in the final step involved two steps: 1) a pairwise
repulsive potential was used to fix too short interatomic distances,
and 2) DFT calculations were performed to determine energies,
forces, and stresses. This essentially constructs the periodic joint
similar to a regular intergranular boundary within the cell, and
eliminates the formation of irrelevant atomistic fragments on it.

3. Computation Details

3.1. Generation of Polycrystalline Structure Samples

The initial step in calculating elastic moduli is to generate pe-
riodic polycrystalline samples. To accomplish this, we use the
Voronoi tessellation method[45–47] as implemented in Atomsk.[48]

This method divides a given periodic domain into a given num-
ber of grains with random shapes and orientations.
The computational domain had a cubic shapewith dimensions

of 4 × 4 × 4 nm3. By varying the number of grains, we generated
several diamond polycrystals with different grain sizes. For in-
stance, in a polycrystalline sample with an average grain volume
of 16 nm3,″ there are four grains, while in one with an average
grain volume of 64 nm3,″ there is only one grain. To investigate
the relationship between mechanical properties and grain size,
we have produced polycrystalline samples with average grain vol-
umes of 16, 21, 30, 40, 50, and 64 nm3, as depicted in Figure 2.
We also conducted tests to assess the convergence of mechani-

cal properties with respect to the size of the simulation box, while
maintaining the same average grain size. Specifically, we con-
sidered simulation boxes with dimensions of 2 × 2 × 2, 4 × 4 × 4,
and 8 × 8 × 8 nm3.

3.2. Ab Initio Calculations

Density Functional Theory (DFT) was used as a first-principles
method to train the MTPs and to validate the results. DFT
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Figure 1. Schematic illustration of learning on the local atomistic environment. The region highlighted by red (1) contains atoms with the highest
extrapolative grade, which then cut from the structure (2) and used to build the periodic configuration (3) for further DFT calculations of energy, forces,
and stresses.

calculations were performed with the projector augmented-wave
density functional theory (PAW-DFT)[14,49] as implemented in
the VASP package.[50–53] The generalized gradient approximation
with Perdew-Burke-Ernzerhof (GGA-PBE)[54] parametrisation
for exchange-correlation functional was used. For each con-
sidered single crystal the PAW potentials according to the
corresponding number of valence electrons were used to de-
scribe the electron-ion interactions. The plane-wave energy
cutoff of 500 eV and the Methfessel-Paxton[55] smearing of the
electronic occupations ensured the convergence of the total
energies. The Γ-centered k-point mesh of 8 × 8 × 8 was used for
Brillouin zone sampling. A built-in conjugate gradient method
with a maximum net force tolerance of less than 0.01 eVÅ−1 was
used for potential energy minimization.
For the initial training of our MTP, we actively selected atom-

istic configurations from ab initio molecular dynamics. The
timestep for AIMD was chosen to be equal to 1 fs. The total
time of each simulation was 2 ps. The plane wave energy cutoff
of 500 eV, the Methfessel–Paxton smearing[55] of the electronic
occupations, and Γ-centered k-point meshes with a resolution of
2𝜋 × 0.04 Å−1 of the Brillouin zone sampling were used as imple-
mented in VASP.[50–53] These settings ensured the convergence
of energy differences and stress tensors. For more details on the
training procedure, calculation of MTP forces, the reader was en-
couraged to check ref. [56].

3.3. Elastic Moduli Calculation

The independent elastic constants for polycrystals were calcu-
lated following the standard atomistic simulationmethodology as
described in ref. [57]. This methodology consists of five steps:

1. Structure relaxation.

2. Applying a finite (approximately 1%) positive and negative
strain to the structure in all non-equivalent directions.

3. Relaxation of the strained structure (with the fixed shape of
the supercell).

4. Calculation of the stresses for the strained structures.
5. Calculation of the elastic constants using the stresses through

finite differences.

