

Methods for predicting phase transition: VCNEB and TPS approaches

Guangrui Qian

Aug 7, 2013 Department of Geosciences, Stony Brook University

USPEX workshop, Guilin, August, 2013

Materials at High Pressure

- New physics and new chemistry
- New crystallography
- Exotic materials, novel structures and properties
- Phase transitions

Rb: Schwarz et al. (1999)

USPEX workshop, Guilin, August, 2013

Solid-solid phase transition under Pressure

- Displacive(continuous) phase transition
 - Order parameter
- Reconstructive Phase Transitions

Displacive phase transitions in AgI

- Fm-3m \rightarrow P2₁/m
- $P2_1/m \rightarrow Cmcm$

Coordinate Number change in AgI

• $6 \rightarrow 6+1 \rightarrow 7$

Agl : Catti M., PRB (2005)

USPEX workshop, Guilin, August, 2013

Reconstructive Phase Transitions

- The symmetry of the phases are not related
- Broken and reformation of the bonds
 - Coordinate Number (C.N.)

B4→B1, B3→B1

USPEX workshop, Guilin, August, 2013

G.R. Qian

Phase transition pathway

Stony Brook University

Two transition models for B4-to-B1 phase transformation in semiconducting materials (GaN, AlN, InN, ZnO, CdSe, et al . . .).

> • A hexagonal intermediate structure (P6₃/mmc)

> • A tetragonal intermediate structure (I4mm)

Both intermediates have fivefold coordinated atoms.

Phase transition pathway and energy landscape

Transition State Theory: The basic idea of TST is the assumption of a dividing surface in configuration space between stable states which are defined as adjacent sets separated by this surface.

USPEX workshop, Guilin, August, 2013

Phase transition pathway and energy landscape

Transition State Theory: The basic idea of TST is the assumption of a dividing surface in configuration space between stable states which are defined as adjacent sets separated by this surface.

USPEX workshop, Guilin, August, 2013

Variable-Cell Nudged Elastic Band Method

- Images (structures) Chain
- Adjusted forces on the images
- Evolution of the images chain
- Minimal Energy Pathway

Structural Relaxations with Constraints !

USPEX workshop, Guilin, August, 2013

Variable-Cell Nudged Elastic Band Method

USPEX workshop, Guilin, August, 2013

Variable-Cell Nudged Elastic Band Method

- Images (structures) Chain
- Adjusted forces on the images
- Evolution of the images chain
- Minimal Energy Pathway

USPEX workshop, Guilin, August, 2013

B4(wutzite) \rightarrow B1 (rocksalt) Phase transition in GaN

USPEX workshop, Guilin, August, 2013

B4(wutzite) \rightarrow B1 (rocksalt) Phase transition in GaN

USPEX workshop, Guilin, August, 2013

B4(wutzite) \rightarrow B1 (rocksalt) Phase transition in GaN

USPEX workshop, Guilin, August, 2013

B3(Zincblende) \rightarrow B1 (rocksalt) Phase transition in GaN

USPEX workshop, Guilin, August, 2013

Other publication with VCNEB method

- X.F. Zhou, *et al*, *PRB*, **82** 134126 (2010)
- F. Tian, *et al*, *JPCM*, **24**, 165504 (2012)
- Z.S. Zhao, *et al, JACS*, **30**, 134 (2012)
- C. H. Hu, et al, PRL,110, 165504 (2013)
- X. Dong, *et al*, *JPCM*, **25**, 145402 (2013)

USPEX workshop, Guilin, August, 2013

Further Discussion of the VCNEB method

- How to generate/choose the initial pathway
 - Various transition models (group/subgroup analyze)
 - Difficulty in paring the atoms in the initial and final images
- How many images we should use?
- How to speed up the VCNEB calculation?
- Is the VCNEB result believable?
 - VCNEB is a static method, works well in smooth topography of potenial energy landscapes
 - VCNEB has difficulty in find global minimal pathway

Transition Path Sampling Approach

"For systems containing large number of atoms, PES topologies are rough on the scale of thermal energies, k_BT , and dense in saddle points. Therefore, there is generally an uncountable number of transition states.

The accurate determination of relevant points is not possible. Instead, one wants to locate and sample an ensemble of transition states. Transition path sampling accomplishes this task"

• C.Dellago, P.G.Bolhuis and P.L. Geissler, "Transition Path Sampling", Adv. Chem. Phys. 123 (2002)

USPEX workshop, Guilin, August, 2013

Introduction to TPS approach

Basic idea : Sampling of Trajectory Space

USPEX workshop, Guilin, August, 2013

Shooting and Shifting Moves

- 1. Define the parameter of the initial and final phase
- 2. Find the initial trajectory
- 3. Sampling the trajectory ensemble with shooting and shifting move
- 4. Find the transition pathway

Basic idea : Sampling of Trajectory Space

USPEX workshop, Guilin, August, 2013

Studying the Wurtzite-to-Rocksalt (B4-B1) in GaN with TPS

USPEX workshop, Guilin, August, 2013

Using the VCNEB and TPS studying Carbon system

USPEX workshop, Guilin, August, 2013

Using the VCNEB and TPS studying Carbon system

USPEX workshop, Guilin, August, 2013

Further Discussion of the TPS method

- Very difficult to generate the first trajectory
- MD software must support "-t" simulation and <u>NPT</u> ensemble
- VCNEB is a complementary of TPS
- Size effect in TPS simulation
- Time consuming

