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Combining machine-learning models with
first-principles high-throughput calculations
to accelerate the search for promising
thermoelectric materials†

Tao Fan * and Artem R. Oganov

Thermoelectric materials can achieve direct energy conversion between electricity and heat, and thus

can be applied to waste-heat harvesting and solid-state cooling. The discovery of new thermoelectric

materials is mainly based on experiments and first-principles calculations. However, these methods are

usually expensive and time-consuming. Recently, the prediction of properties via machine learning has

emerged as a popular method in materials science. Herein, we firstly did first-principles high-throughput

calculations for a large number of chalcogenides and built a thermoelectric database containing 796

compounds. Many novel and promising thermoelectric materials were discovered. Then, we trained four

ensemble learning models and two deep learning models to distinguish the promising thermoelectric

materials from the others for n-type and p-type doping, respectively. All the presented models achieve a

classification accuracy higher than 85% and area under the curve (AUC) higher than 0.9. In particular,

the M3GNet model for n-type data achieves accuracy, precision and recall all higher than 90%. Our

work demonstrates a very efficient way of combining machine-learning prediction and first-principles

high-throughput calculations to accelerate the discovery of advanced thermoelectric materials.

1 Introduction

Thermoelectric (TE) materials could play an important role
in building clean and alternative energy sources due to their
ability to realize the direct conversion between heat and
electricity.1–3 Thermoelectric devices are of small size, and
produce no noise or pollution; thus they have wide application
potential in space power, industrial waste-heat harvesting,
small and mobile refrigerators, and other fields.4–6 The energy
conversion efficiency of thermoelectric materials depends on
the dimensionless figure of merit (ZT). ZT is defined as ZT =
a2sT/(ke + kL), where a is the Seebeck coefficient, s is the
electrical conductivity, T is the absolute temperature, ke is the
electronic thermal conductivity, and kL is the lattice thermal
conductivity. In particular, a2s is called the power factor (PF).
In order to obtain a high ZT, both a and s must be maximized,
while ke and kL need to be minimized. However, the inter-
dependence of these parameters makes improving the ZT of a
material a great challenge.7,8

Traditional thermoelectric materials discovery has been led
by experiments, while computations are becoming more and
more important with the advances in theory and the increase
of computing power.9–11 First-principles methods, such as DFT,
have been widely used in calculating thermoelectric proper-
ties.12–15 However, full first-principles calculation of transport
properties is usually computationally expensive. Thus, there are
many simplified models being proposed to calculate electronic
and phonon transport properties, leading to many interesting
and important discoveries.16–20 However, they all face the
problem of accuracy–computational-cost trade-off. Recently,
machine learning (ML) has achieved much progress in both
its theory and available models.21 Data science and machine
learning have become an integral part of natural sciences, as
the fourth pillar in science, next to experiment, theory, and
simulation.22–25 ML algorithms find patterns in high-dimen-
sional training data and build a mathematical model to make
predictions or decisions without explicit human knowledge.
This approach has been applied successfully to various materi-
als science studies, such as structure prediction,26,27 construc-
tion of force fields,28–30 and predictions of the properties of
materials.31–33 A variety of ML algorithms provide an alternative
to costly and complex DFT calculations, providing similarly
accurate results in a fraction of the time. For TE materials,
ML-assisted research has also been conducted, focusing on
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predicting the band structure, Seebeck coefficient, electrical
conductivity, power factor, lattice thermal conductivity and
figure of merit directly with carefully designed features or
features learned by the model itself.34–39 These works are based
on supervised learning. Besides these, there are some works
using unsupervised ML, which does not require well-labeled
training data and can discover hidden patterns in the unlabeled
datasets based on the input feature values. For example, Jia et al.
proposed a strategy to discover a series of promising half-Heusler
thermoelectric materials through the iterative combination of
unsupervised ML with labeled known half-Heusler thermoelectric
materials.40

