
Ab initio theory of phase transitions and thermoelasticity
of minerals

ARTEM R. OGANOV*, JOHN P. BRODHOLT and G. DAVID PRICE

University College London, Gower Street, London WC1E 6BT, U.K.;
*e-mail: a.oganov@mat.ethz.ch

Introduction

Accurate quantum-mechanical simulations have significantly extended the current
picture of the Earth and hold a great promise for the future of the Earth and planetary
sciences. Studies of phase transitions, equations of state, elasticity and thermoelastic
properties of the Earth-forming minerals are essential to geophysics. This chapter gives
a basic background of the physics of the deep Earth and outlines the theory of phase
transitions, equations of state, elasticity and thermoelastic properties. A particular
emphasis is put on the principles of quantum-mechanical simulations and some recent
results relevant to geophysics.

The importance of quantum-mechanical simulations is reflected by the award of
the 1998 Nobel Prize in Chemistry to W. Kohn and J. Pople, who were among the
pioneers of this field. Areas of application of such simulations are extremely diverse and
include studies of the electronic structure, reactivity, catalysis, bulk and surface
structure, prediction of materials structures and properties, especially at extreme
conditions, calculation of phase diagrams and studies of phase transitions etc.

One of the most exciting areas of application of such simulations is the study of the
Earth- (and planet-) forming minerals at the extreme conditions of the Earth’s interior.
One can accurately predict the structures, properties, and behaviour of minerals. This
often reveals new aspects of mineral crystal chemistry and allows one to explain
geophysical measurements and understand better how the Earth works as a planet. This
chapter consists of five major parts – Part I: Brief geophysical introduction, Part II:
Thermoelastic properties, Part III: Phase transitions, Part IV: Simulation methods and
Part V: Examples from recent studies. Each part is supplied with a number of references
for further reading.

Part I: A brief geophysical introduction

This section will be brief by necessity. For further reading we recommend the classical
books by Anderson (1989) and Poirier (2000). The reader is also recommended to refer
to the book by Verhoogen (1980). A scheme of the Earth’s internal structure is shown in
Figure 1. Before discussing it in more detail, we make some remarks on the Earth’s
chemistry. 
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The Earth is believed to be in many ways similar to the other terrestrial planets
(Mars, Venus, Mercury). These planets are strongly chemically differentiated and have
a dense metallic Fe-rich core and silicate mantle. Chondritic models are a good starting
point for models of their bulk composition (see Anderson, 1989; Allègre et al., 1995).
The relative proportions of refractory elements (e.g., Ca, Al, Sr, Ti, Ba, U, Th, Mg, Si)
appear to be very similar in chondritic meteorites, terrestrial planets, Sun and Universe,
but terrestrial planets are depleted in volatile elements (e.g., H, noble gases, C, N, O, K,
Na, Rb, Cs, S). Relative proportions of major Earth-forming elements in the Universe,
Earth and its mantle and crust are given in Table 1.

The presence of two almost immiscible fractions (silicate/oxide crust and mantle
and metallic core) results in strong partitioning of elements between them, with
siderophiles (e.g., Ni, platinoids, Au, Re) preferentially entering the core, and lithophiles
(e.g., Al, Mg, Ca, Na) mainly in the mantle and crust. Chalcophile elements (e.g., Cu,
Pb) are distributed between the core and mantle, but prefer the core. Some of the
fractionation trends (e.g., mantle and crust depleted in Fe and Ni, but enriched in Ca and
Al) can be seen in Table 1.

It is worth noting that at different p/T conditions many elements change their
behaviour: e.g., K may become a chalcophile or siderophile element, and Si almost
certainly acquires some siderophile properties at very high pressures. This would imply
that these elements enter the core; fractionation of K into the core would imply an
important source of radiogenic energy (radioactive 40K isotope) within the core. 

At high pressures of the lower mantle (> 24 GPa) MgSiO3 with the perovskite
structure becomes stable; geochemical models and phase equilibria indicate that this
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Fig. 1. Scheme of the Earth’s internal structure. Mantle convection is responsible for plate tectonics,
convection of the outer core – for the generation of the Earth’s magnetic field. 



mineral should be the most abundant mineral in the mantle – in fact, the most abundant
mineral in the Earth. We shall consider this mineral in detail later on in this chapter. With
the chondritic ratio Mg/Si = 1.06, the lower mantle would contain practically only the
perovskite. However, geochemists and geophysicists prefer to describe the composition
of the mantle by the pyrolitic model, which has the Mg/Si ratio of 1.24. This results in
the mantle enriched in MgO. If the mantle is pyrolitic, the deficit of Si in it may be due
to a large Si content in the Earth’s core, or due to a non-chondritic bulk Earth
composition. Compositions of the Earth’s lower mantle and core are still poorly known. 

The high density of the core and the presence of the magnetic field suggest that the
core is metallic, and the elemental abundances indicate that it must be Fe-rich. It is
interesting to mention an early hypothesis, proposed by W.H. Ramsey in 1949, that the
Earth’s dense core is not chemically different from the mantle and is made of the usual
silicates of Mg, Al, Ca, and other elements – the idea being that at very high pressures of
the Earth’s core (~ 3 Mbar) these silicates will transform into ultradense modifications
and (in order to explain the magnetic field) will become metallic. Geochemically this
would mean no chemical stratification and invalidity of the chondritic model. Early
shock wave experiments of Altshuler’s group in Russia (see Zharkov & Kalinin, 1968),
subsequently reproduced in other groups and reinforced by theoretical calculations (e.g.,
Cohen, 1991; Bukowinski, 1994), definitively refuted this hypothesis. Silicate minerals
remain insulating and never adopt superdense structures or become metallic at the
Earth’s core conditions. The core must be Fe-rich.

Detailed information on the density and size of the dense core is obtained from
detailed geophysical observations and global seismological models, the most popular of
which is PREM (Preliminary Reference Earth Model – Dziewonski & Anderson, 1981).
The following regions, separated by major first-order seismic boundaries, are
distinguished within the Earth: crust (0–24.4 km, but the depth strongly varies
geographically); mantle (24.4–2891 km): upper mantle (24.4–400 km), transition zone
(400–670 km), lower mantle (670–2891 km); core (2891–6371 km): outer core
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Table 1. Abundances of some chemical elements (in atoms per 1 atom Si)

The Whole Earth’s Upper Lower Pyrolitic
Element Universe Earth crust mantle mantle homogeneous

[1] [2] [3] [3] [3] mantle [4]

O 20.10 3.73 2.9 3.63 3.63 3.68
Na 0.06 0.06 0.12 0.03 2 × 10–3 0.02
Mg 1.08 1.06 0.09 0.97 1.09 1.24
Al 0.08 0.09 0.36 0.17 0.06 0.12
Si 1 1 1 1 1 1
P 0.01 – 4 × 10–3 6 × 10–4 4 × 10–5 4 × 10–4

S 0.52 – 8 × 10–4 6 × 10–4 5 × 10–5 2 × 10–3

Ca 0.06 0.06 0.14 0.12 0.05 0.09
Cr 0.01 – 1 × 10–4 5 × 10–3 0.01 0.01
Fe 0.9 0.9 0.11 0.14 0.14 0.16
Ni 0.05 – 3 × 10–5 3 × 10–3 4 × 10–3 3 × 10–5

[1] Estimates of Anders & Ebihara (1982); [2] Simple model based on cosmic abundances (Anderson, 1989); 
[3] Recalculated from data of Anderson (1989); [4] Recalculated from Ringwood (1991).



(2891–5150 km) and inner core (5150–6371 km). Figure 1 shows a scheme of the Earth’s
structure. Seismic discontinuities are due to the compositional changes (24.4 km,
2891 km) and phase transitions (400 km, 670 km, 5150 km). Apart from these major
first-order discontinuities, there are weaker discontinuities, whose origin is often poorly
understood.

One of the better known minor discontinuities is the 520 km discontinuity (Shearer,
1990) related to the wadsleyite–ringwoodite transition. Although this transition should
be present globally, the discontinuity is small and only locally observable (Deuss &
Woodhouse, 2001); it is not included in current seismological models. In principle, even
global discontinuities may become seismically invisible if they are spread over a large
depth interval.

Apart from PREM, there are other global seismological models, e.g., ak135
(Kennett et al., 1995), which generally agree with PREM within 1–2% on seismic
velocities (Fig. 2). The parameters given by these models as a function of depth are:
pressure (p), compressional and shear seismic velocities (Vp and Vs), density (ρ),
acceleration due to gravity (g), adiabatic bulk and shear moduli (KS and G), seismic
parameter (Φ = KS/ρ), Poisson ratio (ν), attenuation Q-factors for the compressional and
shear velocities (Qp and Qs), and Bullen parameter (η). Some of these profiles are shown
in Figures 3 and 4.

Pressure distribution can be calculated straightforwardly from the density
distribution using the following equation:

, (1)

where G, r, and g are the gravitational constant, radius, and acceleration due to gravity. 

ρρρπ gdrrrG
dr
dp r

−=−= ∫−

0
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Fig. 2. Comparison of the PREM and ak135 profiles of seismic wave velocities in the Earth’s mantle and crust. 
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Derivation of a temperature profile is much more complicated, and currently there
is no commonly accepted thermal model of the Earth. Both temperature and composition
can in principle be determined from seismological models given some knowledge of the
properties of the Earth’s materials. The famous Birch’s law (Poirier, 2000) states that
compressional seismic velocities depend only on the composition and density of the
material:

Vp= a(M̄) + bρ, (2)

where M̄ is the average atomic mass, a and b constants, ρ the density. This empirical law
works surprisingly well. For the outer core it suggests M̄= 49.3 (Poirier, 2000), supporting
the Fe-rich composition and presence of light elements (the atomic mass of Fe is 55.8).
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Fig. 3. PREM seismic velocity profiles. The major regions of the Earth are specified. The core–mantle
boundary region D′′ (grey shading) is the major seismic boundary in the Earth. Shear waves do not propagate
in the outer core, which leads to the conclusion that the outer core is molten. The inner core is solid.

Fig. 4. PREM density profile (a) and pressure profile (b). Pressure is continuous, but there is a large kink in
its slope at the core–mantle boundary due to the large density jump occurring there.



The latest ab initio simulations (Vočadlo et al., 2000) and experiments indicate that
Fe is hexagonal close packed in the inner core. The inner core is highly seismically
anisotropic, with the fastest direction of seismic waves along the axis of the Earth’s
rotation. This anisotropy implies a high degree of crystal alignment, whose cause is
unknown. Using ab initio molecular dynamics simulations, Alfè et al. (1999) calculated
the melting curve of pure Fe and concluded that for a pure Fe core the temperature at the
inner–outer core boundary is 6700 ± 600 K. Using the density jump at this boundary as
a constraint, Alfè et al. (2002) were able to put forward a compositional model for the
Earth’s core (inner core: 8.5% Si + S and 0.2% O; outer core: 10% Si + S and 8% O);
remarkably, this composition has M̄ = 49.38. The temperature at which these
compositions are at equilibrium is 5600 K, a more rigorous estimate of the temperature
at the inner-outer core boundary.

Vigorous convection of the outer core, like a giant dynamo-machine, generates the
Earth’s magnetic field. By constructing an adiabatic temperature profile for the outer core,
Alfè et al. (private communication) obtained T ≈ 4200 K at the core–mantle boundary.

The Earth’s mantle consists mainly of Mg-silicates with M̄ = 21.3 from Birch’s law
(Poirier, 2000). Compared to M̄ = 20.12 for MgSiO3, 20.15 for MgO, and 20.13 for
Mg2SiO4, this implies an ~ 10% substitution of Mg by Fe. Fe is mainly in the form of
Fe2+, which is in a high-spin state at low pressures, but may transform into low-spin
non-magnetic Fe2+ at high pressures. This ‘magnetic collapse’ has attracted much
attention in both theoretical (Sherman, 1991; Isaak et al., 1993; Cohen et al., 1997;
Cohen, 1999; Fang et al., 1999) and experimental (Pasternak et al., 1997; Badro et al.,
1999) literature, but it remains highly unclear whether the high-spin-to-low-spin
transition in Fe2+ ions occurs in the mantle.

Phase transitions of Mg-silicates determine the seismic structure of the mantle
(Fig. 5; Helffrich, 2000; Chudinovskikh & Boehler, 2001). Whether there is any
compositional stratification is an open question. Pyrolitic lower mantle would consist of
(Mg,Fe)SiO3 perovskite (~ 75 vol%), magnesiowüstite (Mg,Fe)O (~ 20 vol%), and
CaSiO3 perovskite (~ 5 vol%).

Knowledge of the thermoelastic properties of (Mg,Fe)SiO3 perovskite is crucial for
constructing thermal and compositional models of the mantle. Stixrude et al. (1992),
using early measurements of thermoelastic parameters of (Mg,Fe)SiO3 perovskite
(Knittle & Jeanloz, 1986; Mao et al., 1991) with an unusually high thermal expansion
coefficient, arrived at the conclusion that the lower mantle must be ~ 100% (Mg,Fe)SiO3

perovskite. This would imply a compositional difference between the lower mantle and
pyrolitic upper mantle, absence of chemical mixing between the upper and lower mantle
and layered (i.e. upper and lower mantle convecting separately), rather than whole-
mantle, convection. The bulk lower mantle composition would then be chondritic (e.g.,
in Mg/Si ratio) rather than pyrolitic. Later measurements of thermal expansion of this
mineral (Wang et al., 1994; Funamori et al., 1996; Fiquet et al., 2000) yielded much
lower values. To have a pure perovskite lower mantle with these values, one must have
temperatures that are unacceptably high. Whole-mantle or intermediate convection
models are currently preferred, being also consistent with seismic tomography images.
However, geochemical studies provide an argument in favour of the layered mantle
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convection, indicating two chemically distinct sources of mantle magmas. The style of
mantle convection remains an open question (see Poirier, 2000).

The temperature gradient in a convecting system (e.g., mantle) must be adiabatic
or higher. The adiabatic temperature gradient can be calculated from the thermodynamic
equality:

, (3)

where γ and KS are the Grüneisen parameter and the adiabatic bulk modulus, respectively. 
A fundamental geophysical relation (see Jackson, 1998) exists:

, (4)

which describes self-compression of a chemically homogeneous layer characterised by
a superadiabatic temperature gradient τ; α is the thermal expansion coefficient. If the
temperature distribution is adiabatic, the following relation must be obeyed:
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Fig. 5. Schematic phase relations in pyrolite (after Ringwood, 1991). Opx and Cpx are ortho- and
clinopyroxene, Ilm is MgSiO3 ilmenite (akimotoite), MW is magnesiowüstite (Mg,Fe)O, ‘Mg-perovskite’ and
‘Ca-perovskite’ stand for MgSiO3 and CaSiO3 perovskites.

∂KS



where η is known as the Bullen parameter. If its values deviate from 1, it indicates that either
the temperature gradient is non-adiabatic, or the chemical composition varies with depth. 

In a chemically homogeneous system, the superadiabatic gradient τ is related to
the deviations of η from unity:

. (6)

In PREM, η = 0.99±0.01 throughout the lower mantle, supporting the view that the
lower mantle is adiabatic and chemically homogeneous. However, in the ak135 model
η = 0.94±0.02, which implies very large superadiabatic gradients, 0.3–0.7 K/km (see
Jackson, 1998). 

According to Verhoogen (1980), the core–mantle boundary layer D′′ is essentially
a thermal boundary layer with a temperature jump of ~ 1200 K. From seismology, this
layer is highly variable in thickness, highly heterogeneous and elastically anisotropic,
and has very small or in some places even negative velocity gradients. An intriguing
possibility is the partial melting of this region. The solidus of the pyrolite mantle was
determined experimentally by Zerr et al. (1998); at the core–mantle boundary melting
would start at ~ 4300 K, which is similar to the temperatures of the core near the
core–mantle boundary. The presence of a melt would imply high electrical conductivity
due to ionic diffusivity. The electrical conductivity of the lower mantle is indeed high
(~ 1–10 S/m on average – Xu et al., 2000).

Knittle & Jeanloz (1991) consider the D′′ layer as a chemical reaction zone between
the core and mantle. They experimentally observed a reaction, which can be
schematically written as follows:

(Mg,Fe)SiO3 + Fe = MgSiO3 + SiO2 + FeO + FeSi. (7)

Iron oxide and silicide at the high pressure of the core–mantle boundary are
metallic and should be soluble in the core. The reaction of Knittle & Jeanloz (1991)
might drive Fe (as well as Si and O) from the mantle into the core. This opens an
interesting possibility of the still growing core. 

Another interesting question is the nature of minor seismic discontinuities in the
lower mantle. E.g., the locally observed 1200 km discontinuity1 has been attributed to a
tetragonal-to-cubic transition in CaSiO3 perovskite (Stixrude et al., 1996; Chizmeshya et
al., 1996), found in linear response all-electron LAPW calculations. More approximate
pseudopotential calculations of Karki (1997) and Warren et al. (1998), however, did not
find this transition, and the stable phase of CaSiO3 perovskite in their simulations was
always cubic. Improved experimental and theoretical techniques can or soon will be able
to resolve such questions. 

Our understanding of the mantle mineralogy can be greatly improved by studies of
mantle inclusions – e.g., Harte et al. (1999) found several lower mantle minerals
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1 Vinnik et al. (1998); Le Stunff et al. (1995) suggested that discontinuities at 785–950 km and 1200 km might
be global.



(including MgSiO3 with up to 10% Al2O3) in inclusions in diamonds. Most inclusions
studied so far have upper mantle or transition zone origin, however. 

The transition zone (400–670 km) is quite diverse mineralogically, and might
possess exotic properties. It may host large amounts of water: both wadsleyite and
ringwoodite can contain up to 2–3 wt% H2O (see Fiquet, 2001 and references therein).
It has also been suggested (Angel et al., 1996 and references therein) that five-coordinate
Si, which is unusual for inorganic compounds, can play an important role in the
transition zone, determining its transport properties. 

The upper mantle consists predominantly of olivine, garnet, and pyroxenes. Its
major features include: (i) ultralow velocity zone at variable depths, roughly between
50–100 km and 220 km (Anderson, 1989), (ii) a seismic discontinuity (Lehmann
discontinuity) at 220 km depth, (iii) strong elastic anisotropy above 220 km, and (iv)
compositional heterogeneity in the upper 150 km (see Ringwood, 1991). The Lehmann
discontinuity is, possibly, due to the Pbca–C2/c transition in pyroxenes (see
Mendelssohn & Price, 1997). The ultralow velocity zone is interpreted as a region of
partial melting and low viscosity (asthenosphere) beneath the rigid lithosphere.
Anisotropy in this region is a consequence of preferred orientation of crystals caused
by convective flow. 

A comprehensive review of mantle mineralogy can be found in Fiquet (2001).
Overall, mantle mineralogy is dominated by a handful of mineral species with quite
dense structures. Very large (e.g., Na, K, Ca, Sr, Cl, U, Th) and very small (e.g., Li, Be,
B) atoms cannot enter these minerals, and concentrate in mantle magmas and fluids,
rising to the surface of the Earth and forming its crust. This is why the rich mineral list
of the crust is dominated by mantle incompatible elements. The most abundant minerals
of the crust are feldspars (Na,K,Ca)(Al,Si)4O8. 

The Earth’s mantle is convecting at the velocities of several mm/year. These
velocities are highly variable, and may be a few times lower in the lower mantle due to
its higher viscosity. Microscopically, this solid state convection can occur by
dislocational or diffusional creep. 

It is important to understand the 3D thermal structure of the mantle underlying this
convection, in particular how large are the thermal anomalies associated with the ‘cold
slabs’ and ‘hot spots’. Cold slabs may have a different mineralogy from the rest of the
mantle, because of the lower temperatures and different bulk chemical composition. An
aluminous phase (possibly, MgAl2O4 in the CaTi2O4 or CaFe2O4 structures – Kesson et
al., 1994, 1998) would be present in the slabs. H2O, liberated from hydrous silicates at
high pressures, might form ice VII in sufficiently cold slabs (e.g., at 700 K and 15 GPa
– Bina & Navrotsky, 2000). 

Studying the topography of major seismic discontinuities, it is possible to get some
ideas on lateral temperature variations (Helffrich, 2000), knowing the dp/dT slopes
of the corresponding phase transitions. Most slabs turn out to be ~ 400–700 K colder than
the average mantle at 660 km; the Tonga slab seems to be ~ 1200 K colder. The
temperature anomaly below the Iceland hot spot is +180 K at 660 km depth (Helffrich,
2000). It is possible to extract the same information as well as other important
characteristics of the mantle from seismic tomography. 
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In seismic tomography, one inverts numerous seismological measurements to
obtain three-dimensional distributions of seismic wave velocities. It is common to
represent results in terms of perturbations of seismic velocities relative to the average
velocity at each depth: e.g., ∆VS/VS. Most recent tomography maps have similar
qualitative features (locations of ‘cold’ and ‘hot’ regions) and roughly similar
magnitudes of the velocity perturbations. Perhaps, the most reliable global seismic
tomography maps currently available are those of Masters et al. (2000). 

In the first approximation, low velocities can be attributed to high temperatures,
and high velocities to low temperatures. There is a remarkable correlation between
surface tectonics and tomographic images down to the core–mantle boundary. Most cold
regions (probably, representing the slabs) penetrate the 670 km boundary and even seem
to reach the core–mantle boundary region (Masters et al., 2000), although in some
tomographic images (Kennett et al., 1998) most slabs seem to disappear somewhere
between 1000 km and 2000 km depths. 

From PREM, the relative variation of shear and compressional seismic wave
velocities due to pressure alone:

(8)

is 0.7 (Anderson, 1989). A similarly defined parameter, 

, (9)

measuring the same ratio, but due to temperature effects alone, is much larger: it
increases from 1.7 to 2.6 between the depths of 1000 km and 2000 km according to
seismic tomography (Robertson & Woodhouse, 1996). 

The large difference between RT and Rp has been a puzzle for geophysicists over the
last 15 years. The seismological values of RT are well reproduced in the laboratory (see
Anderson, 1989) and in theoretical simulations (Oganov et al., 2001b; Parker & Wall,
1991); it is the large seismologically measured value of Rp that needs to be explained for
the lower mantle. Three possible explanations exist: (i) intrinsic anharmonicity
(Anderson, 1989), (ii) anelastic effects (Karato, 1993) and (iii) large scale compositional
heterogeneity (e.g., Masters et al., 2000). The first two effects must be present; the
question is how important these effects are. 

Chemical heterogeneity is believed to be very important only in the D′′ layer, which
can be a chemical reaction zone (Knittle & Jeanloz, 1991). In the next section we shall
consider in detail elastic properties of crystals, equations of state and thermodynamic
properties. This theory plays a central role in the interpretation of seismological data.
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Part II: Thermoelastic properties

Thermodynamics

Thermodynamic properties are, perhaps, the most important properties of a crystal –
they define its stability field; their derivatives with respect to pressure, temperature,
and volume describe the behaviour of the crystal at changing conditions, its equation
of state (EOS) and response functions such as the elastic constants and thermal
expansion.

In thermodynamic theory of condensed matter, a fundamental role is played by the
partition function:

, (10)

where the summation is carried out over all discrete energy levels of the system. Once Z
is known, all thermodynamic properties can be obtained straightforwardly, e.g. the
Helmholtz free energy:

F = E0 – kBT ln Z, (11)

where E0 is the ground state energy (at 0 K) including the energy of zero-point motion.
However, it is extremely difficult to obtain all the energy levels experimentally or

theoretically, and their number is overwhelmingly large for solids. The harmonic
approximation gives a first approximation to the distribution of the energy levels En in
solids; it is usually accurate for the most populated lowest excited vibrational levels. The
key concept here is that of a non-interacting (ideal) gas of quasiparticles called phonons,
and the key quantity is the phonon density of states, g(ω). Anharmonic effects can often
be included as corrections to the harmonic results.

Harmonic approximation
In this approximation, it is assumed that all interatomic interactions are analogous to
perfectly elastic springs. According to quantum mechanics, the energy levels of a
harmonic oscillator are discrete; the solution of the Schrödinger equation yields:

En = h̄(½ + n)ω, (12)

where n is the quantum number and ω the frequency of the vibration. For n = 2, 3, … we
have doubly, triply, … excited vibrations – such vibrations are called overtones, and due
to high energies such excited states have low populations pn increasing with temperature
according to the Boltzmann statistics: pn ~ e–En/kBT. Energy levels in real crystals are well
described by Equation 12 only for the lowest quantum numbers n, but these represent the
most populated, and thus the most important vibrational excitations. 

In the harmonic model all atoms vibrate around their equilibrium positions.
Diffusion becomes impossible because of the infinite energy required for removing an
atom or for an atom to become unbound to its original position. Such high-temperature
phenomena as melting and diffusion in real materials are essentially anharmonic and
cannot be accounted for by the harmonic approximation. The harmonic potential

∑ −=
n

TkEneZ B/
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becomes inaccurate at large displacements and higher-order overtones are poorly
described by the harmonic approximation. These large displacements become accessible
only at high temperatures, and this is where the harmonic approximation breaks down. 