Fm3m

USPEX workshop, Guilin, August, 2013

Further Discussion of the TPS method

- Very difficult to generate the
- MD software must support "
- VCNEB is a complementary
- Size effect in TPS simulation
- Time consuming

Applying the VCNEB pat to get the first trajecto

USPEX workshop, Guilin, August, 2013

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften

der Technischen Universität Dresden

von

M. Sc. Salah Eddine Boulfelfel

USPEX workshop, Guilin, August, 2013

G.R. Qian

Salah Eddine Boulfelfel

Stony Brook University

Atomic Scale Investigation of

Pressure Induced Phase Transitions in the Solid State

Snapshots of VCNEB codes

400 VCNEB step : 400													
	Cell Forces RMS(eV/A) Atom Forces RMS(eV/A)												
Image	Energy-(eV)		Total,	Project,	Elastic		Total,	Project,	Elastic	F	Dist	SpaceG	
1	-26.4053383	[0.000,	0.000,	0.000]	[0.000,	0.000,	0.000]	0	0.0000	186	
2	-26.3966007	[0.005,	0.005,	0.000]	[0.005,	0.005,	0.000]	0	0.1050	186	
3	-26.3724992	[0.011,	0.010,	0.002]	[0.007,	0.009,	0.002]	0	0.1053	186	
4	-26.3394881	[0.017,	0.014,	0.005]	[0.008,	0.012,	0.004]	0	0.1135	186	
5	-26.2901382	[0.022,	0.017,	0.007]	Γ	0.009,	0.014,	0.005]	0	0.1329	186	
6	-26.2256773	[0.023,	0.019,	0.007]	Γ	0.010,	0.015,	0.005]	0	0.1591	186	
7	-26.1598812	[0.019,	0.016,	0.006]	[0.008,	0.012,	0.004]	0	0.1853	186	
8	-26.1128024	[0.007,	0.006,	0.003]	[0.004,	0.005,	0.002]	0	0.2069	186	<-TS->
9	-26.1160149	[0.010,	0.008,	0.004]	[0.006,	0.007,	0.002]	0	0.2164	186	
10	-26.1515661	[0.012,	0.009,	0.005]	[0.010,	0.009,	0.003]	0	0.2042	186	->LM<-
11	-26.1335112	[0.011,	0.011,	0.001]	[0.007,	0.006,	0.001]	0	0.1886	63	
12	-26.0686401	[0.018,	0.017,	0.001]	[0.008,	0.009,	0.001]	0	0.1863	63	
13	-25.9863780	[0.019,	0.018,	0.002]	[0.007,	0.009,	0.002]	0	0.1901	63	
14	-25.9105485	[0.014,	0.013,	0.002]	[0.004,	0.006,	0.002]	0	0.1963	63	
15	-25.8702263	[0.001,	0.001,	0.000]	[0.000,	0.000,	0.000]	0	0.2027	63	<-TS->
16	-25.9013573	[0.019,	0.017,	0.004]	[0.003,	0.007,	0.005]	0	0.2033	63	
17	-26.0182132	[0.042,	0.037,	0.010]	[0.003,	0.015,	0.012]	0	0.1899	63	
18	-26.1786445	[0.053,	0.047,	0.013]	[0.002,	0.018,	0.016]	0	0.1585	63	
19	-26.3066966	[0.042,	0.037,	0.009]	[0.001,	0.013,	0.012]	0	0.1184	63	
20	-26.3746645	[0.018,	0.016,	0.003]	[0.001,	0.005,	0.004]	0	0.0898	139	
21	-26.3935964	[0.000,	0.000,	0.000]	[0.000,	0.000,	0.000]	0	0.0801	225	
activation energy (->) =				0.53	5112 eV								
act	tivation ener	(<-) =	0.523	0.523370 eV									

USPEX workshop, Guilin, August, 2013

Snapshots of VCNEB codes

- VCNEB : calculationMethod
- Variable Image technique
- Variable Spring Constant method
- Climbing-Image technique

USPEX workshop, Guilin, August, 2013

USPEX

-- Universal Structure Predictor: Evolution Xtallography

Evolutionary methods

- □ 3D and molecular systems
- Surface and low dimension systems
- Evolutionary metadynamics method
- Variable-Cell-Nudged-Elastic-Band method
- Transition path sampling approach
- Other new methods/features are under developing ...

USPEX workshop, Guilin, August, 2013

Thanks~

Please enjoy the USPEX !

USPEX workshop, Guilin, August, 2013

USPEX workshop, Guilin, August, 2013

USPEX

Universal Structure Predictor: Evolutionary Xtallography

Evolutionary Algorithm Ab initio determination

Given information as least as possible

* Powerful Searching

invariant with the system Self-improved learning process

Website: http://uspex.stonybrook.edu

Oganov A.R., Lyakhov A.O., Valle M. (2011). How evolutionary crystal structure prediction works - and why. *Acc. Chem. Res.* 44, 227-237.

USPEX workshop, Guilin, August, 2013