The training data for ML-assisted thermoelectric studies
are usually from experiments. However, such data are not only
distributed over a huge number of publications, but also have
varied synthesis conditions and measurement conditions. Even
worse is that the data from different sources may conflict with
each other. While first-principles calculations can guarantee
the consistency of the data, the huge computational cost
for high-throughput study limits the amount of the obtainable
data. In this work, we explore the possibility of using ML
methods to speed up first-principles high-throughput screen-
ing work. Using the AICON code developed in our group,41 we
first built a database comprising 796 chalcogenides with their
n-type and p-type TE properties, including Seebeck coefficient,
electrical conductivity, power factor, etc. We found many
novel and promising TE materials, and some of them, such
as Ge5Te4Se, KBiSe2, GeTe (Pnma) and BaCu2Te2, are predicted
to be much better than state-of-the-art TE materials. Then, we
applied ML methods to this dataset and trained four ensemble
learning models – random forest (RF), gradient boosting deci-
sion tree (GBDT), adaptive boosting (AdaB) and extreme gradi-
ent boosting (XGB)42 – and two deep learning models –
MatErials graph network (MEGNet)43 and materials three-
body graph network (M3GNet)44 – to identify the promising
TE materials, those having high power-factor values, from the
others. The predictions on test sets show that all the trained
models can achieve classification accuracy higher than 85%.
Furthermore, the trained models were analyzed using the SHAP
method, revealing that these models truly capture the under-
lying physics.

2 Methods
2.1 First-principles calculations

All first-principles calculations were performed using the
Vienna Ab initio Simulation Package (VASP) with the Perdew–
Burke–Ernzerhof generalized gradient approximation (PBE-GGA)
and projector augmented wave (PAW) pseudo-potentials.45–47 For
structure relaxation, the plane-wave kinetic energy cut-off was set
to 600 eV and the Brillouin zone was sampled using G-centered
meshes with a reciprocal-space resolution of 2p� 0.03 Å�1. Kohn–
Sham equations were solved self-consistently with the total energy
tolerance of 10�7 eV per cell and structures were relaxed until the
maximum force became smaller than 10�3 eV Å�1. The dielectric

constants were calculated using density functional perturbation
theory (DFPT),48 and the elastic constants were calculated using
the finite difference method as implemented in VASP. To obtain
the deformation potential constants of a compound, three band-
structure calculations were run: one at the equilibrium volume,
and the other two at volumes�0.1% and +0.1% with respect to the
equilibrium one.

After all necessary first-principles calculations were finished,
the resulting files were collected and key parameters, including
the conductivity effective mass m�c , density of states effective
mass m�d, deformation potential constant X, band degeneracy
N, band gap Eg, elastic constant tensor C and dielectric con-
stant e, were extracted from these files as input to the AICON
code to calculate the TE transport properties. To enable high-
throughput screening, the automated workflow control, from
structural relaxations, over band-structure calculations etc., to
transport property calculation, was also developed and imple-
mented in AICON based on the Materials Project high-
throughput infrastructure.49–51 The detailed workflow and set-
tings for each step can be found in our previous work.41,52

2.2 ML implementation

2.2.1 Feature engineering. Feature engineering is a crucial
step in ML, as it directly impacts the performance of predictive
models. The input features for a compound should be quick
to compute and should capture all relevant features of that
compound in a compact list of attributes. In this work, we
designed a feature vector consisting of three different groups of
descriptors:

Composition: the group of composition descriptors are simi-
lar to those used by Ward et al.53 They include stoichiometric
attributes, elemental property attributes, valence shell attri-
butes and ionicity attributes. Different from the previous
work, elemental property attributes are formed by the mean,
maximum, minimum, range, and mean absolute deviation of
23 different elemental properties of all atoms in a compound.
The list of these 23 elemental properties can be found in the
ESI,† Table S1.

Structure: the group of structure descriptors have three
different types, the Voronoi tessellation of crystal structure
(VORONOI) as used by Ward et al.,54 the partial radial distri-
bution function (PRDF) as used by Schütt et al.55 and similar to
the fingerprint function of Oganov & Valle,56 and the general-
ized radial distribution function plus bond order parameter
(GRDF + BOP) as used by Seko et al.57 These three types of
structure descriptors are commonly adopted general-purpose
structure descriptors. Specifically, for the PRDF descriptors
we generated four feature vectors with different lengths by
fixing the cutoff parameter as 20 Å and changing the bin_size
parameter; they are PRDF_10 (bin_size = 0.1 Å), PRDF_16
(bin_size = 0.16 Å), PRDF_20 (bin_size = 0.2 Å), and PRDF_25
(bin_size = 0.25 Å).