The harmonic vibrational energy of a crystal can be determined via the phonon
frequencies ω and temperature T. Each phonon contributes to the vibrational energy
according to the following formula: 

, (13)

where h̄ is the Planck constant and kB the Boltzmann constant. The first, temperature
independent, term in Equation 13 is the zero-point energy originating from quantum
motion of atoms; this contribution dominates Evib at low temperatures. The second,
temperature dependent term (thermal energy, or heat content) represents the energy
change upon heating from 0 K to the temperature T. Differentiation of Equation 13 with
respect to T produces the heat capacity of a harmonic oscillator:

, (14)

and it is easy to obtain its vibrational entropy:

(15)

and the Helmholtz free energy:

. (16)

In a crystal with n atoms in the unit cell, there are 3n different normal modes, whose
frequencies form a spectrum called the phonon spectrum, or phonon density of states
g(ω). As in the harmonic approximation the normal modes are independent and non-
interacting, all thermodynamic properties can be obtained as a natural generalisation of
Equations 13–16 by integrating over frequencies, e.g.:
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Once the density of states g(ω) is known, all thermodynamic functions can be
easily computed. IR or Raman spectra probe only some of the vibrations with
wavevectors close to zero (e.g., having the wavelengths of the scale of the whole crystal;
however, most vibrations have shorter wavelengths), and therefore do not give the full
information on the phonon spectrum. The g(ω) can be determined experimentally by
inelastic neutron scattering (e.g., Dove, 1993; Choudhury et al., 2002 [this volume]), or
theoretically using lattice dynamics or molecular dynamics simulations. 

Often reasonable approximations to g(ω) can be obtained using the IR and/or Raman
spectra and/or the elastic properties. In the Debye model, the phonon spectrum is described

by a parabolic function truncated at some maximum frequency :

, (18)

where n is the number of atoms in the unit cell of volume V0, and θD is the characteristic
Debye temperature, the only parameter in this model. This density of states is based on
the assumption that all modes obey the same (linear) dispersion law as the long
wavelength acoustic modes, related to the elastic constants of the solid.

With Equation 18 for g(ω), the thermodynamic functions take the following forms:

, (19)

, (20)

, (21)

where , .

The Debye temperature is determined by the elastic properties or, more precisely,
the average sound velocity 〈v〉 in a crystal: 

. (22)

The mean sound velocity can be accurately calculated from the elastic constant tensor
(Robie & Edwards, 1966) or using an approximate formula:

, (23)

where Vp and Vs are the longitudinal and transverse sound velocities, respectively.
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The Debye model is very effective in application to chemically and structurally
simple crystals, but fails in more complicated cases. Kieffer (1979a) gave a
comprehensive critical review of the Debye model and in the same seminal cycle of
papers proposed a new model (Kieffer, 1979b, 1979c, 1980, 1982). This model is based
on the following main points: (i) the acoustic modes have a sinusoidal dispersion law
ω(k) (not linear, as assumed in the Debye model) and are described by three different
densities of states, (ii) optic modes are described by separate densities of states:
monochromatic (‘Einstein’) peaks for high-frequency optic modes and by a continuum
distribution for the low-frequency optic modes. In comparison with the Debye model
this model has a much greater accuracy, but at the cost of a number of additional
parameters.

In the Agoshkov model (Agoshkov, 1985; Agoshkov et al., 1994), all the acoustic
and low-frequency optic modes are described by a single Debye-like parabolic density
of states g(ω), while the high-frequency modes, like in the Kieffer model, are described
as Einstein oscillators. Komada & Westrum (1997) proposed another model, which, like
the Debye model, has only one parameter.

Shortcomings of the harmonic approximation
The harmonic approximation greatly simplifies calculations, but has fundamental flaws.
First, within this approximation, all vibrational modes are independent – there is no
exchange of energy and momentum between them. Non-interacting phonons can freely
travel within the crystal, leading to the infinite mean free path of the phonons and infinite
thermal conductivity of the harmonic crystal. In real crystals, thermal conductivity is
finite due to phonon–phonon collisions, scattering on defects, and finite size of samples. 

Diffusion and melting cannot be explained within the harmonic approximation.
The same is true for displacive phase transitions – although the harmonic approximation
can indicate such a transition by showing a soft mode, no properties can be calculated
for the dynamically disordered phase. 

In the harmonic approximation there is no thermal expansion. Related to this is the
equality CV = Cp, whereas experiment indicates CV < Cp.

From general thermodynamics,

Cp = CV(1+α2KTV/CV), (24)

where α is the thermal expansion coefficient, KT isothermal bulk modulus, and V molar
volume. When α = 0, CV = Cp.

Also, experiment indicates (Gillet et al., 1999) that at high temperatures the
isochoric heat capacity can differ from 3nR, while in the harmonic approximation 3nR is
the high-temperature limit (the Dulong–Petit limit). Similarly, the vibrational energy can
exceed the harmonic quota of 3kBT per atom (or kBT per mode). It can be shown (Oganov,
2002) that for the classical anharmonic oscillator the total vibrational energy is:

, (25)

where Epot(x) is the potential energy as a function of displacement x. Equation 25 differs
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from the high-temperature harmonic expression Evib = kBT. Obviously, the second and
third terms in Equation 25 would be absent in the harmonic approximation or in the case
of small displacements, and we would recover the Dulong–Petit value of kBT for the
energy per mode at high temperatures.

Perhaps, the most spectacular failure of the harmonic approximation is its wrong
conclusion that vibrational frequencies do not depend on temperature and pressure. To
account for such experimentally observed strong dependences, one has to use more
realistic approximations. The first approximation, combining the simplicity of the
harmonic approximation while correcting its most serious errors is the quasiharmonic
approximation.

Quasiharmonic approximation (QHA)
In this approximation, it is assumed that the solid behaves like a harmonic solid at each
volume, but the phonon frequencies depend on volume. It is assumed that they depend
only on volume – i.e., heating at constant volume does not change the frequencies. 

In the QHA phonon modes are still independent and non-interacting.
Thermodynamic functions at constant volume, as before, are given by Equation 17 for
the heat capacity CV and analogous relations for other properties. CV still tends to 3nR at
high temperatures. Melting, diffusion, and dynamically disordered phases are beyond
the scope of this approximation, which breaks down at high temperatures. Thermal
conductivity is still infinite.

However crude, this approximation corrects the worst errors of the harmonic
approximation. Introducing a volume dependence of the frequencies is enough to create
non-zero thermal expansion and account for CV < Cp (cf. Eqn. 24). This is the first
approximation for the thermal EOS of solids, which can be effectively used in conjunction
with realistic interatomic potentials (Parker & Price, 1989; Kantorovich, 1995; Gale, 1998)
or quantum-mechanical approaches (Baroni et al., 1987, 2001; Karki et al., 1999, 2000a,
2000b). 

Beyond the QHA: Intrinsic anharmonicity

At temperatures roughly below of the melting temperature, the QHA is quite 

accurate. Only at higher temperatures do its errors become large. All the effects beyond
the QHA are termed intrinsic anharmonic effects. To the lowest order, the intrinsic
anharmonic contribution to the free energy Fa is proportional to T 2 (Zharkov & Kalinin,
1968; Gillet et al., 1999) at high temperatures:

F(V,T) = Fqha(V,T) + 3nkB[½a(V)T 2 + …], (26)

from which

E(V,T) = Eqha(V,T) – 3nkB[½a(V)T 2 + …],
S(V,T) = Sqha(V,T) – 3nkB[a(V)T + …], (27)
CV(T)= CV,qha(T) – 3nkB[a(V)T + …].

3

2

2

1
−

Ab initio theory of phase transitions and thermoelasticity of minerals 97



One important consequence of intrinsic anharmonicity is that vibrational
frequencies depend not only on volume; identical volume changes, produced by
changing pressure and temperature, result in different changes in the frequencies. This is
clearly demonstrated by precise experiments (see, e.g., Gillet et al., 2000, 1999) and
computer simulations (Winkler & Dove, 1992). The intrinsic anharmonicity parameter
of an i-th phonon mode at a wavevector k is given by:

, (28)

where α is the thermal expansion coefficient, and γik
T and γik

p are constant-temperature and
constant-pressure mode Grüneisen parameters (see below), respectively. Intrinsic
anharmonic parameters aik (Eqn. 28) are equal to the coefficients a previously used in
Equations 26 and 27 for anharmonic thermodynamic properties (a expresses the total
anharmonicity, while aik are the mode anharmonic parameters). Since these parameters
are measurable, the anharmonic corrections can be directly evaluated from experiment.

The full anharmonic theory of thermodynamic properties of crystals is very
complicated (see Wallace, 1998). Computationally, all intrinsic anharmonic effects can
be fully accounted for by the use of Monte Carlo or molecular dynamics simulations
(Allen & Tildesley, 1987): these methods involve a full sampling of the energy
hypersurface without any assumptions regarding its shape or smallness of atomic
displacements; these methods are equally applicable to liquids and gases.

Equation of state (EOS)

General thermodynamic formulation
An equation of state (i.e., the p–V–T relationship) is one of the most important
characteristics of a material. Indeed, accurate EOSs of minerals are necessary for the
interpretation of seismological observations.

Generally, from thermodynamics:

isothermal EOS,

adiabatic EOS.

Explicit analytical EOS can only be written for an ideal gas (where interatomic interactions
are absent and there are no problems in calculating exactly the partition function and
thermodynamic properties). For solids and liquids interatomic interactions are essential, and
all analytical EOSs are by necessity approximate. Even worse, interactions between atoms
make phase transitions possible, and EOS becomes discontinuous (i.e., non-analytical) at
phase transitions. All the approximate EOS formulations are valid only for one phase, and
generally the accuracy of the EOS is best at conditions far from phase transitions.

Consider the isothermal EOS: p = –(∂F/∂V)T , taking the QHA as the starting point.
Using indices i and k to denote the number of the phonon branch and the wavevector k,
we have:
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,

differentiating which one arrives at

, (29)

where is the mode Grüneisen parameter.

Defining average Grüneisen parameters, re-write Equation 29:

, (30)

where Γ is the so called thermodynamic Grüneisen parameter defined as a weighted
average of the mode Grüneisen parameters: 

, (31)

where CV, ik is the contribution of the i-th mode (at the k wavevector) to the total iso-

choric heat capacity (Eqn. 17). The term in Equation 30 describes
pressure due to zero-point motion.

For the thermal expansion one has:

. (32)

At high temperatures, where all phonons are fully excited, Equation 31 reduces to
a constant high-temperature limit, which is just the arithmetic mean over all mode
Grüneisen parameters: Γ → 〈γik〉. In the classical approximation, which is the basis of
standard molecular dynamics and Monte Carlo simulations, thermodynamic Grüneisen
parameter is close to 〈γik〉 (Welch et al., 1978), but also includes a temperature-dependent
correction due to intrinsic anharmonic effects.

Generally, Γ is a function of temperature as well as volume (cf. Eqn. 31), often with
a non-monotonic temperature dependence (Oganov et al., 2000; Price et al., 1987). This
dependence is usually small and neglected in the Mie–Grüneisen approximation. The
best value for the Mie–Grüneisen approximation is 〈γik〉 (denoted below as γ), which is
correct in the high-temperature limit and also appears in the expression for the pressure
of zero-point vibrations.

The famous Mie–Grüneisen thermal EOS is then written as:

. (33)
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The volume dependence of γ is described by a power law:

, (34)

with q usually assumed to be constant. In many studies (e.g., Oganov et al., 2000),

however, it was found that q = varies very strongly with volume.

Although derived within the QHA, the Mie–Grüneisen EOS can be formulated at
any level of theory. Generally speaking, Equation 31 will become invalid due to a
correction for intrinsic anharmonicity, but in such cases effective Grüneisen parameter
can be defined, implicitly subsuming the anharmonic effects. 

It is possible to separate explicitly the intrinsic anharmonic effects (e.g., Zharkov
& Kalinin, 1968; Gillet et al., 1999; Dorogokupets, 2000). Making use of the high-

temperature result for each mode Fa(V, T) = (Eqn. 26), the anharmonic
thermal pressure per mode is:

. (35)

Analytical representations of the equation of state
Assuming that K varies linearly with pressure and denoting K′0 = (∂K/∂p)T, p=0, we obtain
the Murnaghan EOS:

. (36)

This simple EOS works well in the compression range |(V – V0)/V0| < 0.1–0.2. At
larger compressions higher-order derivatives of K become important. Instead of
including these non-linearities of successively higher orders, it is better to construct an
approximate model for the energy as a function of x = V0/V or some other measure of
strain. Using this method, some of the most popular EOSs are obtained – families of
Birch–Murnaghan and logarithmic EOSs of different orders. Vinet EOS follows from a
general scaled interatomic potential.

Birch–Murnaghan EOSs. These EOSs are based on the polynomial expansion of the
energy:

E = E0 + af 2 + bf 3 + cf 4 + … (37)

in powers of the Eulerian strain fE:

. (38)
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It is advantageous to use the Eulerian finite strain rather than the Lagrangian strain: 

, (39)

because Eulerian strain leads to a better description of the correct E(V) dependences with
fewer terms in the expansion (37). However, for infinitesimal strains both definitions
become equivalent, and

(40)

The second-order Birch–Murnaghan EOS (BM2) is:

, (41)

which corresponds to the energy:

. (42)

The third-order BM EOS is 

, (43)

where ξ =¾ (K0′ – 4).
When K0′ = 4, the third-order Birch–Murnaghan EOS (BM3) reduces to the second-

order one (BM2). In other words, BM2 EOS implicitly assumes K0′ = 4. It is remarkable
that this estimate of the lowest order of finite strain theory is often very close to
experimental values of K0′ of many crystals (especially with close-packed structures).
This is why BM EOSs work well in many cases. Their main problem is rather poor
convergence with respect to the number of terms beyond the second order for large
strains: it turns out that the fourth-order energy term in Equation 37 is often larger than
the third-order one. The third-order BM EOS is very accurate when K0′ is close to 4; when
it is significantly different, this EOS gives poor results at high compressions. For K0′ < 4
at large compressions (e.g., for V/V0 ≈ 0.5 and K0′ = 2) BM3 can give even negative
pressures (Poirier & Tarantola, 1998)! Being based on a polynomial expansion of

the interatomic potential (of the type ), this EOS may become unreliable 

for extrapolations (Cohen et al., 2000).
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It is possible to derive systematically higher-order BM EOS, but this appears to
be of little use since the number of parameters involved will be too large; only the
fourth-order BM EOS:

(44)

is sometimes used. BM4 EOS seems to be very accurate in a wide range of
compressions.

Logarithmic EOSs. Drawbacks of the Birch–Murnaghan EOSs have led Poirier &
Tarantola (1998) to derive a new EOS, based on the polynomial expansion (37) in
powers of the natural (also called logarithmic, or Hencky) strain:

, (45)

where l is the length of the sample (l0 in the unstrained sample). The third-order
logarithmic EOS is:

. (46)

In the fourth order, the logarithmic EOS is:

.   (47)

In the case of MgO examined in Table 2, the third-order logarithmic EOS shows a
very poor performance compared to BM3 or Vinet EOS. It can be expected that this EOS
can work well in those rare cases where K0′ ≈ 2.
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Table 2. Analytical EOSs fitted to theoretical p–V data on periclase (MgO)

pmax (N) MUR BM2 BM3 Logarithmic Vinet
(K'0 = 4) third-order

K0 K'0 K0 K0 K'0 K0 K'0 K0 K'0      

165 GPa (12) 159.18 3.588 158.53 151.66 4.213 138.42 5.594 146.61 4.653
150 GPa (11) 158.66 3.605 158.13 151.79 4.208 140.02 5.477 147.25 4.624
105 GPa (8) 156.55 3.688 156.86 151.74 4.210 144.16 5.157 148.75 4.545
60 GPa (5) 154.70 3.788 155.29 152.12 4.186 148.43 4.781 150.67 4.416
30 GPa (3) 154.03 3.846 154.13 152.96 4.110 151.32 4.448 152.41 4.246
0 GPa2 K0 = 153.23; K'0 = 4.2±0.1 (from elastic constants)

MUR – Murnaghan EOS. Data were obtained by pseudopotential plane wave calculations within the
generalised gradient approximation (GGA). This table shows EOS parameters obtained for a pressure range
0–pmax with N data points. Zero-pressure volume V0 was fixed at the theoretical value 77.64 Å3. The last row
represents independent calculations of the elastic constants. 

[1 ] ln2



Logarithmic EOS corresponds to an unphysical interactomic potential of the type 

(Cohen et al., 2000). Even though it can be expanded as –a/R + bR–(3K0′ – 7) (Poirier &
Tarantola, 1998), one can note that the repulsion exponent is too small (5 for K0′ = 4)
compared to the usual values ~ 9–12. This is why, although based on a potentially
powerful idea of the Hencky finite strain, the logarithmic EOS is not generally
successful. Vinet EOS is the best choice of an EOS for solids – it combines simplicity,
high accuracy, and universal applicability to solids with any character of chemical
bonding, and up to extremely high compressions (at least 2–3-fold compressions). 

Vinet EOS (Vinet et al., 1986, 1989). This EOS, also known as the Universal EOS, is
sometimes considered as one of the major recent achievements of solid-state physics
(Sutton, 1993). Like BM and logarithmic EOSs, Vinet EOS is a family of EOSs of
different orders. The most remarkable feature is very fast convergence with respect to the
order of EOS – one seldom needs to go beyond the third-order Vinet EOS.

The third-order Vinet EOS is:

. (48)

This EOS is based on a universal scaled binding curve:

E = E0(1 + a)exp(–a), (49)

where E0 is the bond energy at equilibrium, a = (R – R0)/l, being a

scaling length roughly measuring the width of the potential well, and R the Wigner–Seitz
radius (the average radius of a sphere in the solid containing 1 atom). The potential (49)
was first used in 1930s by Rydberg for fitting potential curves of molecules and
obtaining their anharmonic coefficients; it turned out (see Sutton, 1993 and references
therein) that it describes very accurately systems with different types of chemical
bonding in solids, molecules, adsorbates etc. The Vinet EOS proved to be very accurate
for fitting the EOS of solid hydrogen (Loubeyre et al., 1996; Cohen et al., 2000) in the
pressure range 0–120 GPa, roughly to the 8-fold compression. The universal binding
curve (Eqn. 49), however, does not accurately describe long-range forces in ionic and
van der Waals crystals, which means that for such materials Vinet EOS will not give
accurate description of large expansion (V0/V << 1). For compression, however, it should
be sufficiently accurate, since compressional behaviour is dominated by interatomic
repulsion, well accounted for by Equation 49.

In very rare cases a higher-order Vinet EOS may be needed; such higher-order versions
of the Vinet EOS already exist (Vinet et al., 1989); fourth-order Vinet EOS has been
applied to solid H2 at extreme compressions (Cohen et al., 2000) and has lead to significant
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improvements of the description of experimental p–V data. At extreme compressions
(V/V0 < 0.1), where solids approach the free-electron regime, other EOSs are required.
Such EOSs, manifesting the Thomas–Fermi limiting behaviour at extreme compressions,
are developed and discussed in detail by Holzapfel (1996) and Hama & Suito (1996).

Table 2 gives a comparison of several EOSs fitted to theoretical data on MgO. Fits
were performed in different pressure ranges. Ideally, EOS parameters (V0, K0, and K0′)
should be independent of the pressure range of fitting and consistent with zero-pressure
values of these parameters. K0 and K0′ were also determined from the independently
calculated elastic constants at several pressures. The best results are obtained with the
BM3 and Vinet EOS. For MgO BM3 slightly outperforms Vinet EOS, however, there are
more examples of the opposite. Table 2 also shows that fitted values of the EOS
parameters (especially K0′) strongly depend on the EOS used. As the pressure range of
fitting tends to zero, all EOSs become equivalent. 

Since both K′ and γ come from anharmonicity, an intriguing possibility arises of a
general relation between them. This possibility has been widely discussed since 1939,
when Slater suggested the first solution of the problem:

. (50)

Later approaches resulted in similar equations, the difference being in the value of
the constant subtracted from K′: 1/2, 5/6 or 0.95. If any of the relations of the type (50)
were accurate, it would greatly simplify the construction of thermal EOS. Although
some correlation between γ and K′ does exist, the correlation is too poor to be useful
(Wallace, 1998). 

EOS, internal strain, and phase transitions
All the EOSs discussed above were based on the assumption that crystal structures
compress uniformly, i.e. there is no relaxation of the unit cell shape or atomic positions.
For some crystals (e.g., MgO) this is true: there are no internal degrees of freedom, and
the unit cell shape is fixed by symmetry. For most crystals and all glasses, however, this
is not the case. As emphasised by Angel & Ross (1996), all the classical EOSs are less
successful for crystals with internal degrees of freedom. Effects of atomic relaxation
(often called the effects of the internal strain) lead to renormalised values of the EOS
parameters. These EOSs perform particularly poorly in the vicinity of phase transitions.

Let us develop a simple qualitative model of the internal strain effects.
Homogeneous compression leads to a configuration with atoms generally off their
equilibrium positions. We denote such displacements as Q. Denoting the energy of the
crystal without atomic relaxation as E0, in the lowest order (i.e., in the harmonic
approximation) the energy E with positional relaxation will be:

,

where k is the force constant. For the static pressure we find
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, (51)

where p0 is the pressure corresponding to the homogeneous compression.
Let us represent Q in the lowest order as a linear function of volume and take the

reference Qi = 0 at V = V0. Then, 

Qi = –a(V – V0).

Using a strictly harmonic approximation and neglecting the volume dependence of
the force constant k (for a more general treatment see Oganov, 2002) we obtain:

p(V) = p0(V) + a2k0(V – V0). (52)

The term p0(V) is well described by conventional EOSs (e.g., Vinet EOS), 

whereas this may not be the case for the total EOS. The bulk modulus 

is always lowered by the relaxational effects, in the simplest approximation (Eqn. 52):

K(V) = K0(V) – a2k0V, (53)

whereas K′ is predicted to be increased.
Complex structures with many degrees of freedom are relatively ‘soft’ and often

have large K0′ significantly exceeding ‘normal’ K0′ = 4. It is well known that internal
strains always soften elastic constants (e.g., Catti, 1989) and, in particular, the bulk
modulus. E.g., quartz SiO2, despite consisting of extremely rigid SiO2 tetrahedra, has a
very low bulk modulus K0 = 37.12 GPa and high K0′ = 5.99 (Angel et al., 1997). Perhaps,
the highest known K0′ = 13 was found in amphibole grunerite (Zhang et al., 1992), whose
structure has very many degrees of freedom.

Results of ab initio calculations of sillimanite (Al2SiO5), presented in Figure 6,
illustrate these points. Without allowing the atomic coordinates and the shape of the unit
cell to relax, the structure is much stiffer. BM3 EOS fitted to the p(V) data has 
K0 = 199.7 GPa and 160 GPa, K0′ = 4.0 and 2.7 for the unrelaxed and relaxed EOSs,
respectively. In agreement with the prediction in Equation 53, the bulk modulus is
lowered by relaxation. K0′ = 4.0 of the unrelaxed EOS is typical of crystals without
internal degrees of freedom (e.g., close-packed oxides and metals). For the relaxed EOS
K0′ = 2.7, but values close to 4 would result from fitting in narrower pressure ranges. Low
values of K′ can be related to phase transitions, particularly if the transition (like in
sillimanite) is accompanied by softening and collapse of the structure (in sillimanite, a
soft longitudinal acoustic mode develops, leading to an isosymmetric phase transition at
38 GPa. In the vicinity of this transition K′ is negative). To study EOS near phase
transitions, one needs to go beyond the harmonic approximation built in the model (53).
This can be done using the Landau expansion of the internal energy in powers of Q
including the full elastic constants tensor and allowed couplings of the order parameter
and lattice strains. 
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Elastic constants

The importance of elastic constants for the Earth sciences springs from the fact that the
main information about the deep Earth is obtained seismologically, and seismic wave
velocities are related to the elastic properties of the Earth-forming rocks and minerals. A
number of excellent books and reviews consider the elastic properties; we mention Nye
(1998), Sirotin & Shaskolskaya (1975), Wallace (1998), Alexandrov & Prodaivoda
(1993), Born & Huang (1954), Belikov et al. (1970), Fedorov (1968). 

Elastic constants characterise the ability of a material to deform under small
stresses. They are be described by a fourth rank tensor Cijkl, relating the second rank
stress tensor σij to the (also second rank) strain tensor ekl via the generalised Hooke’s law:

σij = Cijklekl, (54)

where multiplication follows the rules of tensor multiplication (see Nye, 1998). Equation
54 can be simplified using the Voigt notation (Nye, 1998), in which pairs of indices ‘11’,
‘22’, ‘33’, ‘12’, ’13’, ‘23’ are represented by only one symbol: 1, 2, 3, 6, 5, and 4,
respectively. Instead of Equation 54 we write:

σi = Cijej. (55)
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Fig. 6. Effects of internal strains on EOS. (1) unrelaxed EOS (symbols: calculated points, line: BM3 fit),
(2) full EOS including relaxation (symbols: calculated points, line: BM3 fit), (3) the difference caused by
relaxation. Note that in the pre-transition region the full EOS is poorly fit, while the unrelaxed EOS is well
represented by BM3 EOS everywhere. The relaxational correction is very large. 



Here we use infinitesimal strains; under an infinitesimal strain, the lattice vectors
matrix a′ij of the strained crystal is obtained from the old lattice matrix aij

0 and the strain
tensor eij using the relation:

a′ij = (δij + eij)a
0
ij. (56)

In the original tensor notation and in the Voigt notation (Nye, 1998), the (δij + eij)
matrix is represented as follows:

. (57)

The Voigt notation allows one to write the elastic constants conveniently as a
symmetric 6 × 6 matrix; this is adequate for most situations (except, e.g., for a general
transformation of the coordinate system, where only the original fourth-rank tensor
representation can be used to derive the transformed elastic constants). The number of
components of a fourth rank tensor is 81; the Voigt notation reduces this to 36. The
thermodynamic equality Cij = Cji makes the 6 × 6 matrix of the elastic constants
symmetric relative to its main diagonal, reducing the number of independent constants
to 21. Symmetry further reduces this number to 13 for monoclinic, 9 for orthorhombic,
6 or 7 (depending on the point group symmetry) for trigonal and tetragonal, 5 for
hexagonal and 3 for cubic crystals; for isotropic (amorphous) solids there are only 2
independent elastic constants. The elastic constants and their anisotropy are closely
related to crystal structures. E.g., for andalusite and sillimanite (Al2SiO5) this relation
was clearly demonstrated by Vaughan & Weidner (1978).