The elastic constants C relate the strain 𝜖 and the stress 𝜎 in a
linear fashion:

𝜎ij =
∑
kl

Cijkl𝜖kl (8)

For the elastic tensor calculation the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package was used.[58]

The elastic moduli values were calculated for various polycrys-
talline samples with the same average grain size and then aver-
aged. It should be noted that the generated samples are typically
non-isotropic and C11 ≠ C22 ≠ C33, C12 ≠ C13 ≠ C23, C44 ≠ C55 ≠

C66. At the same time, a polycrystalline diamond can be consid-
ered to be isotropic on a large scale. This allows us to treatC22 and
C33 calculated for the same polycrystalline structure, as additional
sampled values forC11. Similarly,C13 andC23 are the sampled val-
ues for C12, and C55, C66 are the sampled values for C44. Conse-
quently, elastic constants calculated for a polycrystalline structure
give three values each of C11, C12, and C44.
To control for statistical error, we used the k-means method

with k = 8. The statistical accumulation process continued until
the sample variance of the k-means was greater than 5% of the
average value.
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 25130390, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202301171 by Skolkovo Institute O

f Science A
nd T

echnology, W
iley O

nline L
ibrary on [24/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 2. Crystal structure of polycrystals with different grain volumes of a) 16, b) 21, c) 30, d) 40, e) 50, and f) 64 nm3 produced and considered in our
work. The orange and purple colors represent the carbon atoms in amorphous and diamond structure are shown, respectively.

3.4. MTP Construction via Active Learning On-The-Fly

Statistically reliable elastic moduli values are averaged from the
values calculated for dozens or even hundreds of samples. The
calculation of elasticmoduli for each sample assume a number of
deformations and applying of relaxation procedures to the sam-
ple structure. Thus, energy, forces and stresses are evaluated with
MTP for atomistic configurations at each step of the deformation-
relaxation procedure. Some of these configurations may have lo-
cal fragments where MTP extrapolates. In our active learning on-
the-fly scheme, we evaluate the degree of extrapolation for each
atomic environment in each configuration. If the extrpolation de-
gree exceeds some critical value, the extrpolation fragment is pro-
cessed with DFT and learned. This procedure is shown schemat-
ically in Figure 3.
However, on-the-fly active learning of the MTP from scratch

is not computationally efficient. Therefore, we pre-trained our
MTP passively manner with the atomistic configurations sam-
pled from ab initio molecular dynamics trajectories (step 1 in
Figure 3). For this purpose we perform ab initio molecular dy-
namics with DFT on 64 atoms of two-grain diamond over 1 ps
(1000 timesteps).

Figure 3. Developed an active learning bootstrapping iteration scheme for
the calculations of mechanical properties of crystalline and non-crystalline
solids.
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Figure 4. Calculated by DFT and fitted by MTP values of (a) total energy with error distribution, (b) forces, and (c) stresses, obtained for MTP for single
crystal diamond.

After the MTP training (step 2 in Figure 3), we started the
molecular mechanics (MM) simulation to calculate the elastic
tensor for the studied system (steps 3–7 in Figure 3). This pro-
cess involved the active selection of extrapolative configurations,
and the so-called one-extrapolation-threshold scheme (break) was
used.[56] Exceeding break indicates a very high extrapolation de-
gree and the potential for low accuracy in predicting energy,
forces, and stresses. Consequently, we terminate the elastic ten-
sor calculation to retrain MTP. The value of break was set to 11
based on our experience, as it provides an optimal balance be-
tween MTP accuracy and retraining frequency. A detailed de-
scription of the scheme is described in ref. [56].
After reaching the termination condition ( ≤ break), we se-

lect the configurations to be added to the training set from all
extrapolated configurations for which the extrapolation was de-
tected (step 4 in Figure 3). A selection procedure is necessary to
construct a new active set from a pool of extrapolative configura-
tions.
In the step 5, we extract from the large configuration a cubic

box containing the local atomic environments responsible for the
extrapolation. The extrapolative atomic environment includes the
central atom and its neighborhood in the cutoff sphere, which
was taken from 5 Å.
The constructed local atomic structure extracted from poly-

crystalline material typically contains around 100 atoms. In the
next step (step 6), this atomic configuration expanded into a peri-
odic structurewith the relaxation performed usingDFT for atoms
outside the extrapolative environment. This relaxation aims to
minimize the energy of the periodic interface. Simultaneously,
DFT calculations of energy, forces, and stresses are performed.