Band structure: the group of band-structure descriptors
include five easily calculated band-structure parameters for the
conduction band minimum (CBM) or valence band maximum
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(VBM), including the band degeneracy N, conductivity effective
mass m�c , density of states effective mass m�d, deformation
potential constant X, and band gap Eg. These parameters are
also used by AICON to calculate the thermoelectric transport
properties.

The composition and structure descriptors were generated
by Matminer.58 According to the involved structure descriptors,
6 different feature vectors were used in this work, namely
PRDF_10, PRDF_16, PRDF_20, PRDF_25, VORONOI and
GRDF_BOP.

2.2.2 Model selection. In this work, four common ensem-
ble machine-learning algorithms, namely random forest (RF),
gradient-boosted decision tree (GBDT), adaptive boosting
(AdaB) as implemented in the scikit-learn (sklearn) package,59

and the extreme gradient-boosting model as implemented in
the XGBoost package with the sklearn interface,42 were used to
train the classification models. Before entering the ML algo-
rithm, the input feature vectors were standardized to eliminate
the influence of variance of each descriptor. A grid search
method with 5-fold cross validation on the training set as
implemented in sklearn was used to optimize the hyperpara-
meters in these models.

For deep learning, MEGNet and M3GNet models, as imple-
mented in Materials Graph Library (MGL), were used.43,44

The binary cross entropy loss was used as a loss function.
We trained all models for 550 epochs using the Adam optimizer
and a batch size of 64. The initial learning rate is set to 0.001
and the LinearLR scheduler is used to adjust the learning rate
per epoch. The final learning rate decayed to 10% of the
original value after 500 epochs, then remained constant for
another 50 epochs. During the optimization, the loss function
values of the validation set were used to monitor the model’s
performance.

2.2.3 Model evaluation. The performance of ML models
was evaluated with metrics such as accuracy, precision, recall,
F1-score, ROC curve and AUC. For a binary classification
problem, all samples can be divided into four categories
according to the combination of their real label and predicted
label, as shown in Table 1.

Then, the definitions of those metrics are as follows:

Accuracy ¼ TPþ TN

TPþ FNþ FPþ TN
(1a)

Precision ¼ TP

TPþ FP
(1b)

Recall ¼ TPR ¼ TP

TPþ FN
(1c)

F1 ¼ 2� Pre�Rec

PreþRec
(1d)

FPR ¼ FP

TNþ FP
(1e)

The receiver operating characteristic (ROC) curve is the plot
of the true positive rate (TPR) against the false positive rate
(FPR) at each threshold setting. This means that the top left
corner of the plot is the ‘‘ideal’’ point – a FPR of zero, and a
TPR of one. AUC is the area under the ROC curve. For a perfect
classifier, AUC equals 1. All of the above metrics are imple-
mented in sklearn.metrics.

3 Results and discussion
3.1 Thermoelectric dataset

All structures were extracted from the Materials Project data-
base60 with five searching criteria: (1) S, Se and Te as anions;
(2) the band gap should be larger than 0 eV but smaller than
1.2 eV, since good TE materials are usually narrow-gap semi-
conductors; (3) the energy above the convex hull line should be
less than 0.1 eV per atom to ensure the structure is thermo-
dynamically stable or at least potentially synthesizable under
experimental conditions; (4) the material should belong to the
cubic, tetragonal or orthorhombic crystal system; and (5) it
should have a nonferromagnetic phase. These criteria resulted
in over 1000 entries in the database. Then, calculations of
the electronic transport properties for these compounds were
carried out. Finally, 796 compounds finished the complete
process of such calculations. Among them, 752 items were of
n-type and 757 items of p-type. Other structures could fail
because of various reasons. For example, since the GGA is
known to underestimate the band gap, the calculated band
gaps of some structures with very small gap values could be
zero. In addition, the eigenvalues of the elastic constant matrix
of some compounds have negative values. Such structures were
discarded.