One can define the inverse tensor Sijkl (or, in Voigt notations, Sij), often called the
elastic compliance tensor:

{Sijkl} = {Cijkl}
–1 or {Sij} = {Cij}

–1. (58)

For an orthorhombic crystal, this matrix inversion leads to the following explicit
relations between Cij and Sij (Belikov et al., 1970):

S11 = (C22C33 – C2
23)/D,

S22 = (C11C33 – C2
13)/D,

S33 = (C11C22 – C2
12)/D,

S44 = 1/C44,
S55 = 1/C55, (59)
S66 = 1/C66,
S12 = – (C12C33 – C13C23)/D,
S13 = (C12C23 – C13C22)/D,
S23 = – (C11C23 – C13C12)/D,

where D = C11C22C33 + 2C12C13C23 – C2
23C11 – C2

12C33 – C2
13C22.

The Sij tensor can be defined via the generalised Hooke’s law in its equivalent
formulation:

ei = Sijσj. (60)
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Linear compressibilities can be easily derived from the Sij tensor. Full expressions
for an arbitrary direction in a triclinic crystal can be found in Nye (1998); along the
coordinate axes they are:

(61)

where a, b, c are linear dimensions along the axes of the coordinate system2. The bulk
compressibility is:

, (62)

where V is the volume (e.g., unit cell volume).
There are two particularly important quantities – bulk modulus K and shear

modulus G. These are obtained by special averaging of the individual elastic constants.
There are several different schemes of such averaging. The assumption of a
homogeneous stress throughout the crystal leads to the Reuss bulk and shear moduli: 

KR = [S11 + S22 + S33 + 2(S12 +S13 + S23)]
–1 =    , (63)

GR = 15[4(S11 +S22 + S33) – 4(S12 +S13 +S23) + 3(S44 +S55 + S66)]
–1. (64)

It is the Reuss bulk modulus, explicitly related to compressibility, which is used in
constructing EOSs. This is also the modulus appearing in all thermodynamic equations
involving the bulk modulus.

Another scheme of averaging, due to Voigt, is based on the assumption of a
spatially homogeneous strain and leads to the following expressions:

KV = [C11 + C22 + C33 + 2(C12 +C13 + C23)], (65)

GV = [C11 +C22 + C33 – (C12 +C13 +C23) + 3(C44 +C55+ C66)]. (66)

For an isotropic polycrystalline aggregate the Voigt and the Reuss schemes give
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2 These axes may not coincide with the lattice vectors for non-orthogonal crystal systems. Coordinate systems
used in crystal physics are always orthogonal.



upper and lower bounds, respectively, of the corresponding moduli. More accurate
estimates are obtained from Voigt–Reuss–Hill averages: 

KVRH = (KV + KR); GVRH =   (GV + GR). (67)

Slightly more accurate results and tighter bounds are given by the more complicated
Hashin–Shtrikman variational averaging scheme. 

There are two groups of experimental methods of measurement of the elastic
constants – (i) static methods (based on determination of stress–strain relations for static
stresses) and (ii) high-frequency, or dynamic, methods (e.g., ultrasonic methods,
Brillouin spectroscopy etc.). Static methods are not used anymore, because of their poor
accuracy. Static measurements yield isothermal elastic constants (timescale of the
experiment allows thermal equilibrium to be attained within the sample), high-frequency
measurements give adiabatic constants (Belikov et al., 1970). The difference is entirely
due to the anharmonic effects (see below) and vanishes at 0 K. Adiabatic Cij are always
larger (Wallace, 1998):

CS
ijkl = CT

ijkl + bijbkl , (68)

where bij = (∂σij/∂T)V are related to the thermal expansion tensor. For the bulk modulus
we have:

, (69)

where α and γ are the thermal expansion and Grüneisen parameter, respectively.
Adiabatic and isothermal shear moduli are strictly equal for cubic crystals and usually
practically indistinguishable for crystals of other symmetries. Acoustic wave velocities
measured in seismological experiments are related to the adiabatic elastic constants. 

The elastic constants tensor allows one to calculate the velocities of acoustic waves
with an arbitrary propagation direction (see Sirotin & Shaskolskaya, 1975). There are 3
acoustic modes – 1 longitudinal and 2 shear modes. Their average velocities are
calculated as follows:

(70)

and

, (71)

where the adiabatic Voigt–Reuss–Hill (or Hashin–Shtrikman) values are used for the
bulk and shear moduli. 
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The energy change (per unit volume) due to a deformation can be described by the
adiabatic elastic constants: 

. (72)

An analogous relation exists between the Helmholtz free energy and isothermal
constants:

. (73)

These relations enable the calculation of elastic constants at zero pressure. 
It is well known (Barron & Klein, 1965; Wallace, 1998) that at non-zero pressures

there can be several different definitions of elastic constants. Consider a solid at a non-
zero hydrostatic pressure p. For the stress tensor we have:

σij = –pδij + Cijklekl. (74)

Instead of the zero-stress equation (Eqn. 72), the energy density becomes:

, (75)

where ωik corresponds to a pure rotation of the crystal (rotation tensor), while eij

corresponds to a pure strain. At hydrostatic pressure this gives (Barron & Klein, 1965):

. (76)

Calculating the second derivatives with respect to the finite Lagrangian strains ηij,
different equations are obtained (Wallace, 1998):

. (77)

Equations 76 and 77 are particularly important, because many simulation packages
define the elastic constants as:

. (78)

This definition is equivalent to the definition via stress-strain relations only at zero
stress. The definition based on stress–strain relations (Eqns. 76–77) is the most useful one:
it is directly related to the mechanical stability criteria and acoustic wave velocities.
Cauchy relations, originally derived with the definition via the energy density, can be
elegantly formulated in this definition as well (see below). It is essential to distinguish
between different definitions of elastic constants and keep in mind Equations 76 and 77. 
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Cauchy relations
In the absence of internal strains (i.e. for crystals with no internal degrees of freedom),
in a static lattice where all atoms occupy centrosymmetric positions and all interatomic
interactions are central and pairwise (i.e., depend only on distances between atoms, and
not on angles), Cauchy relations (Born & Huang, 1954; but take into account Equations
76–77) hold: 

(79)

These relations would reduce the maximum number of independent elastic constants
to 15; however, they never hold exactly because there always are non-central and many-
body contributions to crystal energy. Violations of the Cauchy relations can serve as a useful
indicator of the importance of such interactions. While for many alkali halides Cauchy
relations hold reasonably well, for alkali earth oxides, also considered as classical ionic
solids, Cauchy relations are grossly violated. At high pressures, solid Ar has large Cauchy
violations, indicating that many-body interactions are important (Iitaka & Ebisuzaki, 2001).

Mechanical stability
One of the most common types of instabilities in crystals is the so-called mechanical
instability, when one or more elastic constants (or their special combinations) tend to
zero. The condition of mechanical stability is the positive definiteness of the elastic
constants matrix:

This is equivalent to the positiveness of all the principal minors of this matrix
(principal minors are square sub-matrices symmetrical with respect to the main diagonal
– they are indicated by dashed lines in the scheme above). Diagonal elastic constants Cii

are positive for all stable crystals. Dynamical stability criteria were first suggested by
Born (Born & Huang, 1954) and are often called the Born conditions. In a general form
they were discussed in Sirotin & Shaskolskaya (1975) and Fedorov (1968). For crystals
of different symmetries these conditions were analysed by Cowley (1976) and Terhune
et al. (1985). Mechanical stability criteria for crystals under stress must employ the Cij

derived from the stress-strain relations (Wang et al., 1993, 1995; Karki, 1997). Violation
of any of the mechanical stability conditions leads to softening of an acoustic mode in
the vicinity of the Γ point, inducing a ferroelastic phase transition. 
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Temperature effects and elastic constants
In the harmonic approximation, the elastic constants are temperature-independent. The
quasiharmonic and intrinsically anharmonic corrections can actually be large. These
contributions to the bulk modulus can be represented (see Dorogokupets, 2000) as
additive corrections to the zero-temperature result: 

KT(V, T) = K0 K(V) + ∆K T
qha(V, T) + ∆Ka

T(V, T), (80)

∆KT
qha(V,T) = pth,qha[1 + γ – q] – γ2TCV/V, (81)

∆Ka
T(V,T) = , (82)

where , (cf. Eqn. 35), and formalism of Equations 26, 

27, and 35 is used for the anharmonic contributions.

Part III: Phase transitions

The study of phase transitions is of a central importance to modern crystallography,
condensed matter physics and chemistry. Phase transitions, being a major factor
determining the seismic structure of the Earth, play a special role in geophysics. Here we
give a brief review of the theory and classification of phase transitions.

Classifications of phase transitions

Perhaps the first sound classification of phase transitions was proposed by Ehrenfest in
1933 (for a detailed historical and scientific discussion see Jaeger, 1998). First-order
transitions are those for which the first derivatives of the free energy with respect to p
and T (i.e., V and S) are discontinuous at the transition point; for second-order transitions
the second derivatives (K and α) are discontinuous, and so forth. Third and higher-order
transitions, although theoretically possible, so far have never been reported. Modern
variants of the Ehrenfest classification distinguish only between ‘first-order’ and
‘continuous’ (i.e., all higher-order) transitions. In a number of cases, the order of the
same transition is different at different p–T conditions. Some transitions change from
first to second order; the crossover point is called the tricritical point. Among the
examples of systems with tricritical crossover are NH4Cl (Garland & Weiner, 1971),
zone-centre cubic–tetragonal transition in BaTiO3 perovskite, possibly the transition
from calcite to metastable calcite (II) in CaCO3 (see Hatch & Merrill, 1981), and,
possibly, the α–β transition in quartz (SiO2). Therefore, the order of the transition is not
something fundamental. The Ehrenfest classification attempts to describe only
thermodynamics of phase transitions without linking it to structural mechanisms or
symmetry aspects of transitions. But it is the structure and symmetry relations between
the phases that are the most fundamental characteristics of any phase transition.
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The first structural classification was due to Buerger (1961), who distinguished
between two main types of phase transitions – those with and without changes of the first
coordination number. Each of these types was further classified into reconstructive (i.e.,
requiring formation/breaking of bonds), displacive, order–disorder, electronic etc.
transitions. Displacive phase transitions are accompanied by small atomic
displacements, which usually destroy some elements of symmetry. The displacement
patterns are determined by the eigenvectors of the soft modes. Electronic transitions are
accompanied by a change of the electronic or magnetic structure and/or valence state of
atoms in the structure; the atomic structure type may or may not change in this process.
Reconstructive transitions are always first order, involve a latent heat, and require an
activation energy for bond breaking. 

The Buerger classification, although based on purely structural considerations,
naturally gives some insight into thermodynamics and kinetics of phase transitions.
However, there is no general and rigorous way of determining coordination numbers of
atoms in crystals. In addition to this, Buerger’s classification does not discuss symmetry
aspects of transitions.

It was first realised by Landau in 1937 (see Landau & Lifshitz, 1976) that often
there are symmetry relations between the old and new phases. Landau has shown that for
a second-order transition the two phases must be structurally related, and their symmetry
groups must conform to certain group–subgroup relations. Symmetry plays a
fundamental role in phase transitions, and better classifications must consider it; such a
classification is proposed below3. Before considering this new classification, we briefly
review some of the main theoretical ideas related to phase transitions. 

Theoretical framework

First-order phase transitions
Equilibrium first-order phase transitions always involve activation, inhibiting their
kinetics. The major factors determining the kinetics are defects, surface effects, and
external fields. Polymorphs of Al2SiO5 (minerals kyanite, andalusite, and sillimanite, see
Kerrick, 1990) are a classical example. All the transitions between these minerals are
first-order reconstructive and require substantial activation energies; therefore, all the
three minerals can coexist for millions of years in nature.

A very interesting example is the case of HgI2 polymorphs (Hostettler et al., 2001).
At p < 10 GPa and T < 600 K, there are nine polymorphs in this system! Crystallisation
from solution (which contains HgI2 molecules) first produces a metastable yellow form,
whose structure also consists of linear HgI2 molecules, and only then metastable orange
(containing supertetrahedra [Hg4I10]) and stable red (containing HgI4 tetrahedra) forms.
Metastable yellow and orange crystals begin to transform into the red phase when
touched by a needle. Defects thus introduced serve as nucleation centres of the stable
phase. The ‘orange phase’ is in fact represented by three distinct, but similar, structures,
which can transform into one another. This system is a good example of the Ostwald rule,
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which states that often crystallisation produces a metastable phase, which transforms
into the stable one via a sequence of metastable phases. At high temperatures, another
yellow molecular form is stable (it can crystallise from the vapour). At 1.3 GPa a new
phase is formed, in which Hg atoms are fivefold coordinated. A somewhat similar
kinetical behaviour was reported for dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate
(Richardson et al., 1990). For that compound, transformation kinetics and actual
transition temperatures were found to depend on such factors as crystal size, degree of
perfection, types of defects, and heating rate. Again, defects play the role of nucleation
sites of the new phase.

Thermodynamics of first-order transitions are based on the Clapeyron relation:

, (83)

where ∆S and ∆V are the entropy and volume differences between the phases. This
relation is valid only for first-order transitions, because for continuous transitions both
∆V and ∆S are zero. The transition temperatures and pressures can be found from
accurate atomistic (e.g., Parker & Price, 1989: magnesium silicates) or quantum-
mechanical total energy calculations (e.g., Oganov & Brodholt, 2000: aluminium
silicates), but there is no simple analytical theory. Only when the two phases are
structurally similar can one apply approximate analytical theories, such as Landau
theory.

A relation for second-order transitions, analogous to (Eqn. 83), was derived by
Ehrenfest:

, (84)

where ∆Cp and ∆α are the jumps of the heat capacity and thermal expansion at the
transition. However, precise experiments, computer simulations, and accurate theories
indicate that the heat capacity does not have a finite jump, but logarithmically diverges to
infinity on both sides of the transition. This ‘λ-behaviour’ invalidates the Ehrenfest
relation.

Landau theory of first- and second-order transitions
When the structural changes occurring upon transition are small, i.e. the two phases are
structurally related, it is usually possible to define an order parameter (or several order
parameters), whose continuous change describes all the intermediate structures on the
transition pathway. The order parameter Q takes the value that minimises the free energy
F(Q) at given p–T conditions. The simplest expression for the free energy is the Landau
potential:

F(Q)=F0 + A(T–TC)Q2 +  BQ3 +  CQ4 + … , (85)

where TC is the critical temperature, and F0 the free energy of the high-temperature
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high-symmetry phase. The entropy is simply S(Q) = –∂F(Q)/∂T = S0 – AQ2. This

dependence of entropy on the order parameter is most appropriate for displacive phase

transitions4. The internal energy is then E(Q) = E0 – ATCQ2 + BQ3 + CQ4 + … 

For second-order transitions the odd-order terms in Equation 85 must be zero (e.g., 
B = 0), making the double well symmetric5. When B ≠ 0, the double well is asymmetric,
and the transition is the first order. First-order transitions appear whenever any odd-order
term is present in Equation 85 and can also appear when C < 0 (even if only even-order
terms are present). Landau theory correctly predicts mode softening for second-order
transitions and hysteresis for first-order transitions.

The power of Landau theory comes from the fact that simple symmetry
considerations allow one to find which of the coefficients B, C, … must be zero, and
therefore (see below) what is the order of the transition and what are the possible
couplings of order parameters to strains (see below). Second-order phase transitions,
corresponding to a symmetrical double-well potential E(Q), are always characterised by
group–subgroup relations: the symmetry group of one (often called ‘ordered’, usually
low-temperature) phase is a subgroup of the symmetry group of the other (‘disordered’,
usually high-temperature) phase. The two symmetrically equivalent minima then
correspond to the same ordered phase, and can be considered as ‘twin domains’, related
by a symmetry element present in the disordered phase, but absent in the ordered one
(Fig. 7). 

The potential (85) is often complicated by the presence of several order parameters
or by couplings of the order parameter to lattice strains. Such coupling can cause a first-
order behaviour even for a symmetric E(Q) potential. For details see the review by
Carpenter (2002), this volume. For a detailed general account of Landau theory see
Landau & Lifshitz (1976) and Dove (1993, 1997).

Finally, we note that Landau theory is also applicable to pressure-driven phase
transitions. The Landau potential analogous to Equation 85 is:

, (86)

implying . The Helmholtz free energy is then
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4 For order–disorder transitions the entropy is more accurately expressed as S(Q) = S0 + kB[(1 + Q)ln(1 + Q) +
+ (1 – Q)ln(1 – Q)]. The simplest mean-field model of order–disorder transitions with this expression for the
entropy is called the Bragg–Williams model.

5 Absence of odd-order terms is only one of the necessary conditions. Other conditions were formulated by
Birman (1966) by using group theory. All these conditions are necessary, but not sufficient. 



Shortcomings of Landau theory
Landau theory is a mean field theory. Mean field treatment is a common way of
approximately solving complex physical problems in many areas of science (e.g.,
Hartree and Hartree–Fock methods for electronic structure calculations are mean field
approximations). The main drawback of these methods is the neglect of fluctuations (in
Landau theory the local structure and fluctuations of the order parameter are neglected).
Landau theory assumes that all the neighbouring unit cells have the same configuration;
domain structures and fluctuations of the order parameter in space and time are not
treated properly. This problem becomes severe in the vicinity of TC (so-called Ginzburg
interval). For second-order transitions Landau theory predicts Q ≈ (TC–T)1/2, while
experiments show Q ≈ (TC–T)1/3. The critical exponent of 1/3 has been many times
confirmed by numerical computer simulations and renormalisation group theory6.
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Fig. 7. Landau potential at T < TC, where distortions stabilise the 

structure. The two distorted perovskite-type structures shown on the bottom are equivalent (they are mirror
reflections of each other) and differ only by the sense of the distortion. The arrows show the directions of
octahedral rotations away from the cubic structure. The undistorted structure is shown in the centre. At
temperatures higher than TC, the stable structure will be locally distorted, but on average will have the
symmetry of the undistorted structure.
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6 Experiments do give mean-field critical exponents far from TC, but nearer TC there is a crossover from the
mean-field to critical behaviour, where the critical exponents depart significantly from the mean-field predictions.



Landau theory cannot explain the logarithmic divergence of the heat capacity near the
critical point – instead, it yields a finite jump. Finally, it does not consider quantum
effects at low temperatures and does not reproduce experimentally observed order
parameter saturation at low temperatures, but predicts a steady increase of the order
parameter with decreasing T. Nevertheless, it is generally believed that the symmetry
apparatus of Landau theory is valid even where mean-field theory breaks down. In 1950,
V.L. Ginzburg and L.D. Landau (see Landau & Lifshitz, 1976; Bowley & Sánchez,
1999) considered the case of an order parameter slowly varying in space, which led to
the formulation of the simplest theory beyond the mean field. Ginzburg–Landau theory
emphasises the role of critical fluctuations and defines criteria of validity of Landau
theory. However, this theory is still approximate and does not reproduce experimental
critical exponents. 

Renormalisation group theory overcomes all these difficulties and serves as the
modern basis of the theory of critical phenomena. It correctly predicts the critical
exponents, explains their universal character, strong dependence on the dimensionality
of the system and independence on the type of chemical bonding. The divergence of the
heat capacity at TC for second-order transitions is explained and some new phenomena
are predicted, such as ‘continuous lattice melting’. So far, only one example of
continuous lattice melting has been found experimentally: Na2CO3 (Harris & Dove,
1995). Introductory texts on renormalisation group theory can be found in Chandler
(1987), Rao & Rao (1978), and Wilson (1983); the latter reference is the Nobel lecture
of Kenneth Wilson, the main inventor of this theory. 

Ising spin model
This model is widely used to describe magnetic and atomic ordering processes in
materials. In this model, a spin +1 or –1 is associated with each lattice site, depending on
whether the magnetic moment on the site is ‘up’ or ‘down’, or whether the atom
occupying the site is of the type ‘A’ or ‘B’.

The total energy of the system is:

, (87)

where E0 is the reference-state energy, and J is the interaction parameter between the sites:
if J < 0, unlike spins prefer to group together, and there is a tendency to ordering at low
temperatures; if J > 0, unmixing will occur at low temperatures. Disorder, although
unfavourable energetically, is stabilised by the entropy at high temperatures. An external
field H leads to a preferred orientation of the spins. The Ising model can be analytically
solved only in one or two dimensions; in three dimensions it is solved numerically,
usually by the Monte Carlo method. Peculiarly, one-dimensional Ising model exhibits no
phase transitions, and at all temperatures above 0 K is in the disordered state.

Simulations based on the Ising model yield correct critical behaviour and critical
exponents. The Ising model can be generalised for the case of more than two spins (see
Yeomans, 1992). Another extension, designed to treat spin vectors, is called the
Heisenberg model. 
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Ising-like models provide an interesting route for theoretical studies of polytypism
and polysomatism. Figure 8 shows the structures of ringwoodite and wadsleyite, which
can be considered as polytypic, differing in the stacking sequence of layers. These
differently oriented layers can be mapped onto the sites of one-dimensional Ising
lattices. For details see papers by Price (1983), Price & Yeomans (1984), and references
therein. Price et al. (1985) used atomistic simulations to determine the interaction
parameters for the Ising models and predict the possible polytypes, stacking faults, and
their energetics.

New classification of phase transitions

Taking into account the fundamental role of symmetry, we suggest a new classification
of phase transitions, given in Table 3. We divide all phase transitions into ‘global’ (there
are no structural relations between the old and new phases and the new phase is always
the thermodynamically stable one, i.e. corresponds to the global free energy minimum),
and ‘local’ (the new phase corresponds to a nearest free energy minimum, which implies
clear structural and symmetry relations; the new phase can be either thermodynamically
stable or metastable).

Global transitions can involve any structural and symmetry changes. These
transitions are strongly first-order and reconstructive, require substantial activation and
cannot proceed at low temperatures. They occur via the nucleation-and-growth
mechanism, and the nuclei of the new phase are usually formed near defects or surfaces. 

Local transitions, on the contrary, can be continuous as well as first-order (often the
first-order component is small). They can be reconstructive, displacive, order–disorder, or
electronic. Often there are clear orientational relations (twinning, topotaxy) between the
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Fig. 8. Illustration of polytypism in spinelloids. (a) Spinel-like ringwoodite Mg2SiO4, (b) wadsleyite (β-spinel
phase) Mg2SiO4. Intermediate polytypic sequences can also occur in stacking faults. Black circles are Si atoms,
grey circles are Mg atoms, and empty circles are O atoms. Layers in two different orientations are denoted by
‘up’ and ‘down’ arrows.



old and new phases. These transitions may require no activation and, therefore, in some
cases can proceed at very low (even absolute zero) temperatures.  According to the degree
of symmetry changes, there are several possible cases (Table 3).

Isosymmetric transitions
In this simplest case, there is no symmetry change upon transition. Using Landau theory,
it has been shown (Bruce & Cowley, 1981; Christy, 1995) that isosymmetric transitions
must be first-order, but disappear (become fully continuous, infinite-order transitions)
above the critical point: there is a complete analogy here with the liquid–gas transitions
(which are also isosymmetric). Isosymmetric transitions in crystals can be electronic
(e.g., Ce and SmS), structural (coordination numbers of atoms change – e.g., KTiOPO4)
or intermediate (both electronic and structural changes are involved – e.g., Na3MnF6).
Another kind of structural isosymmetric transitions associated to the change of the
ordering of atoms or defects was recently predicted for the Al-rich NiAl alloy (Alavi et
al., 1999) and albite NaAlSi3O8 (Oganov et al., 2001c). 

Metallic Ce undergoes an isosymmetric electronic phase transition Ce(I)–Ce(IV)
(see Liu & Bassett, 1986, and references therein). Both Ce(I) and Ce(IV) have the fcc
structure (space group Fm3̄m). The volume change at the transtion is very large (13%) at
room temperature, but it rapidly decreases along the Ce(I)-Ce(IV) equilibrium line until
it disappears at the critical point (2.15 GPa and 613 K). Another example of an electronic
transition is SmS, which transforms from the low-pressure insulating phase to the
high-pressure metallic phase; both have a cubic NaCl-type structure (see Fig. 10).