Further steps of adding to the initial training set with subse-
quent retraining of MTP (steps 7 and 2 in Figure 3). The use
of this scheme eliminates the need to consider the entire poly-
crystalline structure in the DFT calculations for the actively learn
MTP. Thus, once the first iteration of active learning of the MTP
has been completed, the MD simulation of the elastic tensor can
be continued with updated actively learned MTP until the criti-
cal value of extrapolation is reached again or the calculation of
all configurations is completed. Each iteration of this scheme ex-
pands the training domain and improves the transferability of the
MTP (i.e., the number of extrapolations and the extrapolation de-
gree are reduced). As was discussed above, a similar approach
has recently been used in ref. [37]to simulate the nanohardness
of single crystal compounds and in an MD run for copper.[44]

The MTPs for single crystals has been applied to diamond, Si,
SiC, WC, and CrB4. Detailed information on the results for these
studied single crystals can be found in Tables S1–S6 (Supporting
Information).

4. Results and Discussion

4.1. MTP for Polycrystalline Diamond

The accuracy of the obtained MTP for single crystal diamond,
as the base for learning of the MTP for polycrystals has been
estimated. The total energies, forces, and stresses as calculated
by DFT and MTP for single crystal diamond are presented in
Figure 4. All the metrics are presented for each configuration in
the training set. For the calculated and fitted energies (Figure 4a)
the maximal absolute difference is 6.7 × 10−2 eV, the average

Adv. Theory Simul. 2024, 7, 2301171 © 2024 Wiley-VCH GmbH2301171 (6 of 10)
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Figure 5. Calculated by DFT and fitted by MLIP values of a) total energy with error distribution and b) stresses only for local configurations extracted
from the polycrystal for active learning.

absolute difference is 4.1 × 10−3 eV, and the RMS absolute
difference is 7.1 × 10−3 eV. The error distribution shows the cor-
relation between the calculated and fitted energies. It is highly
symmetric around zero and can be considered as Gaussian type.
From this fact we can conclude that theMTPs have no systematic
bias toward the over- or underestimation of the results.
For the calculated and fitted forces (see Figure 4b) the max-

imal absolute difference, average absolute difference, and RMS
absolute difference are 1.3 eVÅ−1, 2 × 10−2 eVÅ−1, and 2.2 × 10−2

eVÅ−1 respectively. For stresses we obtained the values of 2.5,
0.7, and 0.7 kBar for the maximal absolute difference, average
absolute difference, and RMS absolute difference, respectively,
see Figure 4c.
The accuracy of the actively learned MTP on the local atom-

istic environments for polycrystalline diamond was next esti-
mated. The total energies, forces, and stresses calculated with
DFT and MTP for local configurations extracted from the poly-
crystal are presented in Figure 5. For the calculated and fitted en-
ergies (Figure 5a) the maximal absolute difference is 7.6 × 10−2

eV, the average absolute difference is 1.9 × 10−3 eV, and the RMS
absolute difference is 7.9 × 10−3 eV. The error distribution shows
the relation between the DFT and MTP energies.
Regarding stresses, we obtained the values of 10.7, 2.7, and 3.1

kBar for themaximal absolute difference, average absolute differ-
ence, and RMS absolute difference, respectively, see Figure 5b.
All the obtained trend lines and calculated absolute differences
for energies, forces, and stresses demonstrate an accurate pre-
dictive power of used MTP.

4.2. Mechanical Properties of Polycrystalline Diamond

Polycrystals can be considered as orthotropic materials with nine
independent second order elastic constants are presented and
should be calculated, namely C11, C22, C33, C44, C55, C66, C12,
C13, and C23. The elastic moduli were determined by combining
these components of the elastic tensor using Voigt-Reuss-Hill
averaging. The results of calculations for the elastic moduli of

Adv. Theory Simul. 2024, 7, 2301171 © 2024 Wiley-VCH GmbH2301171 (7 of 10)
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Figure 6. a) Dependence of the bulk (top) and shear (bottom) moduli
of diamond polycrystals with different grain sizes compared to the single
crystal diamond. b) The correlation between (C12-C44)/B and G∕B, where
B is bulk modulus, G is shear modulus showing the change in ductility and
brittleness of polycrystals as a function of grain size. Dashed vertical lines
indicate the average values between structures of the same grain size. The
value for the diamond is shown by the red star.