This work is an extension of our previous work.52 In that
work, we only calculated 94 cubic compounds’ thermoelectric
transport properties. Here we mainly calculated tetragonal and
orthorhombic chalcogenide compounds’ properties. Then both
datasets were merged to build a whole thermoelectric database.
Fig. 1 shows the maximum power factor with respect to the
carrier concentration at which this maximum value is reached,
for n- and p-type compounds, respectively, in the temperature
range from 300 K to 1000 K. The maximum power factors for
both n-type and p-type compounds are distributed across three
orders of magnitude and most of them are within the range
of 1 mW cm�1 K�2–10 mW cm�1 K�2. Some representative
compounds are marked in the plots. Among these compounds,
PbTe, PbS (cubic), PbSe (cubic), GeTe (cubic), SnTe, and SnSe
are already well-known TE materials and have high power-
factor values according to our calculations, which validates
our methods. In the ESI,† Tables S2 and S3, we list the top
50 non-cubic TE materials found in this work for n- and p-type

Table 1 Confusion matrix for binary classification

Reality

Prediction

Positive Negative

Positive TP FN
Negative FP TN
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doping, respectively. All of them have their PFmax larger than
10 mW cm�1 K�2, similar to those well-known TE materials.
The tables also list the band-structure parameters for each
compound. Generally, they all have large band degeneracy N
and small conductivity effective mass m�c . A small m�c is bene-
ficial for carrier mobility, while a large N, which means there
are many carrier pockets involved in the transport, can make
the DOS effective mass m�d large, and thus is beneficial for the
Seebeck coefficient. Some of the listed compounds, such as
Ge5Te4Se, KBiSe2, TbAsSe, DyAsSe, YAsSe, PbS (Cmcm), PbSe
(Cmcm), GeTe (Pnma), etc., have high PFmax for both n- and
p-type doping, which is good for building TE devices.

We picked up several interesting compounds and further
calculated their lattice thermal conductivity kL and figure of
merit ZT using AICON.41 For example, SnSe is a famous TE
material and its single crystal has a record high ZT = 2.6 at

around 900 K.61 SnSe has two phases: the low-temperature
a phase with space group Pnma and high-temperature b phase
with space group Cmcm. In Tables S2 and S3 (ESI†), there are
several compounds that are similar to SnSe. Among them, the
structures of GeTe, PbSnS2 and GeSe are the same as a-SnSe,
while the structures of PbS and PbSe are the same as b-SnSe.
The crystal structures of the above compounds are shown
in Fig. 2. Fig. 3 shows the PF of GeTe, PbSnS2 and GeSe as a
function of temperature and carrier concentration. Our calcula-
tions suggest that PbSnS2 and GeSe are promising n-type TE
materials, while GeTe is good for both n- and p-type. Fig. 4
shows the kL of these three compounds. Similar to that of
SnSe, the kL values of these compounds are very low within the
calculated temperature range. Therefore, their ZT values can
exceed 1 in a wide range of temperatures and carrier concen-
trations, as shown in Fig. 5. Here we need to mention that
AICON’s lattice thermal conductivity model tends to under-
estimate the kL value of strongly anharmonic compounds.
Thus, the ZT values of these compounds are overestimated.
Still, the values can be a sign of great potential of these
compounds. Fig. S1–S3 in the ESI† show the detailed PF, kL

and ZT values of Cmcm PbS and PbSe. These two compounds
are excellent n- and p-type TE materials; their ZT values could
be higher than 1 in a wide range of temperatures and carrier
concentrations. Another interesting compound we want to
introduce is BaCu2Te2. This compound has a high PF for
n-type doping. The crystal structure of BaCu2Te2 is shown
in Fig. S4 (ESI†). The Cu atom is tetrahedrally coordinated by

Fig. 1 Maximum power factor as a function of the corresponding carrier
concentration for the studied compounds in the temperature range from
300 K to 1000 K for (a) n-type and (b) p-type data. Some compounds with
high power factor are marked.

Fig. 2 Crystal structures of (a) GeSe, (b) PbSnS2, (c) GeTe, (d) PbS, and
(e) PbSe.
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four Te atoms. Meanwhile, the Cu and Te atoms form one-
dimensional frameworks with channels extended along the

a axis, while the Ba atoms locate inside these channels. Such
a structure is beneficial for impeding the transport of phonons,
and thus is expected to have low lattice thermal conductivity.
According to our calculations, it indeed has very low kL values,
together with high PF values, and the ZT of this compound is
very large in a wide range of temperatures and carrier concen-
trations (see Fig. S5, ESI†). We plan to release the complete
database in the near future.