KTiOPO4 (KTP) undergoes a structural isosymmetric transition at 5.8 GPa with a
volume decrease of 2.7% and preservation of space group Pna21 (Alan & Nelmes, 1996).
KNO3(II)–KNO3(IV) isosymmetric (Pnma) transition, which occurs at 0.3 GPa, is
accompanied by a volume decrease of 11.5% (Adams et al., 1988) and drastic changes
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Table 3. Classification of phase transitions. See Figure 9 for illustrations and text for some references

I. GLOBAL TRANSITIONS. 
I.1. With changes of the first co-

odination numbers
Al2SiO5: kyanite–andalusite–silli-
manite;
SiO2: coesite–stishovite
I.2. Without changes of the first

coordination numbers
SiO2: quartz–coesite

II. LOCAL TRANSITIONS.
II.1. Isosymmetric transitions
electronic – Ce
structural – KTiOPO4, PbF2, KNO3, sillimanite (Al2SiO5)
structural with ordering change – Ni–Al alloys, albite (NaAlSi3O8)
structural & electronic – Na3MnF6

II.2. Group-subgroup relations.
translationengleich – α – β-quartz (SiO2)
klassengleich – P21/c–C2/c pyroxenes (e.g., MgSiO3)
general – Pm3̄m–Pbnm perovskites (e.g., MgSiO3) 
indirect relations – rhombohedral–tetragonal BaTiO3 perovskite;
bcc–fcc Fe
II.3. Incommensurate transitions
1-dimensional – sillimanite (Al2SiO5)
2-dimensional – quartz (SiO2)
3-dimensional – wüstite (Fe1–xO)
II.4. Crystal–quasicrystal transitions
II.5 Pressure-induced amorphisation
SiO2 (quartz, coesite), berlinite (AlPO4), andalusite (Al2SiO5)
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Fig. 9. Examples of different phase transitions. (a–c) perovskite phases (ABX3): (a) Pbnm, (b) I4/mcm,
(c) Pm3̄m. Spheres are A cations, polyhedra are BX6 octahedra. (d–f) Al2SiO5 polymorphs: (d) kyanite,
(e) andalusite, (f) sillimanite. Al polyhedra are shown in yellow and turquoise, Si polyhedra are blue.
(g–k) silica polymorphs: (g) α-quartz, (h) β-quartz, (i) coesite, (j) stishovite, (k) CaCl2-type structure (drawn
with an exaggerated orthorhombic distortion). 



in the Raman spectra. K atom coordination number changes from 9 to 11. A first-order
isosymmetric (space group Pnam) phase change has been observed at 9.8 GPa for PbF2

(Haines et al., 1998). In their molecular dynamics simulations, Badro et al. (1996, 1997)
found that quartz (SiO2) transformed into an isosymmetric (space group P3221) phase
with all silicon atoms in a 5-fold coordination when subjected to a uniaxial stress
(20 GPa along the a and b axes and 27 GPa along the c direction). Na3MnF6 (space group
P21/n) is an example of a phase transition with a simultaneous change in the atomic and
electronic structure. At 2.2 GPa this compound undergoes a first-order isosymmetric
phase transformation, which is associated with a change of orientation of the Jahn–Teller
elongation of MnF6 octahedra (Carlson et al., 1998). This transformation shows a small
hysteresis of 0.5 GPa.

Transitions with group–subgroup relations
Next degree of symmetry change involves group–subgroup relations between two
crystalline phases. This is the most common type of local transitions. 

Different types of group–subgroup relations exist. According to the Hermann
theorem (Hahn & Wondratshcek, 1994), a maximal subgroup of a space group is either
translationengleich7-type (i.e., all translations are preserved, but some of the point-group
symmetry operators disappear) or klassengleich8-type (all point-group operators are
preserved, but some of the lattice translations disappear). Subgroups which are neither
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Fig. 10. Illustration of the isosymmetric insulator–metal transition in SmS. After Burdett (1995), with
modifications. Mixing of two configurations (metallic fn–1d and insulating fn) produces a double-well energy
curve for the ground state, where the minimum with a smaller interatomic distance corresponds to a metal.
Compression triggers the insulator–metal transition.

7 German word meaning ‘having the same translations’; accepted as an international term (International Tables
for Crystallography)

8 German word meaning ‘having the same (point-group) class’; accepted as an international term
(International Tables for Crystallography)



klassengleich, nor translationengleich are called general; they involve both cell
multiplication and lowering of the point-group symmetry. Examples are α→β-quartz
(translationengleich), P21/c–C2/c pyroxenes (klassengleich; Arlt & Angel, 2000 and
Arlt et al., 1998), and Pbnm → Pm3̄m transitions in perovskites (general).

The fourth type of group–subgroup transitions involves indirect symmetry
relations between the two phases via an intermediate archetypal phase of a higher
symmetry, which is a supergroup for symmetries of both phases. An example is BaTiO3,
where the transition between the rhombohedral and tetragonal phases can be described
with reference to the higher-symmetry cubic phase. Such transitions are usually weakly
first-order.

Yet another possibility is that of a transition state of a lower symmetry, which is a
common subgroup of the symmetries of both phases. These transitions are usually
strongly first-order; often they can be described as reconstructive (see Christy, 1993).
The fcc → bcc transition in Fe can be described with reference to lower-symmetry
tetragonal or rhombohedral configurations, whose symmetries are common subgroups
of both symmetry groups of the bcc and fcc phases. On the basis of purely geometrical
considerations, Sowa (2000 and personal communication) concluded that the transition
from the zinc-blende to the NaCl-type is most likely to proceed via an orthorhombic
transition state. Ab initio calculations of Catti (2001) for SiC support this conclusion.

Incommensurate transitions
Further degree of symmetry change involves incommensurate modulation of the
structure and loss of translational symmetry along the modulation vector, while
preserving both short- and long-range order. Incommensurate modulation (and the
corresponding loss of translational symmetry) can occur in one, two or three dimensions.
Incommensurability can occur via mode softening or modulation of atomic positional
occupancies, or in metals via electronic effects (e.g., Peierls transition). Among the
examples are NaNO2, some feldspars, nepheline (K,Na)AlSiO4, åkermanite
Ca2MgSi2O7, calaverite AuTe2, wüstite Fe1–xO; there is an incommensurate phase in
quartz, intermediate between α- and β-phases. Incommensurate modulation can occur in
1, 2, or 3 dimensions. A different type of incommensurate phases can be described as
misfit structures. We redirect the reader to an excellent review (van Smaalen, 1995) and
some interesting papers – on theory of incommensurate transitions in insulators (Heine
& McConnell, 1981) and unusual crystal morphology of incommensurate phases (Dam
et al., 1985). 

Crystal–quasicrystal transitions
Quasicrystals, like incommensurate phases, are solids lacking crystal periodicity (at
least in one direction), and having both long- and short-range order, but also
non-crystallographic (5-, 8-, 10-, 12-fold) symmetry axes. Several types of quasicrystals
are known: icosahedral quasicrystals with no lattice periodicity at all (‘3D
quasicrystals’), and quasicrystals with 1-dimensional periodicity (‘2D quasicrystals’)
and dodecagonal (with 12-fold symmetry axes), decagonal (5-fold and 10-fold axes), or
octagonal (8-fold axes) symmetry. 1D quasicrystals are possible as well.
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The first quasicrystal (Al86Mn14) was discovered quite recently (Shechtman et al.,
1984); now we know a large number of different quasicrystals, some theories of their
structure and formation have been formulated, and even some computational studies
performed. For a review, see Janot (1994). 

It is likely that crystal–quasicrystal transitions are local. However, an ideal crystal
and ideal quasicrystal are not very likely (although can in principle) to have the same
composition. The structure of 2D and 3D quasicrystals can be described in terms of
Penrose tilings with two or more types of ‘unit cells’9 (Fig. 11). Since the proportion of
these ‘unit cells’ in a Penrose tiling is irrational, general quasicrystal composition will be
characterised by an irrational chemical formula (see Janot, 1994). This explains both the
extremely complicated chemical formulae of quasicrystals and their occurrence
exclusively among metallic alloys (ionic or covalent solids cannot have an irrational
chemical formula, as this would break charge neutrality).

Pressure-induced amorphisation
The ultimate degree of symmetry breaking is present in pressure-induced amorphisation.
Lattice periodicity and long-range order are destroyed in one or more dimensions, while
short-range order is retained. All symmetry elements are locally destroyed, but when
viewed as a continuum, the amorphous phase has spherical point-group symmetry10. In
the present context it is more appropriate to classify pressure-induced amorphisation as
a symmetry-lowering process, as any process involving soft modes and modulations of
the structure.

This phenomenon was discovered rather recently (Mishima et al., 1984) in
compression experiments on ice. It has attracted much attention, but many questions still
remain open. See excellent reviews (Sharma & Sikka, 1996; Richet & Gillet, 1997) for
more details.
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Fig. 11. Penrose tiling for a decagonal quasicrystal. White
and black tiles are different ‘unit cells’. The ratio of white
tiles to the black ones is the golden mean τ = (√5̄ + 1)/2.

9 However, this description is not perfect and the best description of quasicrystals is given in terms of cuts of
higher-dimensional lattices (see Janot, 1994).

10 Pressure-induced amorphisation can produce anisotropic glasses, whose point-group symmetry is ellipsoidal
(see McNeil & Grimsditch, 1991). 



Many cases of pressure-induced amorphisation are known11, as well as a few
substances undergoing pressure-release amorphisation (for extensive reviews, see
Sharma & Sikka, 1996; Richet & Gillet, 1997). In the latter phenomenon, some
high-pressure phases become dynamically unstable and amorphise when decompressed
to pressures below their stability fields12.

Pressure-induced amorphisation is a metastable first-order transition. The amorphous
phase must be denser than the original crystalline phase. This means that crystals with
open structures should be easier to amorphise.

For ice, the two amorphous phases (one produced by cooling water, the other by
pressurising ice) are separated by a first-order phase transition (Mishima et al., 1985).
This indicates clear structural differences between quenched and pressure-induced
glasses. 

Kruger & Jeanloz (1990) found that berlinite (AlPO4) exhibits the so-called
‘memory glass effect’: the amorphous phase, appearing under compression of a
single crystal of berlinite under 18 GPa, on decompression to 5 GPa turns back to the
single crystal with the same crystallographic orientation. However, Gillet et al.
(1995) argued that berlinite transforms into an intermediate strongly disordered
crystalline phase at 15 GPa, and true amorphisation occurs at higher pressures and is
irreversible.

Pressure-induced amorphisation is thought to be driven by the simultaneous
or nearly simultaneous softening of a large part of a phonon branch; freezing in all
these modes and their combinations destroys translational periodicity and creates
random static atomic displacements. Simultaneous softening of a phonon branch
along a direction in the Brillouin zone implies weak dispersion of this branch, which
is most naturally achieved when the unit cell is large. Indeed, crystals with
complicated structures and large unit cells are more prone to pressure-induced
amorphisation.

Discussion of the new classification
The classification presented above is based on symmetry and naturally incorporates the
notions of first-order and continuous, reconstructive, displacive, order–disorder, and
electronic phase transitions. Its principles are very simple, but like any classification it
has some elements of arbitrariness. The arbitrariness of this classification is in the
distinction between local and global transitions; the symmetry classification of local
transitions, on the other hand, is mathematically rigorous. The present classification
emphasises the fundamental role of isosymmetric polymorphism and pressure-induced
amorphisation as the two extreme cases of symmetry changes.
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11 Quartz SiO2, coesite SiO2, berlinite AlPO4, GeO2, zeolites scolecite Ca8Al16Si24O80⋅24H2O and mesolite
Na16Ca16Al48Si72O240⋅64H2O, anorthite CaAl2Si2O8, forsterite Mg2SiO4, fayalite Fe2SiO4, wollastonite
CaSiO3, enstatite MgSiO3, muscovite KAl3Si3O10(OH)2, portlandite Ca(OH)2 are just a few examples.

12 This happens to the perovskite-structured modification of CaSiO3, stable in the Earth’s lower mantle, but at
ambient conditions turning to a glass within a few hours.



Part IV: Simulation methods

In this section we mainly describe how to calculate the energy of a crystal
quantum-mechanically. Being able to calculate the energy, one can calculate a number
of properties straightforwardly. These include the equilibrium crystal structure,
thermodynamic functions, equations of state, elastic constants, and many response
functions. Semiclassical simulations, which (unlike ab initio simulations) are based on
parameterised models of interatomic interactions, are discussed elsewhere in this volume
and in a number of sources (e.g., Catlow & Mackrodt, 1982; Allen & Tildesley, 1987;
Urusov & Dubrovinsky, 1989). The advantage of ab initio simulations is that they do not
involve any parameters that have to be fitted to experiment. Ab initio computational
methods considered here represent major advances in modern theoretical physics.

General references for the interested reader include several books (Born & Huang,
1954; Venkataraman et al., 1975; Catlow & Mackrodt, 1982; Allen & Tildesley, 1987;
Dove, 1993; Sutton, 1993; Thijssen, 1999) and review articles (Catlow & Price, 1990;
Catlow et al., 1994; Bukowinski, 1994; Cohen, 1999; Hemley & Cohen, 1996; Gale,
1996; Stixrude et al., 1998; Kohn, 1999a, 1999b). 

General remarks

In equilibrium, any system attains the state with the lowest Gibbs free energy G at given p–T
conditions. All equilibrium structural and electronic (wavefunction) parameters can be
determined by minimising G = E + pV – TS. Many ground-state properties can then be obtained
from G. This general task is very difficult and is solved with several reasonable approximations.

The first one is the Born–Oppenheimer approximation. Since atomic nuclei are much
(thousands of times) heavier than electrons, nuclear motion will be much slower than
electronic. In the Born–Oppenheimer approximation, the electrons instantaneously relax
to the ground state every time an atom is displaced. This allows one to consider the
quantum-mechanical problem in the framework of fixed nuclei, whose positions determine
the ground-state electronic wavefunction. This approximation is usually very accurate.

The next step is to calculate the energy by solving the electronic Schrödinger
equation. At this step, we usually neglect relativistic effects, which are, however,
important for elements heavier than Kr13. Even the non-relativistic Schrödinger equation
can be solved only approximately for solids.
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13 Relativistic effects appear when electrons are moving at speeds comparable to the speed of light. This occurs in
heavy atoms, where the inner electrons move in a very strong nuclear potential. Two main types of relativistic effects
are scalar relativistic effects (shrinking of the innermost atomic orbitals, which also affects the potential acting on
the valence electrons) and spin–orbit interaction. To see how scalar relativistic effects occur (Pisani, 1996), note that
the average velocity of a 1s electron in atomic units (a.u.) is Z (nuclear charge), and the speed of light is 137.036
a.u. For Hg (Z = 80) the relativistic mass of a 1s electron is 1.23 times its rest mass. This corresponds to a ~ 23%
shrinking of the 1s orbital in Hg, since the Bohr radius (a0 = h̄2/me2) is inversely proportional to the mass of the
electron. Shrunk core orbitals more effectively screen outer orbitals; valence s- and p-electrons become contracted
and stabilised relative to the non-relativistic case, whereas valence d- and f-electrons become more expanded,
destabilised, and thus more chemically active. Spin–orbit interaction becomes important in heavier atoms (roughly
after Xe); in solids it can remove degeneracies of electron levels at high-symmetry points of the reciprocal space
(Ashcroft & Mermin, 1976). For a fully relativistic treatment, one must solve the Dirac (rather than Schrödinger)
equation. For a detailed review of relativistic effects in chemistry, see Pyykko (1988). 



Having calculated the energy and its dependence on structural parameters, we can
calculate the partition function Z (Eqn. 10) and the free energy F (Eqn. 11). To do that
one needs to solve the Schrödinger equation for atomic motion and find all the energy
levels in the system. This approach is impractical, and two most common ways of
avoiding the direct solving of the nuclear Schrödinger equation: are (i) to use the
classical approximation for nuclear motion (as in molecular dynamics and Monte Carlo
simulations; this approach is valid at high temperatures) and (ii) to solve the Schrödinger
equation assuming that atomic vibrations are small and the system is approximately
harmonic (this approach is used in lattice dynamics simulations and is valid at relatively
low temperatures). All these methods are discussed extensively in the references given
above; lattice dynamics is discussed by Gramaccioli (2002) and Choudhury et al. (2002)
in this volume. 

Schrödinger equation

The total energy of a non-relativistic electron–nuclear system and all its energy levels
can be calculated by solving the Schrödinger equation:

Ĥψ = Eψ, (88)

where Ĥ is the Hamilton operator  (Hamiltonian) of the system. Writing  Ĥ more
explicitly, in atomic units14 we have:

, (89)

where N is the number of electrons. The first term in Equation 89 is the kinetic energy
operator and the next terms are the electron–nuclear and electron–electron potential
energy operators, respectively; E is the electronic energy (to find the total energy, one
needs to add to it the nuclear–nuclear interaction energy). Schematically, we can write
Equation 89 as follows:

ψ = Eψ. (90)

The Hamiltonian is in principle very simple, having only Coulombic interactions.
The main problem is that the wavefunction is a function of 3N electronic coordinates
(where N is the number of electrons) – for many-electron systems it is exceedingly
complicated! The common route is to use approximate Hamiltonians and simplified
wavefunctions (in such radical density functional approaches as the Thomas–Fermi
model, the wavefunction does not appear at all!). All modern computational methods are
based on approximate one-electron theories, reducing Equation 89 to a set of equations
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14 In atomic units, h̄ = me = e2 = 4πε0 = 1. The units of length and energy in this system are Bohr a0 = 0.529 Å
and Hartree (equal to minus twice the energy of the hydrogen atom): 1 Ha = 27.2116 eV. Atomic units are
used in all quantum-mechanical equations here.



for one-electron orbitals. Density functional theory of Kohn & Sham (1965) is a formally
exact one-electron theory.

Before moving on to approximate theories, we mention a few important exact
results. The first result relates to the existence of a cusp of the electron density at nuclear
positions, with the average derivative of the density at the nucleus (r = r0):

, (91)

where Z is the nuclear charge. Far from the nucleus, atomic electron density falls off
exponentially:

ρ(r) ~ exp[–2(2I)1/2r], (92)

where I is the ionisation potential. This relation is also true for molecules (Parr & Yang,
1989). 

Electrons, as quantum particles, are never at rest – even at T = 0 K they have a large
zero-point energy with a large kinetic component. For Coulombic systems (like atoms,
molecules, crystals) the virial theorem (Landau & Lifshitz, 2001) states that the total
electronic energy is equal to minus the kinetic energy of the electrons or to one half of
the potential energy of the electrons:

. (93)

The virial theorem is exact only for an exact wavefunction.
If E is a function of some parameter q, then its derivative is:

. (94)

The most important applications of Equation 94 are the calculation of forces (in
which case q is an atomic coordinate) and stresses, which are used for geometry
optimisation in quantum-mechanical calculations. For an exact wavefunction, the terms
in square brackets in Equation 94 sum to zero, and 

. (95)

Equation 95 is known as the Hellmann–Feynman theorem. A consequence of this
theorem is that forces acting on nuclei can be calculated from the classical electrostatic
expression involving nuclear positions and the electron density distribution. When the
wavefunction is not exact (e.g., due to basis set incompleteness), the terms in square
brackets in Equation 94 do not sum to zero and must be taken into account. These terms
(with a minus sign) are known as the Pulay force (or Pulay stress).
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Hartree method

This method is not used in practical calculations; the only reason to consider it now is that
it was the starting point of the Hartree–Fock and Kohn–Sham methods. Calculating the
interelectronic interaction energy, Hartree considered only the classical Coulombic
energy of the inhomogeneous electron gas (this term is known as the Hartree energy EH):

, (96)

The wavefunction was cast in the independent-particle approximation: 

ψ = φ1φ2φ3…φn = Πφi, (97)

where φi are the one-electron orbitals. The electronic kinetic energy is the sum of the one-
electron terms:

. (98)

The Schrödinger equation is transformed into a set of one-electron equations:

. (99)

Even though the wavefunction in Equation 97 is inconsistent with the Pauli
principle, the Hartree method (surprisingly) gives many reasonable results. It reproduces
the shell structure of atoms and gives semiquantitatively correct atomic electron
densities. All this is due to the success of the independent-particle approximation to the
kinetic energy (Eqn. 98): the Thomas–Fermi method, which differs only in that it uses
the electron-gas expression for the kinetic energy, fails to reproduce the shell structure
of atoms. 

The electrons are totally independent and uncorrelated in the Hartree
approximation and the probability of simultaneously finding electrons 1 and 2 in points
r1 and r2, respectively, is:

P(r1, r2) = | φ1(r1) |2 | φ2(r2) |2. (100)

This means that there is a finite probability P for the two electrons to be at the same
point at the same time. This is clearly wrong, as the electrostatic repulsion will keep the
electrons apart. This repulsion introduces correlations between the motions of different
electrons and lowers the interelectronic energy relative to the Hartree energy (Eqn. 96).
The quantum effects beyond the Hartree approximation are called exchange and
correlation. In the Hartree approximation, the electrons interact electrostatically with the
average total electron density distribution. The energy includes the spurious interaction
of each electron with itself – the self-interaction error.
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Hartree–Fock (HF) method

Fock improved the Hartree method by taking into account the electronic exchange
energy and antisymmetry of the wavefunction (Pauli principle). The Hartree–Fock
equations take the form:

f̂φi(r) =εiφi(r), (101)

where εi are the Hartree–Fock eigenvalues (in the approximation known as the
Koopmans’ theorem, εi are equal to minus the orbital ionisation energies). The operator 
f̂ is known as the Fock operator. Re-written explicitly, Equation 101 takes the form:

, (102)

which includes the Hartree potential and the (exact) exchange potential (in the last term).
The exchange contribution dramatically improves the agreement with experiment and
completely cancels the self-interaction error. The exchange potential is non-local (it is
determined by the wavefunction in the whole space), which renders the HF method
computationally expensive. 

The HF wavefunction of an N-electron system is a single Slater determinant
composed of one-electron wavefunctions:

, (103)

where φi(ri,σi) denote spin-orbitals (represented as products of spatial orbitals and spin
wavefunctions), σi – spins. Swapping particles (i.e. swapping the columns of the
determinant) automatically changes the sign of the wavefunction in agreement with the
Pauli principle. Single determinant is the simplest form for an antisymmetric
wavefunction, and the HF method generates the best (i.e., the lowest-energy)
single-determinant wavefunction. 

The probability of simultaneously finding like-spin electrons near each other is
dramatically reduced relative to Equation 100 (see Thijssen, 1999). For the electrons
with opposite spins, the HF method still (incorrectly) gives the uncorrelated probabilities
(Eqn. 100). Effectively, around each electron there is an exchange hole, where electrons
of the same spin have a reduced probability to enter. In reality, there also is a correlation
hole, but correlation effects are neglected in the HF approach.

For atoms and molecules, HF calculations are a successful routine. Most HF studies
of crystals have been performed with the CRYSTAL (Dovesi et al., 1996) code
implementing non-relativistic HF theory for periodic structures (crystals, polymers,
surfaces). A number of impressive studies have been performed for minerals – e.g.,
MgSiO3 (ilmenite: Nada et al., 1992, perovskite: D’Arco et al., 1993b, 1994), sellaite
MgF2 (Catti et al., 1991), SiO2 polymorphs (Sherman, 1992), Si-mordenite Si48O96
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(White & Hess, 1993), brucite Mg(OH)2 (D’Arco et al., 1993a). A very interesting
review is given in Dovesi et al. (1992).

HF method predicts rather accurately the total energies and electron densities.
However, binding energies in molecules and solids are always severely underestimated,
typically by 20–40% (Dovesi et al., 1992; Dovesi, 1996). This is due to the correlation
error, which is not completely cancelled when calculating energy differences for
processes involving breaking of electron pairs. Applying an a posteriori correction
(using a correlation density functional to the HF electron density) allows one to recover
typically ~ 80% of the correlation energy (Dovesi, 1996). This correction appears to give
good predictions of chemical reaction energies (Catti et al., 1994); atomisation energies
are still ~ 5–10% underestimated.

HF eigenvalues give a reasonable approximation to the experimental ionisation
potentials and electron affinities of atoms and ions, but turn out to be very poor in
modelling band gaps and excitation spectra in solids (Pisani, 1996). Neglect of
correlation deteriorates the predicted structures (bonds are usually ~ 1–3% too long; for
the compounds of the 5th period elements they are ~ 10% too long! – Aprà et al., 1991)
and leads to a ~ 10% overestimation of the vibrational frequencies. Van der Waals forces,
coming purely from correlation, are totally neglected in the HF approximation. Electron
correlation is fundamental for the metallic state, for which HF method fails completely,
as demonstrated for the simplest metal – homogeneous electron gas (Ashcroft &
Mermin, 1976; Pisani, 1996).

By definition, the difference between the HF energy and the exact non-relativistic
energy is called the correlation energy. There are two main types of correlation effects:
(i) ‘dynamical’ correlation – in their instantaneous positions, electrons correlate their
movement so as to avoid each other, irrespective of their spins. Van der Waals forces
(coming from ‘instantaneous dipoles’ on atoms) are one of the manifestations of this
effect, (ii) non-dynamical (or ‘left-right’) correlation – effect responsible for localisation
of the exchange-correlation hole in molecules and solids (see below). 

There are several possible ways to include correlation. Perturbation theory and
configuration interaction methods are very popular, but both have serious problems
(especially in application to condensed matter). Quantum Monte Carlo methods (see
Foulkes et al., 2001) are extremely promising. Currently, the most popular methods are
based on density functional theory (DFT).

Introduction to density functional theory (DFT)

DFT is a revolutionary theory in quantum mechanics: it formulates quantum mechanics
in terms of the observable and tractable electron density instead of the extremely
complicated and unobservable wavefunction. Pre-DFT works include important
developments in 1927 by Thomas and Fermi, and the Xα-method proposed by Slater in
1951. The rigorous foundation of DFT was laid in the work of Hohenberg & Kohn
(1964) and their followers, who formulated and proved two remarkable theorems: 

Theorem 1. The electron density ρ(r) determines (within an additive constant) the
external potential, i.e. the potential due to the nuclei. As a consequence, ρ(r) determines
the total energy and the wavefunction.
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Theorem 2. The ground-state total energy of a system is variational with respect to the
electron density, i.e. the exact ρ(r) provides the minimum possible energy for the ground state. 

The first theorem states that there exists a universal total energy functional E[ρ],
and that all ground-state properties are completely determined by the electron density.
The first theorem applies to the ground and excited states alike; the variational principle
of the second theorem is applicable only to the ground state and to the lowest-energy
excited states of a given symmetry (see Jones & Gunnarsson, 1989). 