polycrystalline diamond with different grain sizes, using actively
learned MTP on local environments are shown in Figure 6.
One can see that the bulk modulus of polycrystalline diamond
increases with increasing the average grains size, tending toward
the bulk modulus of single crystal diamond as a limiting case
(Figure 6a). For each grain size, a number of structures (from 23
to 100) were generated that explain the deviation of the calculated
bulk modulus. For each grain size, the sample variance 𝜎 and
the sample mean M values were calculated. We continued to
generate and calculate elastic moduli until the statistical error
was reduced to less than 1%.
The average grain sizes for which the diamond polycrystals

were generated were selected using a Gaussian Process (GP)
with a Radial Basis Function (RBF) kernel. Initially, we simulated

two diamond polycrystals with average grain sizes of 16 and 64
nm3 and calculated elastic constants for them according to our
setup (Figure 3). The results of the bulk modulus calculation of
these two polycrystals are shown in Figure S2 (Supporting In-
formation). According to these results, we determined the con-
fidence parameters in the GP to define the grain size for fur-
ther polycrystals in order tominimize the confidence parameters,
see Figure S2 (Supporting Information). Then the other sizes,
namely 40, 30, 50, and 22 nm3 (in this order) were added for con-
sideration to minimize the confidence parameter in the GP.
The results for the bulkmodulus of the considered polycrystals

show a monotonic growth, starting from 400 GPa (which is close
to the value for the amorphous carbon structure) and reaching
480 GPa for the structure with an average grain volume of 64
nm3, see Figure 6a. The average value of the bulk modulus for
the largest grain size polycrystal is about 500 GPa. This value falls
below the calculated bulk modulus for single crystal diamond,
which is 550 GPa, but it falls within the confidence interval of our
calculations. The results of the elasticmoduli calculation Figure 6
were fitted by another GP with the kernel given by

k(V1, V2) = 𝜃20 + 𝜃21V1V2 + 𝜃22e
(V1−V2)2∕(2𝜃23 ) (9)

with V1, V2 being the polycrystal sizes and 𝜃0,… 𝜃3 being the hy-
perparameters. This kernel encodes an arbitrary linear depen-
dence given by the first two terms and a correction to the linear
dependence given by the last term. The blue area in Figure 6 rep-
resents one sigma, and the dashed lines indicate three sigmas.
Overall, these results can be interpreted as a smooth, near-linear
relationship with a noise.
In order to assess the influence of grain size on the ductil-

ity and brittleness of polycrystals, we have calculated the Pugh-
Pettifor criterion,[59] as shown in Figure 6b. The correlation be-
tween (C12-C44)/B and G/B allows us to determine the ductility
and brittleness of the polycrystals. As can be seen, polycrystals
with small grain sizes (16, 22 nm3) are more ductile compared to
larger grain sizes, see Figure 6b. As the grain size increases, the
polycrystals become more brittle. The average G/B ratio for poly-
crystals with a grain size of 64 nm3 is approximately 0.775 and the
maximum value reaches about 0.82, see Figure 6b. According to
these data, the mechanical stiffness of the considered polycrys-
tals does not exceed the value of single crystal diamond (G/B is
0.81). Thus, all considered polycrystals with various grain sizes
are less brittle according to the Pugh-Pettifor criterion compared
to single crystal diamond.

5. Conclusion

We have developed the active learning bootstrapping iteration
scheme for the precise calculation of the elastic tensor in com-
plex solids, namely composites, polycrystals, and multiphase
systems, by using machine learning interatomic potentials with
active learning on local atomic environments. Our scheme allows
one to achieve high accuracy in simulating the elastic properties
of complex solids. The proposed scheme has been used to calcu-
late the elastic tensor and elastic moduli both for single crystals
with various structures and compositions and polycrystalline
structures. To evaluate our approach, diamond polycrystals were
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assessed, and the resulting elastic properties were compared
with existing reference data, demonstrating excellent conformity
and precision. This developed approach allows the study of the
mechanical properties of materials that usually synthesized and
used in experiments, i.e., noncrystalline materials. This enables
comprehensive investigations into the mechanical properties
of complex materials, such as polycrystals and composites,
bringing the obtained data closer to those found in experiments.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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