Although our high-throughput framework AICON is quite
fast for transport property calculation, it still has space to
improve. The overall calculation process involves several dif-
ferent types of first-principles calculations. Some of these
calculations, such as the elastic constant and dielectric con-
stant, are quite time-consuming. Since good thermoelectric
materials are always a minority, most of the computing resources
are consumed on unpromising materials. If one could evaluate
whether a compound is promising, especially if it has a high
power factor before doing computationally demanding first-
principles calculations, it would save a lot of time and comput-
ing resources. The simplest idea is to train a classification
model to distinguish good and poor thermoelectric materials.
At the first step, we need to label each sample in the dataset as
positive (label 1) or negative (label 0). The maximum power
factor value PFmax, as shown in Fig. 1, is a good index to be used
to split the dataset. Here we used PFmax = 5 mW cm�1 K�2 as the
dividing line (the red line in Fig. 1). The compounds above the
line were labeled as 1, while those under the line were labeled
as 0. The explanation for using 5 mW cm�1 K�2 as the boundary is
in the ESI.† According to such a split, for n-type data, #positive :
#negative = 308 : 444, while for p-type data, #positive : #negative =
244 : 513.

3.2 Ensemble learning models

Ensemble learning combines predictions of several base estima-
tors built with a given learning algorithm in order to improve
generalizability and robustness over a single estimator.62 Multiple
individual learners predict their own results, which are combined

Fig. 3 Power factor at varying temperatures and carrier concentrations
for (a) GeSe, (b) PbSnS2, and (c) and (d) GeTe.

Fig. 4 Lattice thermal conductivity of GeSe, PbSnS2, and GeTe.
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with a strategy such as weighted averages or voting. The perfor-
mance of the ensemble learning model is usually obviously better

than a single best model. In this work, four common ensemble
machine-learning algorithms, including random forest (RF),
gradient-boosting decision tree (GBDT), adaptive boosting (AdaB)
and extreme gradient boosting (XGB), combined with six kinds of
input feature vectors (see details in the Methods), were used to
train the classification models. Both the n-type and the p-type
datasets were divided into 90% training and 10% test sets.

Table 2 shows the performance measure on test sets of the
best model of each ensemble learning algorithm. The optimal
hyperparameters for each model are listed in Table S4 in the
ESI.† The complete table for each choice of input feature vector
of each learning algorithm can also be found in the ESI†
(Tables S5–S8). The accuracies of models trained on n-type
data are higher than 85%, while those trained on p-type data
are higher than 90%. Since our objective is to reduce the first-
principles computational cost as much as possible, we prefer
other metrics, especially precision and recall. These two metrics
directly reflect the efficiency of a model for picking up truly
good thermoelectric materials. The models trained on n-type
data have precision higher than 80% (except the GBDT model),
and recall higher than 90%. In contrast, the models trained on
p-type data have precision higher than 90%, with recall higher
than 75%. Therefore, the F1 values, as the harmonic average of
precision and recall, of these models are similar. From the
column of AUC, all these models achieve AUC values larger
than 0.9. Thus, all of them are very good classifiers. Generally,
the performance metrics of different algorithms are similar for
n-type data and p-type data, respectively. Although the best
input feature vectors are different for different algorithms,
GRDF_BOP appears four times in this table. It seems this kind
of feature vector is better than other used feature vectors.

In the above trained models, the input feature vectors
include band-structure descriptors, such as the band effective
mass and band gap. Therefore, it is meaningful to compare the
performance of the models with and without these descriptors
in order to see if we can further reduce the computational cost.
In the ESI,† Tables S9 and S10 show the performance measures
using GBDT and XGB algorithms together with input feature
vectors with and without band-structure descriptors. Generally,
compared with the performance of those models with input
features having band-structure descriptors, the models without
band-structure descriptors perform worse for almost all metrics
we evaluated. Therefore, these band-structure parameters are
important for accurate predictions.

Fig. 5 Figure of merit at varying temperatures and carrier concentrations
for (a) GeSe, (b) PbSnS2, and (c) and (d) GeTe.