The total electronic energy can be written as:

, (104)

where T[ρ] is the kinetic energy functional and ve–n(r) is the potential due to the nuclei.
The problem is that the non-local exact functional E[ρ] is unknown and likely to be
exceedingly complicated.

The Thomas–Fermi model is the lowest-order approximation. The kinetic energy
functional in this model is based on the homogeneous electron gas expression:

(105)

and the electron–electron interactions are approximated by the Hartree expression (Eqn.
96). The Thomas–Fermi–Dirac model also includes approximate exchange energy:

, (106)

where ex(ρ(r)) is the exchange energy of a homogeneous electron gas per 1 electron.
The errors in the kinetic energy associated with Equation 105 are too large: by

the Teller theorem, no binding is permitted for molecules and solids in the
Thomas–Fermi and Thomas–Fermi–Dirac models. Introduction of successively
higher-order gradients of the density is not a way to eventually obtain an accurate
method: the sixth-order gradient expansion of the kinetic energy diverges for atoms,
and no further expansion can be constructed (Parr & Yang, 1989). In a way,
Hohenberg-Kohn theorems provide an exactification of Thomas–Fermi theory
(Kohn, 1999a), but only in principle, because known approximate kinetic energy
functionals fail to give reasonable results. 

Kohn–Sham method
Kohn & Sham (1965) devised a method, which enables accurate practical calculations.
As Kohn (1999a) described it, this method is a formal exactification of the Hartree
method. It starts with a fictitious system of non-interacting electrons having the same
electron density as the real system of interacting electrons. We introduce electronic
orbitals15 and calculate the kinetic energy Ts of this fictitious non-interacting system, as
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15 Electron orbitals in the Kohn–Sham theory are only auxiliary constructions with no real physical meaning
other than a tool to calculate the kinetic energy with a reasonable accuracy.



in Equation 98. Ts is a much better (though still not exact) estimate of the kinetic energy
than Equation 105, as suggested by the comparison of the Hartree and Thomas–Fermi
approximations (Kohn, 1999a). We also know that it gives a lower bound to the true
kinetic energy (Parr & Yang, 1989):

Ts[ρ] ≤ T[ρ]. (107)

The Kohn–Sham method overcomes the difficulty in constructing a density
functional for the kinetic energy; the price to be paid is the introduction of orbitals16.

The total electronic energy is:

E[ρ] = Ts[ρ] + ρ(r)ve-n(r) + ρ(r)vH(r) + Exc[ρ], (108)

i.e. it is a sum of the non-interacting kinetic energy, energy of electrons due to the
interaction with the nuclei, Hartree energy and exchange-correlation energy. All the
contributions in Equation 108 are known exactly, apart from the exchange-correlation
energy functional Exc[ρ], which has to be somehow approximated. By definition (Eqn.
108), the difference between Ts and the exact kinetic energy T is included in the
exchange-correlation energy. Because of this, the virial theorem (Eqn. 98) does not hold
in the Kohn–Sham DFT (Parr & Yang, 1989).

The Kohn–Sham method reduces the formidable many-body problem (Eqn. 89) to
a set of coupled one-electron equations mathematically similar to the Hartree–Fock
equations:

, (109)

where the exchange-correlation potential vxc(r) is defined as:

. (110)

Kohn–Sham orbitals
Although the Kohn–Sham orbitals were introduced only as a means to get the kinetic
energy, they are often used in chemical studies; Baerends & Gritsenko (1997) and
Stowasser & Hoffmann (1999) advocated their use. In all practical calculations an
Aufbau principle is assumed to hold, where only the lowest-energy orbitals are occupied
(Parr & Yang, 1989). 

There are a few exact results; Janak theorem (Parr & Yang, 1989) states that the
eigenvalues are the derivatives of the total energy with respect to the orbital occupancies:
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This contrasts with the Koopmans’ theorem in HF theory. Only for the highest occupied
orbital (see Jones & Gunnarsson, 1989) the eigenvalue is equal to minus the ionisation
potential. The latter result, proved in the exact DFT, does not hold for DFT with
approximate functionals.

For band gaps Eg in solids, an interesting result exists (Jones & Gunnarsson, 1989):

Eg = ∆ε + ∆, (112)

where ∆ε is the eigenvalue gap, and ∆ is a correction arising from exchange-correlation
effects. This poorly known correction is present even in the case of the exact
exchange-correlation functional. LDA and GGA approximate functionals give
eigenvalue gaps that are ~ 30–50% smaller than experimental band gaps.

Exchange-correlation hole
The exchange-correlation energy is defined as:

, (113)

i.e. it is just the classical electrostatic energy of interaction between an electron and its
exchange-correlation hole ρxc(r, r′). If the reference electron is sitting at the point r, the
exchange-correlation hole ρxc(r, r’) shows how much the probability of finding another
electron at the point r′ is decreased (compared to the time-averaged electron density
ρ(r′)). A number of simple rules exist (see Perdew & Kurth, 1998). 

The exchange-correlation hole can never exceed (by the absolute value) the charge
density available at the point r′:

–ρxc(r, r′) ≤ ρ(r′). (114)

ρxc(r, r′) can be split into the exchange hole ρx(r, r′) and correlation hole ρc(r, r′):

ρxc(r, r′) = ρx(r, r′) + ρc(r, r′), (115)

and the following important properties can be formulated:

(exchange hole sum rule), (116)

(non-positiveness of the exchange hole), (117)

(correlation hole sum rule). (118)

While the exchange hole is always non-positive, the correlation hole is positive in
some places and negative in others, integrating in total to zero. The effect of correlation
is to make the exchange-correlation hole deeper and shorter-ranged. 

In molecules and solids, both exchange and correlation holes can be delocalised
over many centres, but the total exchange-correlation hole is usually well localised (see
Fig. 12). The important property of ‘short-sightedness’ of electrons is one of the main
justifications of the local density approximation (LDA). The long-range part of
correlation, which cancels the long-range part of the exchange, is called the ‘right-left’

0),(xc =′′∫ rrr ρd

0),(x ≤′rrρ

1),(),( xxc −=′′=′′ ∫∫ rrrrrr ρρ dd

∫∫ ′
′−

′
= r

rr
rrrr ddE ),()(

2

1
][ xc

xc

ρρ
ρ

Ab initio theory of phase transitions and thermoelasticity of minerals 133



correlation. As is clear from the present discussion and as was first elucidated by Slater
in 1950s, LDA and other local approximations (e.g., GGA) automatically include
‘right-left’ correlation by assuming a localised exchange-correlation hole. 

Formal properties of the exchange-correlation functional
Now let us consider the exchange-correlation functional. Even though the exact
functional is unknown, a number of its exact properties are known (see Perdew & Kurth,
1998). These properties are essential in the derivation of good approximate functionals.

First of all, the exchange energy is negative and correlation energy non-positive:

Ex[ρ] < 0, (119)

Ec[ρ] ≤ 0. (120)

Second, exact exchange completely cancels the self-interaction error. For
one-electron systems (e.g., H, He+ etc.), exchange potential cancels the Hartree potential
and the correlation energy is zero.

Another important piece of exact information is the scaling relations (see Perdew
& Kurth, 1998), which determine how exchange and correlation functionals change
under uniform coordinate scaling transformations. 

A number of inequalities play an important role in DFT, of which the Lieb–Oxford
bound is particularly important:

. (121)

We also know the exact spin scaling relations for the exchange:

(122)

and non-interacting kinetic energy:
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Fig. 12. Exchange, correlation, and total exchange-correlation holes in H2 molecule. The nuclei (distance 
~ 2.5 Å) are shown by circles. The reference electron is located 0.3 bohr to the left of the right nucleus.
Re-drawn schematically after Baerends & Gritsenko (1997).



. (123)

These relations play the central role in DFT for spin-polarised systems. Unfortunately,
there is no simple spin scaling relation for the correlation energy. 

Other notations are useful, e.g. the spin density:

(124)

and dimensionless spin polarisation, ranging between 0 and 1:

. (125)

DFT has been extended to treat non-collinear magnetism (see Hobbs et al., 2000 for a
practical implementation and Sandratskii, 1998 for a theoretical review).

As it was noted before, in exact DFT the highest-occupied eigenvalue is equal to
minus the ionisation potential of the system; it must change discontinuously at an integer
number Z of electrons:

,
(126)

where I and A are the ionisation potential and electron affinity of the Z-electron system
(e.g., an atom). The exact exchange-correlation potential too is discontinuous at integer
numbers of electrons. In approximate DFT the derivative discontinuity (Eqn. 126)
cannot be reproduced; instead, we approximately get 

, (127)

which confers the meaning of minus the Mulliken electronegativity on the highest-
occupied eigenvalue εHO. 

DFT: Approximate functionals

Local density approximation (LDA)
The LDA is the simplest approximation to Exc[ρ]; although the local expression (Eqn.
105) for the kinetic energy is very poor for atoms, local exchange-correlation is rather
accurate. In the LDA, the kinetic energy is calculated from the wavefunction rather than
from the electron-gas formula (Eqn. 105). 

The exchange-correlation energy is calculated as:

, (128)

where the exchange energy density of a homogeneous electron gas is known exactly
from Equation 106:
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, (129)

and the correlation energy is known very accurately from quantum Monte Carlo
simulations (Ceperley & Alder, 1980; Ortiz & Ballone, 1994). An analytical
representation satisfying the exactly known high- and low-density analytical limits and
fitting the numerical quantum Monte Carlo results for the spin-unpolarised case, is
(Perdew & Zunger, 1981):

.
(130)

Figure 13 shows different contributions to the total energy of the homogeneous electron
gas and clearly indicates the importance of the correlation contribution. 

Perdew & Wang (1992) expressed the correlation energy of the homogeneous
electron gas more accurately by a single analytical formula, which also satisfies the
high- and low-density limits and quantum Monte Carlo data:

, (131)

where c0 = 0.031091 and c1 = 0.046644, β1 = = 7.5957, α1 = 0.21370, 
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Fig. 13. Energy contributions for the homogeneous electron gas (per 1 electron). Average rs values of the
valence electrons of several metals are shown (redrawn with modifications from Pisani, 1996). Hartree–Fock
curve includes all the contributions except correlation. It is clear that correlation is non-negligible.



β2 = 2c0β1
2 = 3.5876, β3 = 1.6382, and β4 = 0.49294 for the spin-unpolarised (ξ = 0)

electron gas. For a fully spin-polarised case (ξ = 1) c0 = 0.015545 and c1 = 0.025599,
α1 = 0.20548, β3 = 3.3662, and β4 = 0.62517. Figure 14 shows that spin polarisation
strongly affects exchange-correlation.

The LDA generalised for spin-polarised systems is called LSDA (local spin density
approximation). For the exchange energy we have a simple exact spin scaling relation
(Eqn. 122), which implies:

. (132)

The exact spin scaling for correlation energy is unknown, but for the electron gas we
have a very accurate formula proposed by Vosko et al. (1980). 

LDA has large errors in exchange (about –5%) and correlation (about +100%), but
these largely cancel each other, explaining the successes of the LDA. The LDA does not
give accurate exchange-correlation holes for atoms, but gives reasonable spherical
averages for these holes (luckily, only these are energetically important). Most
importantly, LDA exactly satisfies all of the sum rules in Equations 116 and 118. The
self-interaction error is largely cancelled by the exchange-correlation potential; e.g., in
the H atom ~ 95% of this error is cancelled at the LSDA level of theory (Thijssen, 1999).
This error becomes important for highly localised electronic states (such as d-states in
transition metal atoms). Perdew & Zunger (1981) devised a simple method to
incorporate the self-interaction correction in the LDA approach (LDA + SIC), but the
method is difficult to apply to crystals.
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Fig. 14. Exchange-correlation energy of the spin-unpolarised (solid line) and fully spin-polarised (dashed
line) electron gas. 



The shortcomings of the LDA include the following: (i) underestimation of the total
energies – LDA treats well the valence electrons, but underbinds the core electrons, (ii)
overestimation of the atomisation energies (by ~ 20%) of molecules and solids, (iii) bond
lengths are usually ~ 1% too short, (iv) reaction barriers are usually much too low
compared to experiment, (v) large errors for weakly bonded systems (e.g., hydrogen
bonds), (vi) van der Waals bonding cannot be treated, (vii) sometimes the energy
differences between polymorphs are inaccurate (e.g., for quartz–stishovite the huge
energy difference of ~ 0.5 eV is not reproduced: even the sign is wrong!), (viii) often a
wrong ground state is predicted (e.g., paramagnetic fcc instead of ferromagnetic bcc for
Fe), (ix) serious errors for transition metal oxides, (x) in many cases, the dissociation
products are not neutral atoms, but atoms with non-physical fractional charges – see a
very interesting paper by Becke (2000).

These serious shortcomings inspire further developments of functionals. The
impressive successes of the LDA suggest it as a reference point in these developments.
Some of these developments will be discussed below Tables 4–6 illustrale the
performance of different approximate functionals.

Generalised gradient approximation (GGA)
An obvious way to construct an improved functional is to expand the exchange-
correlation energy in powers of density gradients. Including the first density gradient in
this way produces an approximation called GEA (Gradient Expansion Approximation),
which is exact for an electron gas with a slowly varying density, but turns out to be worse
than the LDA for atoms, because GEA does not satisfy the sum rules in Equations 116
and 118. The short-range part of the exchange-correlation hole is improved over the
LDA, but the long-range part is worsened and has spurious undamped oscillations, due
to which GEA does not satisfy the sum rules and exchange hole sometimes becomes
positive.

Unlike GEA, GGA is constructed in such a way as to preserve the correct features
of the LDA and add some more. There are several popular GGA functionals, the best of
which seem to be the PW91 functional (Wang & Perdew, 1991) and a very similar
functional PBE (Perdew et al., 1996). Wang & Perdew (1991) have constructed their
functional by starting with the GEA exchange-correlation hole and setting it to zero
everywhere the GEA exchange hole is positive and everywhere beyond a certain cut-off
radius, chosen so as to enforce the sum rules. 

The GGA exchange-correlation functional can be defined as follows:

, (133)

where ex(ρ(r)) is the exchange energy of the spin-unpolarised homogeneous electron gas
per 1 electron, and the enhancement factor Fxc(ρ, s) depends on both the density and its
reduced gradient s:

. (134)
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Table 4. Total energies of atoms (in atomic units): comparison of experiment with several approximate methods.

Data were taken from Perdew & Zunger (1981), Parr & Yang (1989), Lee & Martin (1997).

Table 5. Atomisation energies (in eV) of several molecules: experiment versus theory. 

Molecule HF LSDA GGA GGA Meta-GGA Experiment
(PBE) (PW91)

H2 3.64 4.90 4.55 4.55 4.97 4.73
H2O 6.72 11.58 10.15 10.19 9.98 10.06
HF 4.21 7.03 6.16 6.20 6.01 6.11
Li2 0.09 1.00 0.82 0.87 0.98 1.04
O2 1.43 7.59 6.24 6.20 5.70 5.25
F2 –1.60 3.34 2.30 2.34 1.87 1.69

CH4 14.22 20.03 18.21 18.26 18.26 18.17

Experimental values include a zero-point energy correction. Meta-GGA calculations used GGA electron 
densities. (Taken from Perdew et al., 1996; meta-GGA results: from Perdew et al., 1999).

Atom HF LSDA LSDA + SIC GGA (PW91) Experimental

H –0.500 –0.479 –0.500 –0.500 –0.500
He –2.86 –2.835 –2.918 –2.900 –2.904
Ne –128.55 –128.228 –129.268 –128.947 –128.937
Ar –526.82 –525.938 –528.289 –527.539 –527.60

Table 6. Comparison of HF, LDA and GGA for solids.  

Property HF (HF + c) LSDA PW91 (PBE) Experiment

Periclase MgO [GGA = PW86]
a0 [Å] 4.191 4.160 4.244 4.20

Ea [eV] –7.32 (–9.69) – – –10.28
K0 [GPa] 186 198 157 167

Ferromagnetic bcc-Fe
V0 [Å3] – 10.44 (11.34) 11.77
K [GPa] – 260 (200) 172

K′0 – 4.6 (4.5) 5.0

Diamond C
a0 [Å] 3.58 3.53 3.57 (3.57) 3.567

Ea [eV] –5.2 (–7.4) –8.87 –7.72 (–7.72) –7.55
K0 [GPa] 471 455 438 (439) 442

Data are compiled from Lee & Martin (1997), Lichanot (2000), Dovesi (1996), Zupan et al. (1998). HF + c
means Hartree–Fock calculation with an a posteriori correlation correction.



The Lieb–Oxford bound (Eqn. 121) can be rewritten in terms of Fxc(ρ, s):

Fxc(ρ, s) ≤ 2.273. (135)

Enhancement factors of the LDA, GEA and GGA are given in Figure 15. 
GGA significantly improves the description of the core (and to some extent the

valence) electrons. Total energies are much better than in the LSDA and HF. LSDA
overbinding is corrected by the GGA. Energy differences and especially reaction barriers
are improved, as well as the description of magnetic systems. Exchange energies of
atoms are reproduced with a typical error of only 0.5%; the typical error for the
correlaton energy is 5% (Perdew & Kurth, 1998). GGA exchange-correlation is not
self-interaction-free, but for the H atom the self-interaction error is almost completely
cancelled within the GGA. GGA, like LSDA, cannot reproduce the derivative
discontinuity (Eqn. 126) on passing an integer number of electrons. 

Some of the failings of the GGA include: (i) overestimation of bond lengths by 
~ 1% – the GGA ‘overcorrects’ the LDA, (ii) as in the LSDA, but less often, electronic
ground states of atoms, molecules and solids are sometimes incorrect, (iii) sometimes the
energy differences are incorrect. While the LDA tends to overestimate the stability of
dense structures, gradient corrections of the GGA stabilise open structures (see Zupan et
al., 1998). 
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Fig. 15. Exchange-correlation enhancement factors.
(a) LDA, (b) GEA, (c) GGA–PW91. Deviations of
Fxc from 1 at s = 0 (i.e. for uniform electron gas)
show the importance of correlation. 



Meta-GGA
The next step after GGA is to include the Laplacian of the electron density ∇2ρ. This step
is very promising, since the Laplacian of the density proved to be very important in the
Bader analysis of chemical bonding (Bader, 1990; Tsirelson, 1993; Coppens, 1997).
Quantum Monte Carlo simulations (Nekovee et al., 2001) demonstrated that often GGA
worsens the LDA exchange-correlation hole and inclusion of the Laplacian of the
density is essential in modelling the exact hole. It is also useful to include the kinetic
energy density, defined as:

. (136)

Becke (2000) showed that τ(r) is a useful indicator of delocalisation of the
exchange hole. Conventional functionals fail for systems with delocalised exchange
holes (e.g., stretched H2

+). Including τ(r), it is possible to accurately model the exchange
energy of such systems. Becke (2000) has constructed a meta-GGA exchange functional,
which accurately simulated the exact exchange.

Perdew et al. (1999) have constructed a meta-GGA exchange-correlation
functional including both ∇2ρ and τ(r). This functional is not fully non-empirical, but
has two fitted parameters. Among its good properties are self-interaction-free correlation
and reduction to LDA for the uniform electron gas. This meta-GGA outperforms the
GGA for atomisation energies, but bond lengths (and lattice parameters) are not
significantly improved. There are other meta-GGA functionals and much ongoing work.
See Perdew & Burke (1996) and Kurth et al. (1999) for a very interesting discussion of
different functionals.

Hybrid functionals
Combining local (LDA or GGA) correlation and exact (HF) exchange turns out to give
worse results than pure GGA exchange-correlation. Nevertheless, as emphasised in
Becke’s seminal paper (Becke, 1993), exact exchange is important in constructing
accurate functionals. Becke proposed a hybrid functional, whose exchange part is a
mixture of local and exact exchange and whose correlation part is a local functional,
schematically:

Exc = Exc
local + amix(Ex

exact – Ex
local), (137)

where amix is a fitted parameter (~ 0.20). Hybrid functionals generally are highly accurate
in predicting structures and atomisation energies, as well as total energies. There are a
host of hybrid functionals, the most popular of which is called B3LYP. 

Van der Waals bonding. One of the most difficult problems for quantum-mechanical
simulations is to reproduce van der Waals bonding. Originating from dynamical
correlation, van der Waals forces are by definition absent in the HF theory. Even at the
DFT level there are problems: these long-range forces cannot be adequately reproduced
by any of the local functionals. LDA is too crude for correlation generally; GGA (PBE
functional) can give some dispersion forces and even give reasonable bond lengths for
noble-gas dimers. However, due to its local nature, GGA gives an exponential, rather
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than R–6 dependence for the van der Waals energy. Kohn et al. (1998) have proposed a
practical recipe to get accurate dispersion forces and their long-range behaviour within
the DFT framework. 

Technical details of ab initio simulations

Brillouin zone sampling
An infinite crystal contains an infinite number of electrons. Exploiting translational
symmetry of crystals and introducing the reciprocal lattice, it is possible to consider only
the number of electrons contained within one unit cell. However, the HF or Kohn–Sham
equations must be solved for each k-point of the reciprocal space. The wavevector k
becomes a new quantum number.

By Bloch theorem, each crystal orbital with the wavevector k is a product of a
periodic function wk(r) and a plane wave:

, (138)

where the periodic function wk(r) is usually expressed as a Fourier series with
coefficients Ck+K (K is a reciprocal lattice vector).

The orbitals and orbital energies generally depend on the wavevector k, much like
phonon frequencies depend on it. One has to solve the one-electron equations at each
k-point and integrate over the Brillouin zone; in practice only a finite set of k-points is
used and convergence must always be checked. For metals one needs many more
k-points than for insulators or semiconductors. Smaller unit cells also require more
k-points to be included. Monkhorst & Pack (1976) defined a uniform set of special
sampling k-points as:

k = upb1 + urb2 + usb3, (139)

where b1, b2, and b3 are the reciprocal lattice basis vectors and up, ur, us are numbers from
the sequence:

. (140)

The total number of k-points is q3, but due to symmetry the number of independent
k-points can be much smaller.

Basis sets
There are many different basis set schemes, of which we discuss only the traditional atomic
orbital and plane wave basis sets. In the LCAO (Linear Combination of Atomic Orbitals)
scheme one defines atom-centred orbitals as a product of the angular (giving the shape to
s-, p-, d-, and f-orbitals) and radial (χ(r)) parts, where the radial part is a linear combination
of either Slater-type functions (rme–ξr) or Gaussian-type functions (e–αr2

), where m, ξ, and α
are parameters. Slater functions better approximate the atomic orbitals, but are much more
computationally expensive, so Gaussian functions are usually preferred.
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In practice, LCAO basis sets are incomplete. In molecules and crystals, parameters of
the LCAO wavefunction (e.g., orbital exponents) depend on the atomic positions, but are
only optimised for one structure. Dependence of the basis set on atomic positions implies the
presence of Pulay forces, which must be evaluated when optimising crystal structures. Very
economical for insulators, LCAO basis requires very many Gaussian functions for studies of
metals. There is another problem with the LCAO basis, called the basis set superposition
error. It is also difficult to systematically increase the basis set expressed in local orbitals. 

Plane wave basis set is the most natural and general basis set for crystals, following
directly from the Bloch theorem. A single plane wave is:

. (141)

This basis set is complete and very convenient for many applications, but a huge
number of plane waves are needed to describe rapidly changing wavefunctions in solids.
E.g., for the valence electrons in Al, an estimated 106 plane waves are needed to reproduce
oscillations of the valence electron wavefunction in the core region. For the core electrons
this problem is extremely serious – the core electron wavefunctions are more rapidly
changing and there is a cusp of the density (Eqn. 91) at the nucleus. There are several ways
to overcome this problem – e.g., the LAPW method, PAW (projector augmented wave)
method, linear muffin-tin method, and the pseudopotential method, which we shall describe
below. For details of these methods see Singh (1994), Blöchl (1994), Thijssen (1999).

By construction, plane wave basis set can be used only in conjunction with periodic
boundary conditions. Atoms, molecules, and surfaces can be treated in an approximate
fashion by using sufficiently large unit cells preventing significant interaction between
their periodic images. 

Pseudopotentials
Payne et al. (1992) have given a very clear and comprehensive practical review of the
plane wave pseudopotential method. The main ideas of the pseudopotential approach
are: (i) to exclude chemically inactive core electrons from explicit consideration and (ii)
to replace (within the core) the true Coulombic potential due to the core by a smoother
effective potential acting on the valence electrons. This approach is based on the frozen
core approximation, i.e. core orbitals are assumed to be the same in a free atom and in
any chemical environment. To improve the accuracy, one can use ‘small core’
pseudopotentials with some of the core orbitals treated as valence orbitals. 

Outside the ‘core’ radius rc the potential and the wavefunction are correct by
construction. Within the core region the wavefunction differs from the exact one: it has
no radial nodes and is smoother (Figs. 16 and 17), but gives the correct number of
electrons. Nodes and oscillations of the exact valence functions in the core region are
required by orthogonality with the core orbitals17. Pseudopotentials are constructed so as
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17 If orbitals of a given angular momentum appear only in the valence shell, they have no radial nodes, no
oscillations, better penetrate the core and experience very strong potentials. As a consequence, for elements
where this occurs (1st row elements, 3d and 4f elements) conventional pseudopotentials are inefficient. A way
out was found in the formulation of ultrasoft pseudopotentials (Vanderbilt, 1990), which allow one to use
relatively large rc and reduce the number of plane waves by a factor of ~ 2 without any loss in accuracy.



to match the all-electron eigenvalues in as many different atomic configurations as
possible, ensuring transferability to chemically different systems.