Table 2 Performance measures on test sets of the best model of each
ensemble learning algorithm with corresponding input feature vectors

Model Features Acc. Prec. Recall F1 AUC

N GBDT GRDF_BOP 0.86 0.78 0.90 0.84 0.97
XGB VORONOI 0.88 0.81 0.94 0.87 0.95
AdaB PRDF_16 0.89 0.85 0.90 0.88 0.95
RF GRDF_BOP 0.88 0.81 0.94 0.87 0.96

P GBDT PRDF16 0.92 0.95 0.79 0.86 0.96
XGB GRDF_BOP 0.92 0.95 0.79 0.86 0.96
AdaB PRDF_25 0.89 0.90 0.75 0.82 0.93
RF GRDF_BOP 0.89 0.90 0.75 0.82 0.95
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ML is criticized for being a black box. Interpretability is
always a hot topic in the ML field. Here we used SHapley
Additive exPlanations (SHAP) to explain our trained models.63

SHAP connects optimal credit allocation with local explana-
tions using the classic Shapley values from game theory and
their related extensions. The most attractive point of SHAP is
that it can decompose the output of a model into the contribu-
tion of each input feature for each sample. Fig. 6 shows the use
of SHAP to analyze the GBDT models presented in Table 2
(Fig. S6 in the ESI† shows the analysis of the XGB models in
Table 2). Fig. 6(a) and (b) show summary plots of the top ten
important features – they take the mean absolute SHAP value of
each feature over all the samples of the dataset. All five band-
structure parameters are among the top ten features for both
n-type and p-type models, which explains why there is an
obvious difference between the performance of models with
and without band-structure parameters as input. Fig. 6(c) and
(d) show beeswarm plots to summarize the entire distribution
of SHAP values for each feature, where the color of each point
represents the feature value of that individual. These two
pictures can reveal the direction of the feature’s effect. For
example, the higher the band degeneracy Nc or Nv is, the higher
the SHAP value is, which means a higher probability to be a
good thermoelectric material. For the conductivity effective
mass, in contrast, the lower m�c is, the higher the SHAP
value is. This is consistent with our analysis in the last section.
Another important feature revealed by SHAP analysis is the
deformation potential constant X – larger X leads to a negative
impact on the SHAP value. This also matches with theory, since
large X causes a large electronic scattering rate, and thus a
small carrier mobility. Therefore, our models truly capture the
underlying physics by just learning from a small amount
of data.

3.3 Deep learning models

Deep learning models are mostly used in computer vision
and natural language processing fields, since these fields have
accumulated a large amount of data. Recently, with the devel-
opment of several large materials databases, such as the
Materials Project, OQMD and AFLOW, deep learning models
appeared in materials science in large numbers. Different from
ensemble learning, one of the advantages of a deep learning
model is that it learns the representation of materials by itself.
The graph neural network is one of the most used deep
learning models in materials science. Graphs are a powerful
non-Euclidean data structure method for establishing relation-
ships between nodes and their edges. Thus, it is natural to
represent a crystal structure as a graph. In this work, we used
both MEGNet and M3GNet to predict the label of the candidate
materials. Compared with MEGNet, M3GNet also incorporates
three-body interactions by building an additional line graph for
bonds, which makes it one of the state-of-the-art models.64

Instead of training the model from scratch, it is better to
make use of those pretrained models and do transfer learning.
Both MEGNet and M3GNet have pretrained models that were

Fig. 6 SHAP analysis based on the GBDT models in Table 2, (a) and (c) for
the n-type model, and (b) and (d) for the p-type model. (a) and (b) Bar
charts of the average SHAP value magnitude for each input feature. (c) and
(d) A set of beeswarm plots, where each dot corresponds to a sample. The
dot’s position on the x axis shows the impact that feature has on the
model’s prediction for that sample. When multiple dots are located at
the same x position, they pile up to show density.
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trained on larger datasets from the Materials Project to predict
the energy of formation. Here we reused their element embed-
ding layers since such embedding should be universal for all
kinds of tasks. After the readout stage, the node features for
each atom were combined into the crystal feature vector. At this
time, we added the band-structure descriptors, and the con-
catenated vector was passed to a multi-layer perceptron (MLP)
to predict the target value. Both the n-type and the p-type
datasets were divided into 80% training, 10% validation and
10% test sets. The hyperparameters, including the learning
rate, number of units in each layer, weight decay, etc., were
optimized based on the loss of the validation set. Then, the
final models were trained on the datasets merged from the
training sets and validation sets. Tables S11 and S12 (ESI†)
list the settings for the hyperparameters. Fig. S7 (ESI†) shows
the training loss and test loss during the final training process.
The test loss converged at the end of training for all selected
models.

Besides training deep models directly, we also used the pre-
trained M3GNet model as a way to generate structure feature
vectors, then combined them with composition features and
band-structure features as inputs to GBDT and XGB models.
By doing this, we wanted to see if features learned from one
task can be applicable to another.