The construction of pseudopotentials is inherently non-unique: it depends on rc and
other technical details. Larger rc result in smoother potentials, which require a smaller
number of plane waves, but degrade the accuracy. 

Milman et al. (2000) analysed the performance of plane wave pseudopotential
calculations for compounds of almost all elements. Comparison between pseudo-
potential and all-electron methods was made in many works, e.g. Holzwarth et al.
(1997). The general conclusion is that pseudopotential calculations are very accurate,
except in cases where core polarisation effects are significant (e.g., Ca atom in CaF2).
Another source of errors of pseudopotential calculations is significant overlap of the
valence and core orbitals for some atoms (e.g., Na). In such cases, non-linear core
corrections (Louie et al., 1982) significantly improve pseudopotentials. 

In conjunction with pseudopotentials, plane wave basis sets become extremely useful.
Using ultrasoft pseudopotentials, one can satisfactorily model solids by using 
~ 100 plane waves per atom. The number of plane waves is controlled by the kinetic energy
cut-off parameter Ecut; only plane waves with the kinetic energy below Ecut are included:

(in atomic units). (142)

The number of plane waves is roughly proportional to the volume of the unit cell: 

NPW ≈ . A plane wave basis set does not depend on atomic positions;

therefore, there are no Pulay forces. However, it does depend on volume for a finite plane
wave basis, resulting in the spurious Pulay stress. The origin of the Pulay stress is in the
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Fig. 16. Construction of a pseudopotential. Beyond rc the
wavefunction and potential match the true all-electron
ones (with modifications after Payne et al., 1992).



basis set incompleteness due to the presence of only a finite number of plane waves.
Increasing the basis set, it is possible to reduce the Pulay stress and errors in the total
energy to arbitrarily small values. 

Figure 18 shows valence electron distributions calculated using this method.
Analysis of the charge density is a powerful tool for investigating chemical bonding and
interatomic interactions in crystals (Coppens, 1997; Tsirelson, 1986, 1993). 

Existing programs for crystals
A large number of ab initio codes exist. Some of the most popular codes and their web
pages are listed below:

VASP: http://cms.mpi.univie.ac.at/vasp/
CASTEP: http://www.cse.clrc.ac.uk/Activity/UKCP
ABINIT: http://www.abinit.org
PWSCF and PHONON: http://www.sissa.it/cm/PWcodes/
CPMD: http://www.cpmd.org
WIEN: http://www.wien2k.at/
SIESTA: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
CRYSTAL: http://www.cse.dl.ac.uk/Activity/CRYSTAL
LmtART: http://physics.njit.edu/~savrasov/Programs/index_lmtart.htm
TB-LMTO-ASA: 

http://www.mpi-stuttgart.mpg.de/andersen/LMTODOC/LMTODOC.html

Treatment of thermal effects

Temperature is a difficult parameter to handle, because of the difficulty in calculating the
partition function (Eqn. 10). Among the approximate methods, lattice dynamics,
molecular dynamics, and Monte Carlo methods are the most popular ones.
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Fig. 17. All-electron (a) and pseudowavefunction (b) of a 5d orbital in Au. Solid contours = positive, dashed
contours = negative wavefunction. 



Lattice dynamics takes into account the quantum aspects of lattice vibrations, but
is usually restricted to the harmonic or quasiharmonic approximation. Consequently,
such simulations are very accurate at low temperatures, but become invalid on
approaching the melting curve. 

On the other hand, molecular dynamics and Monte Carlo simulations (for further
reading see Allen & Tildesley, 1987), which include the full treatment of the anharmonic
as well as harmonic effects, but treat the atomic motion classically. Consequently, these
simulations are exact only at high temperatures. 

Lattice dynamics provides a simple way to calculate the free energy and optimise
the structure by minimising the free energy within the quasiharmonic approximation. It
has recently become possible to calculate the free energy derivatives analytically
(Kantorovich, 1995; for a particular implementation for semiclassical calculations see
Gale, 1998), which is extremely useful in predicting the temperature evolution of crystal
structures. Lattice dynamics simulations are now possible in conjunction with DFT by
means of density functional perturbation theory (Baroni et al., 2001). Figure 19 shows
an example of such calculations. Lattice dynamics is discussed in depth by Gramaccioli
(2002) [this volume] and Choudhury et al. (2002) [this volume] and by Born & Huang
(1954), Venkataraman et al. (1975), and Dove (1993). Below we briefly describe only
the molecular dynamics technique. 

Molecular dynamics (MD)
In MD, we describe the classical system by a set of positions, ri(t), and velocities, vi(t),
of all particles. For a system of n atoms there are (3n – 3) degrees of freedom, and the
classical kinetic energy is: 

. (143)
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Fig. 18. Theoretical valence electron distributions in minerals. (a) MgO ([100] plane), (b) hypothetical cubic
MgSiO3 perovskite ([110] plane). The density units are 0.01 e/Å3. Regions with values > 0.5 e/Å3 are shown
in white. MgO: most valence electrons are localised on O atoms, leaving Mg almost completely ionised.
MgSiO3: Mg atoms are almost fully ionised, but there is significant electron density on Si atoms, indicating
partial covalency of the Si–O bonds. Calculations were performed using the VASP package (Kresse &
Furthmüller, 1996). Lev00 code (Kantorovich, 1996–2001) was used for visualisation. 



The initial kinetic energy (or temperature) is specified as an input, and the initial
velocities are assigned to the atoms randomly, according to the Maxwell distribution.
The atomic trajectories are constructed by solving Newtonian equations of motion. The
initial conditions are likely to be non-equilibrium, so the simulation is divided into two
stages: ‘equilibration’ and ‘production’ (properties are calculated only from the results
of the production stage). Newton’s equations of motion are conservative (i.e. there is no
energy dissipation), the volume and the number of particles are conserved as well, so
here we deal with the microcanonical, or NVE, ensemble. Some properties can be
computed as time averages: one can introduce instantaneous values of properties; e.g. for
the instantaneous values of the pressure we have:

, (144)

where Fi is the force acting on the i-th atom. Technical notes: (i) Trajectories can be
calculated only by using a finite timestep ∆t, rather than infinitesimal dt. The most
reliable algorithm for integrating the equation of motion is the Verlet leapfrog algorithm:
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Fig. 19. Phonon dispersion curves of MgO at zero pressure and 100 GPa. Experiment (circles) and results of
density functional perturbation theory within the LDA (after Karki et al., 2000a).



. (145)

The errors in the positions are of the order (∆t)4. ∆t must be sufficiently small (typically
~ 1 fs). (ii) For simulating bulk materials, large supercells should be used in conjunction
with periodic boundary conditions. The larger the system size, the more phonons are
included and the better description of long-wavelength fluctuations. Large supercell size
allows for more couplings between phonons with different k-vectors and therefore
improves the description of anharmonicity. The effect of the system size must be always
checked. For Lennard–Jones systems, the largest systems studied include millions of
atoms, with ab initio MD the current limit is a few hundred atoms in the supercell. (iii)
To explore all possible states, simulations should run infinitely long. Usually, good
statistical averages can be collected over a reasonable time, ~ 1–10 ps.

It is possible to extend MD to other ensembles – NVT, NPT, etc. (letters indicate
the conversed parameters: e.g., in the NVT ensemble, the number of atoms, volume, and
temperature are conserved.) In the NVT ensemble, it is possible to keep the temperature
constant by simple rescaling of velocities, but this would not result in correct canonical
distributions. The most popular and correct way is to use extended Lagrangian
formulations.

The Lagrangian function defined (Landau & Lifshitz, 2001) as:

(146)

leads to the following equation of motion:

, (147)

from which Newton’s equations of motion (mi∂vi/∂t = –∂Epot(r)/∂ri = Fi) follow. The total
energy is a constant of motion, i.e. is time-independent.

In the constant-temperature method of Nosé (1984), the Lagrangian function (Eqn.
146) is augmented by two other terms and takes the form:

, (148)

where s is the new dynamical variable, and Q is the associated mass parameter. T0 is the
desired temperature, and f is the number of degrees of freedom in the system. This
Lagrangian ensures that temperature fluctuates around T0 and does not drift. The most
important constant of motion is the Hamiltonian, the sum of the real energy and the
fictitious Nosé terms. New equations of motion, with modified forces, are:

, (149)
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. (150)

The choice of the mass parameter Q does not affect the canonical averages in
principle, but in order to approach these averages in reasonably short time, it is better to
choose Q so that the period of oscillation of the temperature (or s) is similar to the
average period of atomic vibrations. The period of oscillations of s is:

. (151)

In the same spirit, Parrinello & Rahman (1981) devised a constant-pressure method.
They added into the Lagrangian an extra potential term (pV) and kinetic term 

( ), where Hαβ is the matrix of lattice vectors). 

Car & Parrinello (1985) applied the same trick to construct the first scheme of ab
initio MD simulations, where both atomic and electronic coordinates (plane wave
coefficients Ck+K) evolve simultaneously with time. The Car–Parrinello method is
discussed in detail by Remler & Madden (1990). More modern versions of ab initio MD
are based on the determination of the ground state at each timestep (‘Born–Oppenheimer
dynamics’); this method is more stable and more suitable for metals. Significant
advances in the Earth (Alfè et al., 1999; Oganov et al., 2001b) and planetary (Ancilotto
et al., 1997; Cavazzoni et al., 1999) sciences have been obtained with ab initio MD
simulations. This is the method of choice for accurate simulations of high-temperature
phenomena that are significantly anharmonic, such as melting (Sugino & Car, 1995; Alfè
et al., 1999), ionic conductivity, displacive phase transitions, thermal expansion (Buda
et al., 1990) and elastic (Oganov et al., 2001b) properties.

Most properties can be obtained from MD in one of three ways: (i) by calculating
time averages directly, (ii) from fluctuations, (iii) from correlation functions. 

Fluctuations provide a convenient route to calculate numerous response properties
(heat capacity, elastic constants, Grüneisen parameter etc.). Generally, one can write:

, (152)

where X is some extensive variable, and ξ is the associated intensive variable (divided
by kBT). A general equation for fluctuations is then (Chandler, 1987):

. (153)

Let us consider some particular equations for different ensembles (Allen &
Tildesley, 1987). In the NVT ensemble one has:

〈(∆E)2〉NVT = kBT 2CV. (154)
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In the NVE ensemble:

. (155)

In the NPT ensemble:

, (156)

〈[∆(E + pV)]2〉NPT = kBT 2Cp, (157)

〈∆V∆(E + pV)〉NPT = kBT 2Vαp. (158)

Parrinello & Rahman (1982) have derived equations for the determination of the
elastic constants from strain fluctuations in the NPT ensemble:

. (159) 

For more extended treatments of fluctuations, see Landau & Lifshitz (1976), Allen
& Tildesley (1987), Dove (1988), Cheung (1977). Landau & Lifshitz (1976) derived the
general theory of fluctuations from the equilibrium distribution functions.

Correlation functions provide an important tool to study relaxation processes and
transport properties (e.g., viscosity) and power spectra, the most important of which is the
phonon density of states. The velocity autocorrelation function for an i-th atom is defined as:

. (160)

The phonon density of states is just a Fourier transform of the mass-weighted sum
of atomic velocity autocorrelation functions (Dove, 1993):

. (161)

The free energy cannot be determined from MD directly; such methods as
thermodynamic integration (Allen & Tildesley, 1987; Sugino & Car, 1995) are used for that
purpose.

Standard MD uses the classical approximation and cannot be applied at low
temperatures, where quantum effects are essential18. Quantum effects can be
incorporated by (i) path integral MD (see Allen & Tildesley, 1987), (ii) using the phonon
spectrum g(ω) calculated in MD, (iii) applying quantum corrections. The quantum
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18 Some properties (e.g., mode-average Grüneisen parameter) can be derived from classical MD at any
temperature. However, there are difficulties in equilibrating the system at low temperatures, where the
vibrations are nearly harmonic and there is practically no energy transfer between vibrational modes. 

(t′ + t)dt′



correction for the Helmholtz free energy per atom in the lowest order is (Landau &
Lifshitz, 1976):

, (162)

where ∇i
2 is the Laplacian with respect to the coordinates of the i-th atom. Higher-order (h̄3

and higher) corrections are needed only at temperatures below ~ θD/2. Quantum corrections
to other properties can be worked out by differentiating Equation 162 – see Matsui (1989).

Part V: Examples from recent studies

Here we present results of recent quantum-mechanical calculations performed in our
group. These results illustrate the theoretical concepts outlined above and the enormous
potential of ab initio simulations for studies of minerals and planetary materials. All the
calculations discussed below were performed using the PW91 GGA (Wang & Perdew,
1991) and pseudopotential plane wave technique. Some calculations were also performed
using the projector augmented-wave method (Blöchl, 1994; Kresse & Joubert, 1999),
which is an all-electron frozen-core method. All our calculations were performed with the
VASP (Vienna Ab Initio Simulation Package, Kresse & Furthmüller, 1996) code.

Phase diagram of Al2SiO5

This phase diagram is very important in metamorphic petrology and has been a topic of a
large number of papers over the last 60 years. The three known polymorphs – kyanite,
andalusite, and sillimanite – are common minerals in the Earth’s crust and (only kyanite)
the upper mantle. Recent experiments suggested that this system can be important for the
lower mantle as well: Ahmed-Zaid & Madon (1991, 1995) found that at high temperatures
and pressures of the lower mantle kyanite transforms into what these authors interpreted
as a V3O5-like phase of Al2SiO5 (where both Al and Si are in the octahedral coordination).
These authors suggested that this new phase is the main Al-containing mineral in the
lower mantle. However, most experiments (e.g., Schmidt et al., 1997) indicate that the
Al2SiO5 polymorphs decompose into the mixture of oxides at high pressures.

Our simulations (Oganov & Brodholt, 2000) indicate that the latter is indeed the
case. Neither the known polymorphs (kyanite, andalusite, sillimanite), nor the
hypothetical V3O5-like or pseudobrookite-like phases (where Al and Si are also
octahedrally coordinated) are thermodynamically stable above 11 GPa and therefore
cannot exist in the lower mantle. From 0 K calculations, we determined the stable and
metastable transition pressures; using experimetal dp/dT slopes we were able to
construct a phase diagram (Fig. 20), whose main difference from experiment is the
overestimation of all transition pressures by ~ 2 GPa. The GGA calculations were also
successful in predicting crystal structures, atomisation energies, and EOSs of these
minerals.
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Metastable Al2SiO5 phases

Although Al2SiO5 polymorphs are thermodynamically unstable above 11 GPa, they can
exist as metastable phases at much higher pressures, if temperature is low enough to
make the transition to the stable state (i.e. decomposition) kinetically hindered.
Calculations predict extremely interesting behaviour of these polymorphs at high
pressures (Oganov et al., 2001d).

Ab initio simulations show that while dense polymorphs (kyanite and the
hypothetical phases) remain in the metastable state up to at least 80 GPa, the low-density
phases (andalusite and sillimanite) sponateously transform into other metastable phases
at ~ 40 GPa. It is interesting to note that semiclassical simulations based on the ionic
shell model produce semiquantitatively similar results. To study the nature of these
transitions in more detail, we also calculated phonon dispersion curves with the ionic
shell model (to see if there are any soft modes) and introduced small random atomic
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as a function of pressure for the candidate high-pressure phases. 

Fig. 21. (a) Crystal structure of sillimanite and (b) post-sillimanite metastable high-pressure phase. Blue = Si
polyhedra, yellow = Al polyhedra, purple sticks = octahedral Al–O bonds.



displacements and deformations of the unit cell in GGA calculations (also to test
dynamical stability, but with ab initio simulations). 

As these calculations show, sillimanite undergoes a transition, upon which Si and Al
atoms transform from tetrahedrally coordinated to 5-fold coordinated (Fig. 21). The
geometry of the SiO5 polyhedron in the post-sillimanite phase is shown in Figure 22. The
transition is isosymmetric (both phases have Pbnm symmetry) and, in accordance with
Landau theory, is first order. It has a pronounced hysteresis between 28 GPa and 38 GPa and
peculiar non-monotonic variation of the c parameter (Fig. 23). Simulations also indicate that
sillimanite can be incommensurately modulated at pressures within the hysteresis loop.

Pressure-induced amorphisation is predicted for andalusite at 52 GPa (at zero
temperature, or between 52 GPa and 34 GPa at non-zero temperatures). The post-
andalusite structure is dynamically unstable and the predicted type of dynamical
instability (Fig. 24) indicates that pressure-induced amorphisation should occur along the
c and, possibly, a axes. 

Equation of state of MgO

We studied periclase (MgO) by using both pseudopotential and all-electron frozen-core
PAW calculations (Oganov & Dorogokupets, submitted). Both small-core (‘Be core’, i.e.
1s22s2 core and 2p63s2 valence configuration) and large-core (‘Ne core’, with 3s2 valence
configuration) potentials were used for Mg, while O in all cases was described with 1s2

core and 2s22p4 valence configuration. The calculated EOSs and the experimental results
are shown in Figure 25. Mg (as well as other alkali earth elements) is known to have
rather diffuse ‘semicore’ 2p orbitals, which significantly overlap with the valence 3s
orbitals and (at high pressures) also with the orbitals of the neighbouring atoms; this
circumstance creates problems for the pseudopotential approach. Inclusion of nonlinear
core corrections (Louie et al., 1982) is known to substantially improve pseudopotentials,
but as we see in Figure 25 results of such calculations still differ visibly from more
accurate PAW and small-core pseudopotential calculations. Since PAW is an all-electron
method, it fully includes the above-mentioned effects, and even large-core PAW
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Fig. 22. Geometry of the SiO5 polyhedra in the post-
sillimanite structure (prediction at 50 GPa). 



calculations give very accurate results. The excellent performance of large-core PAW
calculations also suggests that the effects of Mg core polarisation are small.

We find that the transition to the CsCl structure occurs at pressures too high for the
Earth’s mantle – the calculated transition pressure is 509 GPa with the most accurate
small-core PAW calculations (Fig. 26). This value exceeds by 50% the pressure in the
centre of the Earth! Large-core pseudopotential calculations give the pressure of
488 GPa. Among the most accurate theoretical results, LDA pseudopotential calculations
(Karki et al., 1997) give 451 GPa and all-electron (LAPW), LDA calculations of Mehl
et al. (1988) give 510 GPa, whereas both LDA and GGA all-electron calculations of Jaffe
et al. (2000) give 515 GPa. These results are consistent with the experimental
observation of the remarkable stability of the NaCl structure for MgO: no phase
transitions were observed up to at least 227 GPa (Duffy et al., 1995). This stability makes
MgO very convenient as a pressure standard in ultrahigh-pressure experiments.

Using ab initio MD, we have calculated the thermal EOS, Grüneisen parameters,
and intrinsic anharmonicity parameters of MgO. The results (Fig. 27) suggest that the
temperature variation of the Grüneisen parameter is mild and the Mie–Grüneisen
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Fig. 24. Phonon dispersion curves of (a) andalusite at room pressure and (b) of the high-pressure dynamically
unstable post-andalusite phase. Only several lowest-frequency phonon branches are shown. 

Fig. 23. Pressure evolution of (a) unit cell volume and (b) lattice parameters of sillimanite. 



approximation is adequate. Different contributions to the total pressure at 3000 K are
shown in Figure 28. The anharmonic pressure is negative and small, –3 GPa at its utmost,
which is quantitatively similar to the experimental data (Dorogokupets & Oganov, in
prep.). However, thermal expansion is more sensitive to intrinsic anharmonicity than
pressure. Karki et al. (1999, 2000a) recently studied lattice dynamics, thermodynamic
properties, and EOS of MgO within the quasiharmonic approximation in their
pseudopotential LDA calculations based on density functional perturbation theory.
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Fig. 26. Phase transition
of MgO from the NaCl
to the CsCl structure
from PAW (Be-core)
calculations. 

Fig. 25. Equation of state
of MgO from experiment
and GGA calculations.
PAW = Projector Aug-
mented-Wave calcula-
tions, ECP = Effective
Core Pseudopotential cal-
culations.



Equation of state and elasticity of MgSiO3 perovskite

MgSiO3 perovskite is a mineral of extreme geophysical importance. This importance and
recent progress in ab initio calculations explain the simultaneous appearance of several
recent theoretical papers on this mineral (Oganov et al., 2001a, 2001b, Oganov et al., in
prep.; Karki, 2000b, 2001). Our calculations suggest that in MgSiO3 perovskite large-
core pseudopotentials perform very well, unlike in MgO. This is probably related to
longer Mg–O bonds in perovskite and, consequently, much smaller overlap between the
2p orbitals of Mg and valence orbitals of O atoms.

Ab initio MD calculations (Oganov et al., 2001a, 2001b) show that MgSiO3

perovskite remains orthorhombic (Fig. 29) throughout the lower mantle. This agrees with
our static simulations (Fig. 30; Oganov et al., in prep.), which show that higher-
symmetry perovskite structures are much less dense and very much higher in energy than
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Fig. 27. Effective Grüneisen parameter of MgO from ab initio MD. Solid symbols = Be-core PAW results;
open symbols = Ne-core pseudopotential calculations. Lines = best fits.

Fig. 28. Theoretical equation of
state of MgO at 3000 K (1) and
different pressure contributions:
(2) static, (3) quasiharmonic and
(4) anharmonic. Large grey
squares = experiment-based
extrapolations of Speziale et al.
(2001) at 3000 K. Theoretical
results (lines 1–4) are based on
Be-core PAW calculations.



the observed Pbnm phase. The same result has been obtained in previous works
(Stixrude & Cohen, 1993; Wentzcovitch et al., 1993; D’Arco et al., 1993b; Warren et al.,
1998). Earlier, the hypothetical transition to a cubic (Pm3̄m) perovskite phase, which is
expected to be a superionic conductor of electricity (O’Keeffe & Bovin, 1979; Matsui &
Price, 1991) due to the diffusion of O2– ions, was invoked to explain the high measured
electrical conductivity of the lower mantle. 

To construct the EOS, we calculated the phonon pressure using the Grüneisen
parameters from ab initio MD and vibrational energy from the Debye model. The
calculated thermal expansion (Fig. 31) agrees well with the results of Karki et al. (2001)
at high pressures. At low pressures and high temperatures, as expected, the
quasiharmonic approximation used by Karki et al. (2001) significantly overestimates
thermal expansion. Our thermal expansion values at 0 GPa strongly support the most
recent experiments, which indicate thermal expansion that is too low to be consistent
with a pure-perovskite lower mantle. Karki et al. (2001) found that pure-perovskite
model would agree with seismological profiles only for unrealistically high
temperatures, thus ruling out this model. Probably, the lower mantle composition is
pyrolitic or similar.

Our work (Oganov et al., 2001b) reported on what seem to be the first calculations
of the elastic constants of any material at finite temperatures using ab initio MD. These
calculations for MgSiO3 perovskite at the temperatures and pressures of the lower mantle
give RT ≈ 0.7 in agreement with geophysical observations. The calculated Rp increases
from 1.5 at the depth of 1000 km to 1.9 at 2000 km. The remaining deficit of Rp can
be explained by significant anelasticity (Karato, 1993) throughout the lower mantle, as
well as significant compositional heterogeneity (e.g., Masters et al., 2000) below
2000–2500 km. 

With our results on temperature variation of the elastic constants, we were able to find
(Oganov et al., 2001b) from seismic tomography maps of Masters et al. (2000) that the
maximum temperature contrast between the hot and cold streams increases from 900 K at
1000 km depth to 1500 K at 2000 km and possibly to ~ 2000 K at the core–mantle boundary.
These values should play an important role in the future models of the Earth’s dynamics and
can be used as important constraints in numerical models of mantle convection.
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Fig. 29. ‘Snapshot’ of the crystal structure of MgSiO3

perovskite at 88 GPa and 3500 K from ab initio MD
simulations.



Towards an ab initio thermal model of the Earth

Here we show (Oganov & Price, in prep.) that, having accurate ab initio results and
geophysical measurements, we are not far away from establishing an accurate reference
thermal model for the Earth. Let us again consider the lower mantle.
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Fig. 31. Thermal expansion of MgSiO3 perovskite. Solid lines – results of Oganov et al. (2001a). Solid
horizontal lines – direct ab initio MD results at 38 GPa and 88 GPa between 1500 K and 3500 K. Crosses –
calculations of Karki et al. (2001). Experimental data at 0 GPa: squares (Ross & Hazen, 1989); lines (1) Knittle
& Jeanloz (1986), (2) Mao et al. (1991), (3) Wang et al. (1994), (4) Funamori et al. (1996), (5) Fiquet et al.
(2000).

Fig. 30. E(V) curves for the orthorhombic, tetragonal, and cubic phases of MgSiO3 perovskite: GGA
calculations. Minimum energy of the Pbnm phase is set as the reference zero. Energies are per formula unit.



Since the lower mantle is a convecting system, its temperature distribution should
be not far from adiabatic:
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Fig. 32. (a) Adiabatic geotherm (this work) in comparison with the geotherms of Brown & Shankland (1981)
and Anderson (1982). (b) Schematic temperature distribution in the lower mantle. Two-headed arrows indicate
the maximum temperature contrasts (the lower arrow gives the lowest possible temperature at a given depth;
the upper arrow gives the maximum temperature). Thick rectangle in (b) corresponds to current estimates of
temperature at the core–mantle boundary.



where we can use T(670 km) = 1873±100 K determined from phase equilibria (Ito & Katsura,
1989) and geophysical (PREM) density profile ρ(z). Figure 32 shows that two adiabats
obtained with ab initio γ (V) of MgSiO3 and MgO (which together comprise 
~ 90–95% of the lower mantle) are practically indistinguishable; therefore, we have an
accurately constrained adiabatic geotherm (between these two adiabats). This adiabat is quite
similar to the classical geotherms of Brown & Shankland (1981) and Anderson (1982). 

For the core side of the core-mantle boundary, experiments of Boehler (1996)
suggest T ≈ 4000 K. In good agreement with this, ab initio simulations (D. Alfè, personal
communication) give ~ 4200 K. This gives the highest temperature of the mantle. From
this and from our temperature contrasts we see that the minimum temperature of the
mantle near the core–mantle boundary is 2100 K. Using the starting temperature
T(670 km) = 1873 K, the core–mantle boundary temperature (4000–4400 K), our mantle
adiabat and temperature contrasts, one can obtain a very interesting general picture (Fig.
32). Comparing this picture with experimental solidus of pyrolite determined by Zerr et
al. (1998), we expect some degree of partial melting, restricted only to the hottest regions
in the very bottom of the lower mantle. This agrees with seismological observations
(Williams & Garnero, 1996) and would have important implications for the anomalous
properties of the core–mantle D′′ layer (anomalous seismic signatures such as
ultralow-velocity zones, ionic conductivity, kinetics of chemical equilibration with the
core etc.). 

Acknowledgements

ARO’s work is funded by the NERC (grant GR3/12083). Andrew Rappe kindly provided
Figure 17; we thank Bijaya Karki and Renata Wentzcovitch for the permission to publish
Figure 19 and providing us with its electronic version. B. Karki, R. Wentzcovitch,
M. Fowler, J.-P. Poirier, F. Guyot, V. Urusov, M. Dove, M. Hostettler, L. Kantorovich,
S. Clark, G. Ackland, T. Balić-Žunić are thanked for stimulating discussions.

References
Adams, D.M., Hatton, P.D., Heath, A.E. & Russell, D.R. (1988): X-ray diffraction measurements on potassium

nitrate under high pressure using synchrotron radiation. J. Phys. C. Solid State Phys., 21:505–515.
Agoshkov, V.M. (1985): Calculation of thermodynamic properties of minerals based on a model of the

vibrational spectrum for silicates and oxides. Geokhimiya, (10):1441–1454. (in Russian) 
Agoshkov, V.M., Kieffer, S.W. & McMillan, P.F. (1994): Lattice dynamics and thermodynamic properties of

minerals. In Marfunin, A.S. (ed.): Advanced mineralogy, 1:419–430. Berlin: Springer-Verlag.
Ahmed-Zaid, I. & Madon, M. (1991): A high-pressure form of Al2SiO5 as a possible host of aluminium in the

lower mantle. Nature, 353:426–428.
Ahmed-Zaid, I. & Madon, M. (1995): Electron microscopy of high-pressure phases synthesized from natural

garnets in a diamond anvil cell: Implications for the mineralogy of the lower mantle. Earth Planet. Sci.
Lett., 129:233–247.

Alan, D.R. & Nelmes, R.J. (1996): The structural pressure dependence of potassium titanyl phosphate (KTP)
to 8 GPa. J. Phys., Condens. Matter, 8:2337–2363.

Alavi, A., Lozovoi, A. & Finnis, M.W. (1999): Pressure-induced isostructural phase transition in Al-rich NiAl
alloys. Phys. Rev. Lett., 83:979–982.

Alexandrov, K.S. & Prodaivoda, G.T. (1993): Elastic properties of minerals. Kristallografiya, 38:214–234. (in
Russian)

A.R. Oganov, J.P. Brodholt & G.D. Price160



Alfé, D., Gillan, M.J. & Price, G.D. (1999): The melting curve of iron at the pressures of the Earth’s core from
ab initio calculations. Nature, 401:462–464. 

Alfé, D., Gillan, M.J. & Price, G.D. (2002): Composition and temperature of the Earth’s core constrained by
combining ad initio calculations and seismic data. Earth Planet. Sci. Lett. 195:91–98.

Allègre, C.J., Poirier, J.-P., Humler, E. & Hofmann, A.W. (1995): The chemical composition of the Earth. Earth
Planet. Sci. Lett., 134:515–526.

Allen, M.P. & Tildesley, D.J. (1987): Computer simulation of liquids. Oxford: Clarendon Press, 385 p.
Ancilotto, F., Chiarotti, G.L., Scandolo, S. & Tosatti, E. (1997): Dissociation of methane into hydrocarbons at

extreme (planetary) pressure and temperature. Science, 275:1288–1290.
Anders, E. & Ebihara, M. (1982): Solar system abundances of the elements. Geochim. Cosmochim. Acta,

46:2363–2380.
Anderson, D.L. (1989): Theory of the Earth. Boston: Blackwell Sci. Publ., 366 p.
Anderson, O.L. (1982): The Earth’s core and the phase diagram of iron. Philos. Trans. R. Soc. Lond.,

A306:21–35.
Angel, R.J. & Ross, N.L. (1996): Compression mechanisms and equations of state. Philos. Trans. R. Soc.

Lond., A354:1449–1459.
Angel, R.J., Ross, N.L., Seifert, F. & Fliervoet, T.F. (1996): Structural characterization of pentacoordinate

silicon in a calcium silicate. Nature, 384:441–444.
Angel, R.J., Allan, D.R., Miletich, R. & Finger, L.W. (1997): The use of quartz as an internal pressure standard

in high-pressure crystallography. J. Appl. Crystallogr., 30:461–466.
Aprà, E., Stefanovich, E., Dovesi, R. & Roetti, C. (1991): An ab initio Hartree–Fock study of silver chloride.

Chem. Phys. Lett., 186:329–335.
Arlt, T. & Angel, R.J. (2000): Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi2O6

and ZnSiO3. Phys. Chem. Miner., 27:719–731.
Arlt, T., Angel, R.J., Miletich, R., Armbruster, T. & Peters, T. (1998): High-pressure P21/c–C2/c phase

transitions in clinopyroxenes: influence of cation size and electronic structure. Am. Mineral.,
83:1176–1181.

Ashcroft, N.W. & Mermin, N.D. (1976): Solid state physics. New York (N.Y.): Holt, Rinehart & Winston.
Bader, R.F.W. (1990): Atoms in molecules. A quantum theory. Oxford: Oxford Univ. Press, 438 p.
Badro, J., Barrat, J.-L. & Gillet, P. (1996): Numerical simulation of α-quartz under nonhydrostatic

compression: memory glass and five-coordinated crystalline phases. Phys. Rev. Lett., 76:772–775.
Badro, J., Teter, D.M., Downs, R.T., Gillet, P., Hemley, R. & Barrat, J.-L. (1997): Theoretical study of a

five-coordinated silica polymorph. Phys. Rev., B, Condens. Matter, 56:5797–5806.
Badro, J., Struzhkin, V.V., Shu, J., Hemley, R.J., Mao, H.-K., Kao, C.-C., Rueff, J.-P. & Shen, G. (1999):

Magnetism in FeO at megabar pressures from X-ray emission spectroscopy. Phys. Rev. Lett.,
83:4101–4104.

Baerends, E.J. & Gritsenko, O.V. (1997): A quantum chemical view of density functional theory. J. Phys.
Chem., A, Mol. Spectrosc. Kinet. Environ. Gen. Theory, 101:5383–5403.

Baroni, S., Gianozzi, P. & Testa, A. (1987): Green-function approach to linear response in solids. Phys. Rev.
Lett., 58:1861-1864.

Baroni, S., de Gironcoli, S., Dal Corso, A. & Gianozzi, P. (2001): Phonons and related crystal properties from
density-functional perturbation theory. Rev. Mod. Phys., 73:515–562.

Barron, T.H.K. & Klein, M.L. (1965): Second-order elastic constants of a solid under stress. Proc. Phys. Soc.,
85:523–532.

Becke, A.D. (1993): Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys.,
98:5648–5652.

Becke, A.D. (2000): Simulation of delocalised exchange by local density functionals. J. Chem. Phys.,
112:4020–4026. 

Belikov, B.P., Aleksandrov, K.S. & Ryzhova, T.V. (1970): Elastic constants of rock-forming minerals.
Moscow: Nauka, 276 p (in Russian).

Bina, C.R. & Navrotsky, A. (2000): Possible presence of high-pressure ice in cold subducting slabs. Nature,
408:844–847.

Ab initio theory of phase transitions and thermoelasticity of minerals 161



Birman, J.L. (1966): Simplified theory of symmetry change in second-order phase transitions: application to
V3Si. Phys. Rev. Lett., 17:1216–1219. 

Blöchl, P.E. (1994): Projector augmented-wave method. Phys. Rev., B, Condens. matter, 50:17,953–17,979.
Boehler, R. (1996): Melting temperatures of the Earth’s mantle and core: Earth’s thermal structure. Annu. Rev.

Earth Planet. Sci., 24:15–40.
Born, M. & Huang, K. (1954): Dynamical theory of crystal lattices. Oxford: Clarendon Press, 420 p.
Bowley, R. & Sánchez, M. (1999): Introductory statistical mechanics. Second edition. Oxford: Oxford Univ.

Press, 352 p.
Brown, J.M. & Shankland, T.J. (1981): Thermodynamic properties in the Earth as determined from seismic

profiles. Geophys. J. R. Astr. Soc., 66:579–596.
Bruce, A.D. & Cowley, R.A. (1981): Structural phase transitions. London: Francis and Taylor, 326 p.
Buda, F., Car, R. & Parrinello, M. (1990): Thermal expansion of c-Si via ab initio molecular dynamics. Phys.

Rev., B, Condens. Matter, 41:1680–1683.
Buerger, M.J. (1961): Polymorphism and phase transformations. Fortschr. Mineral., 39:9–24.
Bukowinski, M.S.T. (1994): Quantum geophysics. Ann. Rev. Earth Planet. Sci., 22:167–205.
Burdett, J.K. (1995): Chemical bonding in solids. New York (N.Y.): Oxford Univ. Press.
Car, R. & Parrinello, M. (1985): Unified approach for molecular dynamics and density-functional theory. Phys.

Rev. Lett., 55:2471–2474.
Carlson, S., Xu, Y.Q., Hålenius, U. & Norrestam, R. (1998): A reversible, isosymmetric, high-pressure phase

transition in Na3MnF6. Inorg. Chem., 37:1486–1492.
Carpenter, M.A. (2002): Microscopic strain, macroscopic strain and the thermodynamics of phase transitions

in minerals. In Gramaccioli, C.M. (ed.): Energy modelling in minerals /EMU Notes Mineral., 4/.
Budapest: Eötvös Univ. Press, 311–346.

Catlow, C.R.A. & Mackrodt, W.C. (eds.) (1982): Computer simulation of solids /Lect. Notes Phys., 166/.
Berlin: Springer-Verlag, 320 p.

Catlow, C.R.A. & Price, G.D. (1990): Computer modelling of solid-state inorganic materials. Nature,
347:243–248.

Catlow, C.R.A., Bell, R.G. & Gale, J.D. (1994): Computer modelling as a technique in materials chemistry. J.
Mater. Chem., 4:781–792.

Catti, M. (1989): Crystal elasticity and inner strain – a computational model. Acta Crystallogr., A45:20–25.
Catti, M. (2001): Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at

high pressure. Phys. Rev. Lett., 87: paper 035504. 
Catti, M., Pavese, A., Dovesi, R., Roetti, C. & Causà, M. (1991): Quantum-mechanical Hartree–Fock

self-consistent field study of the elastic constants and chemical bonding of MgF2 (sellaite). Phys. Rev., B,
Condens. Matter, 44:3509–3517.

Catti, M., Valerio, G., Dovesi, R. & Causà, M. (1994): Quantum-mechanical calculation of solid-state equilibrium
MgO + Al2O3 = MgAl2O4 (spinel) versus pressure. Phys. Rev., B, Condens. Matter, 49:14,179–14,187.

Cavazzoni, C., Chiarotti, G.L., Scandolo, S., Tosatti, E., Bernasconi, M. & Parrinello, M. (1999): Superionic
and metallic states of water and ammonia at giant planet conditions. Science, 283:44–46. 

Ceperley, D.M. & Alder, B.J. (1980): Ground state of the electron gas by a stochastic method. Phys. Rev. Lett.,
45:566–569.

Chandler, D. (1987): Introduction to modern statistical mechanics. New York (N.Y.): Oxford Univ. Press, 274 p.
Cheung, P.S.Y. (1977): On the calculation of specific heats, thermal pressure coefficients and compressibilities

in molecular dynamics simulations. Mol. Phys., 33:519–526.
Chizmeshya, A.V.G., Wolf, G.H. & McMillan, P.F. (1996): First-principles calculation of the equation-of-state,

stability, and polar optic modes of CaSiO3 perovskite. Geophys. Res. Lett., 23:2725–2728. (correction:
ibid. (1998), 25:711).

Choudhury, N., Chaplot, S.L., Ghose, S., Rao, H.N. & Mittal, R. (2002): Lattice dynamics, inelastic, neutron
scattering and thermodynamic properties of minerals. In Gramaccioli, C.M. (ed.): Energy modelling in
minerals /EMU Notes Mineral., 4/. Budapest: Eötvös Univ. Press, 211–243.

Christy, A.G. (1993): Multistage diffusionless pathways for reconstructive phase transitions: application to
binary compounds and calcium carbonate. Acta Crystallogr., B49:987–996.

A.R. Oganov, J.P. Brodholt & G.D. Price162



Christy, A.G. (1995): Isosymmetric structural phase transitions: Phenomenology and examples. Acta
Crystallogr., B51:753–757.

Chudinovskikh, L. & Boehler, R. (2001): High-pressure polymorphs of olivine and the 660-km seismic
discontinuity. Nature, 411:574–577.

Cohen, R.E. (1991): Bonding and elasticity of stishovite SiO2 at high pressure: Linearized augmented plane
wave calculations. Am. Mineral., 76:733–742.

Cohen, R.E. (1999): Bonding and electronic structure of minerals. In Catlow, C.R.A. & Wright, K. (ed.):
Microscopic properties and processes in minerals /NATO ASI Ser. C, 543/. Dordrecht: Kluwer, 201–264.

Cohen, R.E., Mazin, I.I. & Isaak, D.G. (1997): Magnetic collapse in transition metal oxides at high pressure:
implications for the Earth. Science, 275:654–657.

Cohen, R.E., Gulseren, O. & Hemley, R.J. (2000): Accuracy of equation-of-state formulations. Am. Mineral.,
85:338–344.

Coppens, P. (1997): X-ray charge densities and chemical bonding /Int. Union Crystallogr. Texts, 4/. Oxford:
Oxford Univ. Press, 358 p.

Cowley, R.A. (1976): Acoustic phonon instabilities and structural phase transitions. Phys. Rev., B, Condens.
Matter, 13:4877–4885.

D’Arco, Ph., Causà, M., Roetti, C. & Silvi, B. (1993a): Periodic Hartree–Fock study of a weakly bonded layer
structure: brucite Mg(OH)2. Phys. Rev., B, Condens. Matter, 47:3522–3529.

D’Arco, Ph., Sandrone, G., Dovesi, R., Orlando, R. & Saunders, V.R. (1993b): A quantum mechanical study
of the perovskite structure type of MgSiO3. Phys. Chem. Miner., 20:407–414.

D’Arco, Ph., Sandrone, G., Dovesi, R., Aprà, E. & Saunders, V.R. (1994): A quantum-mechanical study of the
relative stability under pressure of MgSiO3-ilmenite, MgSiO3-perovskite, and MgO-periclase +
SiO2-stishovite assemblage. Phys. Chem. Miner., 21:285–293.

Dam, B., Janner, A. & Donnay, J.D.H. (1985): Incommensurate morphology of calaverite (AuTe2) crystals.
Phys. Rev. Lett., 55:2301–2304.

Deuss, A. & Woodhouse, J. (2001): Seismic observations of splitting of the mid-transition zone discontinuity
in Earth’s mantle. Science, 294:354–357.

Dorogokupets, P.I. (2000): Self-consistent thermodynamic functions in equations of state for minerals. Dokl.
Earth Sci., 375A, 1459–1462.

Dorogokupets, P.I. & Oganov, A.R.: Self-consistent equation of state of periclase up to 200 GPa and 3500 K.
(in prep.)

Dove, M.T. (1988): Molecular dynamics simulations in the solid state sciences. In Salje, E.K.H. (ed): Physical
properties and thermodynamic behaviour of minerals /NATO ASI Ser. C, 225/. Dordrecht: Reidel,
501–590.

Dove, M.T. (1993): Introduction to lattice dynamics. Cambridge: Cambridge Univ. Press, 258 p.
Dove, M.T. (1997): Theory of displacive phase transitions in minerals. Am. Mineral., 82:213–244.
Dovesi, R. (1996): Total energy and related properties. In Pisani, C. (ed.): Quantum-mechanical ab intio

calculation of the properties of crystalline materials /Lect. Notes Chem., 67/ Berlin: Springer-Verlag,
179–207.

Dovesi, R., Roetti, C., Freyria-Fava, C., Aprà, E., Saunders, V. & Harrison, N.M. (1992): Ab intio
Hartree–Fock treatment of ionic and semi-ionic compounds: state of the art. Philos. Trans. R. Soc. Lond.,
A341:203–210.

Dovesi, R., Saunders, V.R., Roetti, C., Causà, M., Harrison, N.M., Orlando, R. & Aprà, E. (1996): CRYSTAL95.
User’s manual. Torino: Univ. of Torino.

Duffy, T.S., Hemley, R.J. & Mao, H.K. (1995): Equation of state and shear strength at multimegabar pressures:
magnesium oxide to 227 GPa. Phys. Rev. Lett., 74:1371–1374.

Dziewonski, A.M. & Anderson, D.L. (1981): Preliminary reference Earth model. Phys. Earth Planet. Inter.,
25:297–356.

Fang, Z., Solovyev, I.V., Sawada, H. & Terakura, K. (1999): First-principles study on electronic structures and
phase stability of MnO and FeO under high pressure. Phys. Rev., B, Condens. Matter, 59:762–774.

Fedorov, F.I. (1968): Theory of elastic waves in crystals. New York (N.Y.): Plenum Press, 375 p.
Fiquet, G. (2001): Mineral phases of the Earth’s mantle. Z. Kristallogr., 216:248–271.

Ab initio theory of phase transitions and thermoelasticity of minerals 163



Fiquet, G., Dewaele, A., Andrault, D., Kunz, M. & Le Bihan, T. (2000): Thermoelastic properties and crystal
structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett.,
27:21–24.

Foulkes, W.M.C., Mitas, L., Needs, R.J. & Rajagopal, G. (2001): Quantum Monte Carlo simulations of solids.
Rev. Mod. Phys., 73:33–83. 

Funamori, N., Yagi, T., Utsumi, W., Kondo, T. & Uchida, T. (1996): Thermoelastic properties of MgSiO3

perovskite determined by in situ X ray observations up to 30 GPa and 2000 K. J. Geophys. Res.,
101:8257–8269.

Gale, J.D. (1996): Empirical potential derivation for ionic materials. Philos. Mag., B73:3–19.
Gale, J.D. (1998): Analytical free energy minimization of silica polymorphs. J. Phys. Chem., B, Condens.

Matter Mater. Surf. Interfaces Biophys., 102:5423–5431.
Garland, C.W. & Weiner, B.B. (1971): Changes in the thermodynamic character of the NH4Cl order-disorder

transition at high pressures. Phys. Rev., B, Condens. Matter, 3:1634–1637.
Gillet, P., Badro, J., Varrel, B. & McMillan, P.F. (1995): High-pressure behaviour in α-AlPO4: Amorphization

and the memory-glass effect. Phys. Rev., B, Condens. Matter, 51:11,262–11,269.
Gillet, P., Matas, J., Guyot, F. & Ricard, Y. (1999): Thermodynamic properties of minerals at high pressures

and temperatures from vibrational spectroscopic data. In Catlow, C.R.A. & Wright, K. (eds.):
Microscopic properties and processes in minerals /NATO ASI Ser. C, 543/. Dordrecht: Kluwer, 71–92.

Gillet, P., Daniel, I., Guyot, F., Matas, J. & Chervin, J.C. (2000): A thermodynamic model for MgSiO3-
perovskite derived from pressure, temperature and volume dependence of the Raman mode frequencies.
Phys. Earth Planet. Inter., 117:361–384. 

Gramaccioli, C.M. (2002): Lattice dynamics: Theory and application to minerals. In Gramaccioli, C.M. (ed.):
Energy modelling in minerals /EMU Notes Mineral., 4/. Budapest: Eötvös Univ. Press, 245–270.

Hahn, T. (ed.) (1994): International tables for crystallography. Vol. A, Space-group symmetry. Fourth, revised
edition. Dordrecht: Kluwer.

Hahn, T. & Wondratschek, H. (1994): Symmetry of crystals. Introduction to International tables for
crystallography Vol. A. Sofia: Heron Press, 134 p.

Haines, J., Leger, J.M. & Schulte, O. (1998): High-pressure isosymmetric phase transition in orthorhombic
lead fluoride. Phys. Rev., B, Condens. Matter, 57:7551–7555.

Hama, J. & Suito, K. (1996): The search for a universal equation of state correct up to very high pressures. J.
Phys., Condens. Matter, 8:67–81.

Harris, M.J. & Dove, M.T. (1995): Lattice melting at structural phase transitions. Mod. Phys. Lett., B, Condens.
Matter Phys. Stat. Phys. Appl. Phys., 9:67–85.

Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R. & Wilding, M.C. (1999): Lower mantle mineral associations
in diamonds from São Luiz, Brazil. In Fei, Y., Bertka, C.M. & Mysen, B.O. (eds.), Mantle petrology:
Field observations and high-pressure experimentation: A Tribute to Francis R. (Joe) Boyd /Geochem.
Soc. Spec. Publ., 6/. St. Louis (Mo.): Geochem. Soc., 125–153.

Hatch, D.M. & Merrill, L. (1981): Landau description of the calcite-CaCO3(II) phase transition. Phys. Rev., B,
Condens. Matter, 23:368–374.

Heine, V. & McConnell, J.D.C. (1981): Origin of modulated incommensurate phases in insulators. Phys. Rev.
Lett., 46:1092–1095. 

Helffrich, G. (2000): Topography of the transition zone seismic discontinuities. Rev. Geophys., 38:141–158.
Hemley, R.J. & Cohen, R.E. (1996): Structure and bonding in the deep mantle and core. Philos. Trans. R. Soc.

Lond., A354:1461–1479.
Hobbs, D., Kresse, G. & Hafner, J. (2000): Fully unconstrained noncollinear magnetism within the PAW

method. Psi-k Newslett., 41 (October 2000): 135–146.
Hohenberg, P. & Kohn, W. (1964): Inhomogeneous electron gas. Phys. Rev., 136:B864–B871.
Holzapfel, W.B. (1996): Physics of solids under strong compression. Rep. Prog. Phys., 59:29–90.
Holzwarth, N.A.W., Matthews, G.E., Dunning, R.B., Tackett, A.R. & Zeng, Y. (1997): Comparison of the

projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for
density-functional calculations of solids. Phys. Rev., B, Condens. Matter, 55:2005–2017.

A.R. Oganov, J.P. Brodholt & G.D. Price164



Hostettler, M., Birkedal, H. & Schwarzenbach, D. (2001): Polymorphs and structures of mercuric iodide.
Chimia, 55:541–545.

Iitaka, T. & Ebisuzaki, T. (2001): First-principles calculation of elastic properties of solid argon at high
pressures. Phys. Rev., B65:art. 012103.

Isaak, D.G., Cohen, R.E., Mehl, M.J. & Singh, D.J. (1993): Phase stability of wüstite at high pressure from
first-principles linearized augmented plane-wave calculations. Phys. Rev., B, Condens. Matter,
47:7720–7731.

Ito, E. & Katsura, T. (1989): A temperature profile of the mantle transition zone. Geophys. Res. Lett.,
16:425–428. 

Jackson, I. (1998): Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys.
J. Int., 134:291–311. 

Jaeger, G. (1998): The Ehrenfest classification of phase transitions: introduction and evolution. Arch. Hist.
Exact Sci., 53:51–81.

Jaffe, J.E., Snyder, J.A., Lin, Z. & Hess, A.C. (2000): LDA and GGA calculations for high-pressure phase
transitions in ZnO and MgO. Phys. Rev., B, Condens. Matter, 62:1660–1665.

Janot, C. (1994): Quasicrystals: A primer. Oxford: Oxford Univ. Press, 409 p.
Jones, R.O. & Gunnarsson, O. (1989): The density functional formalism, its applications and prospects. Rev.

Mod. Phys., 61:689–746.
Kantorovich, L.N. (1995): Thermoelastic properties of perfect crystals with nonprimitive lattices. 1. General

theory. Phys. Rev., B, Condens. Matter, 51:3520–3534.
Kantorovich, L.N. (1996–2001): User-friendly visualisation program for plane-wave ab initio DFT codes

CASTEP/CETEP/VASP. Unpublished, see http://www.cmmp.ucl.ac.uk /~lev/codes/lev00 
Karato, S-I. (1993): Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett.,

20:1623–1626.
Karki, B.B. (1997): High-pressure structure and elasticity of the major silicate and oxide minerals of the

Earth’s lower mantle. Ph.D. Thesis, Univ. of Edinburgh, 170 p.
Karki, B.B., Stixrude, L., Clark, S.J., Warren, M.C., Ackland, G.J. & Crain, J. (1997): Structure and elasticity

of MgO at high pressure. Am. Mineral., 82:51–60. 
Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S. & Baroni, S. (1999): First-principles determination of elastic

anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286:1705–1707. 
Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S. & Baroni, S. (2000a): High-pressure lattice dynamics and

thermoelasticity of MgO. Phys. Rev., B, Condens. Matter, 61:8793–8800.
Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S. & Baroni, S. (2000b): Ab initio lattice dynamics of MgSiO3

perovskite at high pressure. Phys. Rev., B, Condens. Matter, 62:14,750–14,756.
Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S. & Baroni, S. (2001): First principles termoelasticity of

MgSiO3-perovskite: consequences for the inferred properties of the lower mantle. Geophys. Res. Lett.,
28:2699–2702.