The performance measures on test sets for the two deep
models and for two models combining an ensemble learning
algorithm and M3GNet structure feature vectors are shown in
Table 3. Although the datasets are small, the performance of
the two deep models is very good. In particular, the M3GNet
model for n-type data has accuracy, precision and recall all
higher than 90%, making it the best model that we have
obtained. For p-type data, although the M3GNet model is not
much better than those in Table 2, its performance is more
balanced – both precision and recall are higher than 80%. The
performance of MEGNet models for both n-type and p-type data
is a bit worse than that of the M3GNet models. In addition,
models trained on n-type data are generally better than those
trained on p-type data, mainly because the p-type dataset is less
balanced than the n-type dataset. For the two composite
models, their performance is not better than that of deep
models. Moreover, compared with GBDT and XGB models with
general purpose structure features (see Tables S5 and S6, ESI†),
these two models do not show clear advantages, suggesting the

trained structure features for one task may not be the optimal
choice for another. Finally, we combined four ensemble learn-
ing models in Table 2 with the M3GNet model in Table 3 to
form a voting classifier. In this classifier, the predicted class
label for a particular sample is the class label that represents
the majority of the class labels predicted by each individual
classifier. Although the voting classifiers are not better than
the best individual classifier for both n-type and p-type data,
they should be more robust for the unseen data.

Fig. 7 shows the ROC curves of the four ensemble learning
models in Table 2 and two deep learning models in Table 3
on test sets. The AUC values of all these models are higher than
0.9, close to the perfect classifier. Then, these trained models
were integrated into AICON’s electronic transport property
workflow. Before doing elastic constant and dielectric constant

Table 3 Performance measures on test sets of the deep learning models
and composite models with deep learned input structure features

Model Acc. Prec. Recall F1 AUC

N MEGNet 0.88 0.82 0.90 0.86 0.96
M3GNet 0.93 0.91 0.94 0.92 0.96
GBDT-M3G 0.80 0.71 0.87 0.78 0.95
XGB-M3G 0.84 0.74 0.94 0.83 0.94
Voting 0.87 0.80 0.90 0.85

P MEGNet 0.87 0.77 0.83 0.80 0.91
M3GNet 0.88 0.80 0.83 0.82 0.92
GBDT-M3G 0.83 0.72 0.75 0.73 0.93
XGB-M3G 0.86 0.76 0.79 0.78 0.90
Voting 0.92 0.95 0.79 0.86

Fig. 7 Receiver operating characteristic (ROC) curves of models listed in
Tables 2 and 3, for (a) n-type and (b) p-type data. The black dashed line is
the chance level line (AUC = 0.5).
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calculations, the ML models should be used to make a prediction.
Any compound that was not predicted as a good one would be
discarded and its following calculation would be cancelled. In this
way, a lot of time and computational resources can be saved.

4 Conclusions

In this work, we did first-principles high-throughput transport
property calculations and built a database containing 796
compounds’ electronic transport properties, including the
Seebeck coefficient, electrical conductivity, power factor, etc.
Then, we picked up several compounds with high power factors
and calculated their lattice thermal conductivity and figure of
merit further. We have found many novel and promising TE
materials. Some of them, such as Ge5Te4Se, KBiSe2, GeTe
(Pnma) and BaCu2Te2, may have performance better than that
of state-of-the-art TE materials. Then, in order to reduce the
amount of costly computations, we trained several types of ML
models to identify the TE compounds with high power factor
from the others, with only crystal structures and parameters
extracted from band structures as input. Specifically, four
ensemble learning models and two deep learning models based
on a graph neural network were trained and compared. Among
them, the M3GNet model for n-type data achieved accuracy,
precision and recall all higher than 90%, making it the best
among the models we obtained. Moreover, all of the trained
models achieve AUC values higher than 0.9, and their ROC
curves are close to that of a perfect classifier. Integrating these
models into the calculation workflow of electronic transport
properties in AICON can speed up the process of screening of
TE materials greatly. In the future, we plan to include more
chalcogenides (hexagonal, monoclinic, etc.) into the high-
throughput calculations and expand our database. Another
important thing is to train a ML model only using structure
as an input, which would even improve the efficiency of screening
work an order of magnitude. We believe our work will greatly
reduce the workload to find good thermoelectric materials and, in
combination with experimental works, accelerate the discovery of
superior thermoelectric materials.
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