Kennett, B.L.N., Engdahl, E.R. & Buland, R. (1995): Constraints on seismic velocities in the Earth from
traveltimes. Geophys. J. Int., 122:108–124.

Kennett, B.L.N., Widiyantoro, S. & van der Hilst, R.D. (1998): Joint seismic tomography for bulk sound and
shear wave speed in the Earth’s mantle. J. Geophys. Res., 103:12,469–12,493. 

Kerrick, D.M. (1990) (ed.): The Al2SiO5 polymorphs /Rev. Mineral., 22/. Washington (D.C.): Mineral. Soc.
Am., 406 p.

Kesson, S.E., Fitz Gerald, J.D. & Shelley, J.M.G. (1994): Mineral chemistry and density of subducted basaltic
crust at lower-mantle pressures. Nature, 372:767–769.

Kesson, S.E., Fitz Gerald, J.D. & Shelley, J.M.G. (1998): Mineralogy and dynamics of a pyrolite mantle.
Nature, 393:252–255.

Kieffer, S.W. (1979a): Thermodynamics and lattice vibrations of minerals: 1. Mineral heat capacities and their
relationship to simple lattice vibrational models. Rev. Geophys. Space Phys., 17:1–19.

Kieffer, S.W. (1979b): Thermodynamics and lattice vibrations of minerals: 2. Vibrational characteristics of
silicates. Rev. Geophys. Space Phys., 17:20–34.

Ab initio theory of phase transitions and thermoelasticity of minerals 165



Kieffer, S.W. (1979c): Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an
approximation for minerals with application to simple substances and framework silicates. Rev. Geophys.
Space Phys., 17:35–59.

Kieffer, S.W. (1980): Thermodynamics and lattice vibrations of minerals: 4. Application to chain and sheet
silicates and orthosilicates. Rev. Geophys. Space Phys., 18:862–886.

Kieffer, S.W. (1982): Thermodynamics and lattice vibrations of minerals: 5. Application to phase equilibria,
isotopic fractionation, and high-pressure thermodynamic properties. Rev. Geophys. Space Phys., 20:827–849.

Knittle, E. & Jeanloz, R. (1986): Thermal expansion of silicate perovskite and stratification of the Earth’s
mantle. Nature, 319:214–216.

Knittle, E. & Jeanloz, R. (1991): Earth’s core-mantle boundary: results of experiments at high pressures and
temperatures. Science, 251:1438–1443.

Kohn, W. (1999a): Nobel Lecture: Electronic structure of matter – wave functions and density functionals. Rev.
Mod. Phys., 71:1253–1266.

Kohn, W. (1999b): An essay on condensed matter physics in the twentieth century. Rev. Mod. Phys.,
71:S59–S77.

Kohn, W. & Sham, L.J. (1965): Self-consistent equations including exchange and correlation effects. Phys.
Rev., 140:A1133–A1138. 

Kohn, W., Meir, Y. & Makarov, D.E. (1998): Van der Waals energies in density functional theory. Phys. Rev.
Lett., 80:4153–4156.

Komada, N. & Westrum, E.F. (1997): Modeling lattice heat-capacity contributions by a single-parametric
phonon dispersion approach. J. Chem. Thermodyn., 29:311–336.

Kresse, G. & Furthmüller, J. (1996): Efficiency of ab initio total-energy caclulations for metals and
semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6:15–50.

Kresse, G. & Joubert, D. (1999): From ultrasoft pseudopotentials to the projector augmented-wave method.
Phys. Rev., B, Condens. Matter, 59:1758–1775.

Kruger, M.B. & Jeanloz, R. (1990): Memory glass: an amorphous material formed from AlPO4. Science,
249:647–649.

Kurth, S., Perdew, J.P. & Blaha, P. (1999): Molecular and solid-state tests of density functional approximations:
LSD, GGAs, and meta-GGAs. Int. J. Quant. Chem., 75:889–909.

Landau, L.D. & Lifshitz, E.M. (1976): Statistical physics. Part I. /Course of Theoretical Physics, 5/. Third
edition. Moscow: Nauka, 584 p. (In Russian)

Landau, L.D. & Lifshitz, E.M. (1980, 2001): Mechanics. /Course of Theoretical Physics, 1/. Fourth edition.
Moscow: Nauka, 217 p. (In Russian)

Le Stunff, Y., Wicks, C.W., Jr. & Romanowicz, B. (1995): P’P’ precursors under Africa: evidence for
mid-mantle reflectors. Science, 270:74–77.

Lee, I-H. & Martin, R.M. (1997): Applications of the generalised-gradient approximation to atoms, clusters,
and solids. Phys. Rev., B, Condens. Matter, 56:7197–7205.

Lichanot, A. (2000): Hartree–Fock and density functional calculations of the elastic constants of the
alkaline-earth oxides: comparison with experiment. Solid State Commun., 116:543–546.

Liu, L.-G. & Bassett, W.A. (1986): Elements, oxides, and silicates. High-pressure phases with implications for
the Earth’s interior. New York (N.Y.): Oxford Univ. Press, 250 p.

Loubeyre, P., LeToullec, R., Hausermann, D., Hanfland, M., Hemley, R.J., Mao, H.K. &, Finger, L.W. (1996):
X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 383:702–704.

Louie, S.G., Froyen, S. & Cohen, M.L. (1982): Nonlinear ionic pseudopotentials in spin-density functional
calculations. Phys. Rev., B, Condens. Matter, 26:1738–1742.

Mao, H.K., Hemley, R.J., Fei, Y., Shu, J.F., Chen, L.C., Jephcoat, A.P. & Wu, Y. (1991): Effect of pressure,
temperature, and composition on lattice parameters and density of (Mg,Fe)SiO3-perovskites to 30 GPa,
J. Geophys. Res., 96:8069–8079.

Masters, G., Laske, G., Bolton, H. & Dziewonski, A. (2000): The relative behaviour of shear velocity, bulk sound
velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal
structure. In Karato, S.I. et al. (eds.) Earth’s deep interior: Mineral physics and tomography from the atomic
to the global scale /AGU Geophys. Monogr., 117/. Washington (D.C.): Am. Geophys. Union, 63–87.

A.R. Oganov, J.P. Brodholt & G.D. Price166



Matsui, M. (1989): Molecular dynamics study of the structural and thermodynamic properties of MgO crystal
with quantum correction. J. Chem. Phys., 91:489–494.

Matsui, M. & Price, G.D. (1991): Simulation of the pre-melting behaviour of MgSiO3 perovskite at high
pressures and temperatures. Nature, 351:735–737.

McNeil, L.E. & Grimsditch, M. (1991): Pressure-amorphized SiO2-quartz: An anisotropic amorphous solid.
Phys. Rev. Lett., 68:83–85.

Mehl, M.J., Cohen, R.E. & Krakauer, H. (1988): Linearized augmented plane wave electronic structure
calculations for MgO and CaO. J. Geophys. Res., 93:8009–8022.

Mendelssohn, M.J. & Price, G.D. (1997): Computer modelling of a pressure induced phase change in
clinoenstatite pyroxenes. Phys. Chem. Miner., 25:55–62. 

Milman, V., Winkler, B., White, J.A., Pickard, C.J., Payne, M.C., Akhmatskaya, E.V. & Nobes, R.H. (2000):
Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane wave
study. Int. J. Quant. Chem., 77:895–910.

Mishima, O., Calvert, L.D. & Whalley, E. (1984): Melting of ice I at 77 K and 10 kbar: a new method for
making amorphous solids. Nature, 310:393–394.

Mishima, O., Calvert, L.D. & Whalley, E. (1985): An apparently first-order transition between two amorphous
phases of ice induced by pressure. Nature, 314:76–78.

Monkhorst, H.J. & Pack, J.D. (1976): Special points for Brillouin-zone integrations. Phys. Rev., B, Condens.
Matter, 13:5188–5192.

Nada, R., Catlow, C.R.A., Dovesi, R. & Saunders, V. (1992): An ab initio Hartree–Fock study of the
ilmenite-structured MgSiO3 Proc. R. Soc. Lond., A436:499–509.

Nekovee, M., Foulkes, W.M.C. & Needs, R.J. (2001): Quantum Monte Carlo analysis of exchange and
correlation in the strongly inhomogeneous electron gas. Phys. Rev. Lett., 87: paper 036401.

Nosé, S. (1984): A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys.,
52:255–268.

Nye, J.F. (1998): Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford
Univ. Press, 329 p.

O’Keeffe, M. & Bovin, J.O. (1979): Solid electrolyte behavior of NaMgF3: geophysical implications. Science,
206:599–600.

Oganov, A.R. (2002): Computer simulation studies of minerals. Ph.D. Thesis, Univ. of London, 290 p.
Oganov, A.R. & Brodholt, J.P. (2000): High-pressure phases in the Al2SiO5 system and the problem of Al-phase

in Earth’s lower mantle: ab initio pseudopotential calculations. Phys. Chem. Miner., 27:430–439.
Oganov, A.R. & Dorogokupets, P.I.: All-electron and pseudopotential study of MgO: equation of state, anharmonicity,

stability. Phys. Rev., B, Condens. Matter, submitted.
Oganov, A.R. & Price, G.D.: Towards an ab initio thermal model of the Earth. (in prep.)
Oganov, A.R., Brodholt, J.P. & Price, G.D. (2000): Comparative study of quasiharmonic lattice dynamics, molecular

dynamics and Debye model in application to MgSiO3 perovskite. Phys. Earth Planet. Inter., 122:277–288. 
Oganov, A.R., Brodholt, J.P. & Price, G.D. (2001a): Ab initio elasticity and thermal equation of state of

MgSiO3 perovskite, Earth Planet. Sci. Lett., 184:555–560.
Oganov, A.R., Brodholt, J.P. & Price, G.D. (2001b): The elastic constants of MgSiO3 perovskite at pressures

and temperatures of the Earth’s mantle. Nature, 411:934–937. 
Oganov, A.R., Organova, N.I. & Urusov, V.S. (2001c): Nature of Al-Si anti-ordering in a two-phase feldspar

from Pektusan volcano. Geochem. Int., 39:1160–1171. (Transl. from Geokhimiya, (12):1265–1276)
Oganov, A.R., Price, G.D. & Brodholt, J.P. (2001d): Theoretical investigation of metastable Al2SiO5

polymorphs. Acta Crystallogr., A57:548–557. 
Oganov, A.R., Price, G.D. & Brodholt, J.P.: Theory of MgSiO3 perovskite: quantum-mechanical simulations

and geophysical implications. (in prep.)
Olbricht, W., Chatterjee, N.D. & Miller, K. (1994): Bayes estimation – a novel approach to derivation of

internally consistent thermodynamic data for minerals, their uncertainties, and correlations. 1.Theory.
Phys. Chem. Miner., 21:36–49.

Ab initio theory of phase transitions and thermoelasticity of minerals 167



Ortiz, G. & Ballone, P. (1994): Correlation energy, structure factor, radial distribution function, and momentum
distribution of the spin-polarised uniform electron gas. Phys. Rev., B, Condens. Matter, 50:1391–1405.
(erratum: ibid. (1997), 56:970.)

Parker, S.C. & Price, G.D. (1989): Computer modelling of phase transitions in minerals. Adv. Solid State
Chem., 1:295–327.

Parker, S.C. & Wall, A. (1991): Calculations of the radial seismic velocity/density ratio for MgO and MgSiO3

perovskite at high pressure. Geophys. Res. Lett., 18:2185–2188.
Parr, R.G. & Yang, W. (1989): Density-functional theory of atoms and molecules. Oxford: Oxford Univ. Press, 333 p.
Parrinello, M. & Rahman, A. (1981): Polymorphic transitions in single crystals: A new molecular dynamics

method. J. App. Phys., 52:7182–7190.
Parrinello, M. & Rahman, A. (1982): Strain fluctuations and elastic constants. J. Chem. Phys., 76:2662–2666.
Pasternak, M.P., Taylor, R.D., Jeanloz, R., Li, X., Nguyen, J.H. & McCammon, C.A. (1997): High pressure

collapse of magnetism in Fe0.94O: Mössbauer spectroscopy beyond 100 GPa. Phys. Rev. Lett., 79:5046–5049.
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. & Joannopoulos, J.D. (1992): Iterative minimization

techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients. Rev. Mod.
Phys., 64:1045–1097.

Perdew, J.P. & Burke, K. (1996): Comparison shopping for a gradient-corrected density functional. Int. J.
Quant. Chem., 57:309–319.

Perdew, J.P. & Kurth, S. (1998): Density functionals for non-relativistic Coulomb systems. In Joubert, D.P. (ed.)
Density functionals: Theory and applications /Lect. Notes Phys., 500/. Berlin: Springer-Verlag, 8–59.

Perdew, J.P. & Wang, Y. (1992): Accurate and simple analytic representation of the electron-gas correlation
energy. Phys. Rev., B, Condens. Matter, 45:13,244–13,249.

Perdew, J.P. & Zunger, A. (1981): Self-interaction correction to density-functional approximations for
many-electron systems. Phys. Rev., B, Condens. Matter, 23:5048–5079.

Perdew, J.P., Burke, K. & Ernzerhof, M. (1996): Generalized gradient approximation made simple. Phys. Rev.
Lett., 77:3865–3868.

Perdew, J.P., Kurth, S., Zupan, A. & Blaha, P. (1999): Accurate density functionals with correct formal
properties: a step beyond the generalized gradient approximation. Phys. Rev. Lett., 82:2544–2547.

Pisani, C. (1996): Ab initio approaches to the quantum-mechanical treatment of periodic systems. In Pisani, C.
(ed.): Quantum-mechanical ab intio calculation of the properties of crystalline materials /Lect. Notes
Chem., 67/ Berlin: Springer-Verlag, 47–75.

Poirier, J.-P. (2000): Introduction to the physics of the Earth’s interior. Second edition. Cambridge: Cambridge
Univ. Press, 326 p.

Poirier, J.-P. & Tarantola, A. (1998): A logarithmic equation of state. Phys. Earth Planet. Inter., 109:1–8. 
Price, G.D. (1983): Polytypism and the factors determining the stability of spinelloid structures. Phys. Chem.

Miner., 10:77–83.
Price, G.D. & Yeomans, J. (1984): The application of the ANNNI model to polytypic behavior. Acta

Crystallogr., B40:448–454.
Price, G.D., Parker, S.C. & Yeomans, J. (1985): The energetics of polytypic structures – a computer simulation

of magnesium silicate spinelloids. Acta Crystallogr., B41:231–239.
Price, G.D., Parker, S.C. & Leslie, M. (1987): The lattice dynamics and thermodynamics of the Mg2SiO4

polymorphs. Phys. Chem. Miner., 15:181–190.
Pyykko, P. (1988): Relativistic effects in structural chemistry. Chem. Rev., 88:563–594. 
Rao, C.N.R. & Rao, K.J. (1978): Phase transitions in solids: an approach to the study of the chemistry and

physics of solids. New York (N.Y.): McGraw-Hill, 330 p.
Remler, D.K. & Madden, P.A. (1990): Molecular dynamics without effective potentials via the Car-Parrinello

approach. Mol. Phys., 70:921–966.
Richardson, M.F., Yang, Q.-C., Novotny-Bregger, E. & Dunitz, J.D. (1990): Conformational polymorphism of

dymethyl 3,6-dichloro-2,5-dihydroxyterephthalate. II. Structural, thermodynamic, kinetic and
mechanistic aspects of phase transformations among the three crystal forms. Acta Crystallogr.,
B46:653–660.

A.R. Oganov, J.P. Brodholt & G.D. Price168



Richet, P. & Gillet, P. (1997): Pressure-induced amorphisation of minerals: a review. Eur. J. Mineral.,
9:907–933.

Ringwood, A.E. (1991): Phase transformations and their bearing on the constitution and dynamics of the
mantle. Geochim. Cosmochim. Acta, 55:2083–2110.

Robertson, G.S. & Woodhouse, J.H. (1996): Constraints on lower mantle properties from seismology and
mineral physics. Earth Planet. Sci. Lett., 143:197–205.

Robie, R.A. & Edwards, J.L. (1966): Some Debye temperatures from single crystal elastic constant data. J.
Appl. Phys., 37:2659–2663.

Ross, N.L. & Hazen, R.M. (1989): Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400
K. Phys. Chem. Miner., 16:415–420.

Sandratskii, L.M. (1998): Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv.
Phys., 47:91–160.

Schmidt, M.W., Poli, S., Comodi, P. & Zanazzi, P.F. (1997): High-pressure behavior of kyanite: Decomposition
of kyanite into stishovite and corundum. Am. Mineral., 82:460–466.

Sharma, S.M. & Sikka, S.K. (1996): Pressure-induced amorphization of materials. Prog. Mater. Sci., 40:1–77.
Shearer, P. (1990): Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity.

Nature, 344:121–126.
Shechtman, D., Blech, I., Gratias, D. & Cahn, J.W. (1984): Metallic phase with long-range orientational order

and no translational symmetry. Phys. Rev. Lett., 53:1951–1953.
Sherman, D.M. (1991): The high-pressure electronic structure of magnesiowüstite (Mg,Fe)O – applications to

the physics and chemistry of the lower mantle. J. Geophys. Res., 96:14,299–14,312.
Sherman, D.M. (1992). Equation of state and high-pressure phase transitions of stishovite (SiO2): ab initio

(periodic Hartree-Fock) results. J. Geopys. Res., 98:11,865-11,873.
Singh, D.J. (1994): Planewaves, pseudopotentials and the LAPW method. Boston: Kluwer, 115 p.
Sirotin Yu.I. & Shaskolskaya, M.P. (1975): Fundamentals of crystal physics. Moscow: Nauka, 680 p. (In

Russian)
Sowa, H. (2000): A transition path from the zinc-blende to the NaCl-type. Z. Kristallogr., 215:335–342.
Speziale, S., Zha, C.-S., Duffy, T.S., Hemley, R.J. & Mao, H.-K. (2001): Quasi-hydrostatic Compression of

magnesium oxide to 52 GPa: Implications of the pressure-volume-temperature equation of state. J.
Geophys. Res., B106: 515–528.

Stixrude, L. & Cohen, R.E. (1993): Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle.
Nature, 364:613–616.

Stixrude, L., Hemley, R.J., Fei, Y. & Mao, H.K. (1992): Thermoelasticity of silicate perovskite and
magnesiowüstite and stratification of the Earth’s mantle. Science, 257:1099–1101. 

Stixrude, L., Cohen, R.E., Yu, R.C. & Krakauer, H. (1996): Prediction of phase transition in CaSiO3 perovskite
and implications for lower mantle structure. Am. Mineral., 81:1293–1296.

Stixrude, L., Cohen, R.E. & Hemley, R.J. (1998): Theory of minerals at high pressure. In Hemley, R.J. (ed.):
Ultrahigh-pressure mineralogy /Rev. Mineral., 37/. Washington (D.C.): Mineral. Soc. Am., 639–671.

Stowasser, R. & Hoffmann, R. (1999): What do the Kohn–Sham orbitals and eigenvalues mean? J. Am. Chem.
Soc., 121:3414–3420.

Sugino, O. & Car, R. (1995): Ab initio molecular dynamics study of first-order phase transitions: melting of
silicon. Phys. Rev. Lett., 74:1823–1826.

Sutton, A.P. (1993): Electronic structure of materials. Oxford: Oxford Univ. Press, 260 p. 
Terhune, R.W., Kushida, T. & Ford, G.W. (1985): Soft acoustic modes in trigonal crystals. Phys. Rev., B,

Condens. Matter, 32:8416–8419.
Thijssen, J.M. (1999): Computational physics. Cambridge: Cambridge Univ. Press, 546 p. 
Tsirelson, V.G. (1986): Electron crystal chemistry /Adv. Sci. Technol., Ser. Cryst. Chem., 20/. Moscow: Russian

Institute of Scientific and Technical Information, 261 p. (In Russian)
Tsirelson, V.G. (1993): Chemical bonding and thermal motion of atoms in crystals. /Adv. Sci. Technol., Ser.

Cryst. Chem., 27/. Moscow: Russian Institute of Scientific and Technical Information, 270 p. (In Russian)
Urusov, V.S. & Dubrovinsky, L.S. (1989): Computer modelling of structure and properties of minerals.

Moscow: Moscow State Univ. Press, 200 p. (In Russian)

Ab initio theory of phase transitions and thermoelasticity of minerals 169



van Smaalen, S. (1995): Incommensurate crystal structures. Crystallogr. Rev., 4:79–202.
Vanderbilt, D. (1990): Soft self-consistent pseudopotentials in a generalized eigenvalue problem. Phys. Rev.,

B, Condens. Matter, 41:7892–7895.
Vaughan, M.T. & Weidner, D.J. (1978): The relationship of elasticity and crystal structure of andalusite and

sillimanite. Phys. Chem. Miner., 3:133–144.
Venkataraman, G., Feldkamp, L.A. & Sahni, V.C. (1975): Dynamics of perfect crystals. Cambridge (Mass.):

MIT Press, 517 p.
Verhoogen, J. (1980): Energetics of the Earth. Washington (D.C.): Natl. Acad. Press, 139 p.
Vinet, P., Ferrante, J., Smith, J.R. & Rose, J.H. (1986): A universal equation of state for solids. J. Phys. C. Solid

State Phys., 19:L467–L473.
Vinet, P., Rose, J.H., Ferrante, J. & Smith, J.R. (1989): Universal features of the equation of state of solids. J.

Phys., Condens. Matter, 1:1941–1963.
Vinnik, L., Niu, F. & Kawakatsu, H. (1998): Broadband converted phases from midmantle discontinuities.

Earth Planets Space, 50:987–997.
Vočadlo, L., Brodholt, J., Alfé, D., Gillan, M.J. & Price, G.D. (2000): Ab initio free energy calculations on the

polymorphs of iron at core conditions. Phys. Earth Planet. Inter., 117:123–137.
Vosko, S.H., Wilk, L. & Nusair, M. (1980): Accurate spin-dependent electron liquid correlation energies for

local spin density calculations: a critical analysis. Can J. Phys., 58:1200–1211.
Wallace, D.C. (1998): Thermodynamics of crystals. New York (N.Y.): Dover Publ., 484 p.
Wang, Y. & Perdew, J.P. (1991): Correlation hole of the spin-polarized electron gas, with exact small-vector

and high-density scaling. Phys. Rev., B, Condens. Matter, 44:13,298–13,307.
Wang, Y., Yip, S., Phillpot, S. & Wolf, D. (1993): Crystal instabilities at finite strain. Phys. Rev. Lett.,

71:4182–4185.
Wang, Y., Weidner, D.J., Liebermann, R.C. & Zhao, Y. (1994): P–V–T equation of state of state of (Mg,Fe)SiO3

perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. J. Geophys. Res.,
101:8257–8269. 

Wang, Y., Li, J., Yip, S., Phillpot, S. & Wolf, D. (1995): Mechanical instabilities of homogeneous crystals.
Phys. Rev., B, Condens. Matter, 52:12,627–12,635.

Warren, M.C., Ackland, G.J., Karki, B.B. & Clark, S.J. (1998): Phase transitions in silicate perovskites from
first principles. Mineral. Mag., 62:585–598.

Welch, D.O., Dienes, G.J. & Paskin, A. (1978): A molecular dynamical study of the equation of state of solids
at high temperature and pressure. J. Phys. Chem. Solids, 39:589–603.

Wentzcovitch, R.M., Martins, J.L. & Price, G.D. (1993): Ab initio molecular dynamics with variable cell
shape: application to MgSiO3. Phys. Rev. Lett., 70:3947–3950.

White, J.C. & Hess, A.C. (1993): Periodic Hartree–Fock study of siliceous mordenite. J. Phys. Chem.,
97:6398–6404.

Williams, Q. & Garnero, E. (1996): Seismic endence for partial melt at the base of Earth’s mantle. Science,
273:1528–1530.

Wilson, K.G. (1983): The renormalization group and related phenomena. Rev. Mod. Phys., 55:583–600.
Winkler, B. & Dove, M.T. (1992): Thermodynamic properties of MgSiO3 perovskite derived from large-scale

molecular dynamics. Phys. Chem. Miner., 18:407–415.
Xu, Y., Shankland, T. & Poe, B.T. (2000): Laboratory-based electrical conductivity in the Earth’s mantle. J.

Geophys. Res., 105:27,865–27,875.
Yeomans, J.M. (1992): Statistical mechanics of phase transitions. Oxford: Oxford Univ. Press, 168 p.
Zerr, A., Diegler, A. & Boehler, R. (1998): Solidus of Earth’s deep mantle. Science, 281:243–246.
Zhang, L., Ahsbahs, H., Kutoglu, A. & Hafner, S.S. (1992): Compressibility of grunerite. Am. Mineral.,

77:480–483. 
Zharkov, V.N. & Kalinin, V.A. (1968): Equations of state of solids at high pressures and temperatures.

Moscow: Nauka, 312 p. (In Russian)
Zupan, A., Blaha, P., Schwarz, K. & Perdew, J.P. (1998): Pressure-induced phase transitions in solid Si, SiO2,

and Fe: Performance of local-spin-density and generalized-gradient-approximation density functionals.
Phys. Rev., B, Condens. Matter, 58:11,266–11,272.

A.R. Oganov, J.P. Brodholt & G.D. Price170


