

Predicting Variable Stoichiometric Compounds

Qiang Zhu

Department of Geosciences, Stony Brook University

New Findings Could Change Our View of Planet Formation

Team led by Artem Oganov challenges existing chemical models and current understanding of planetary interiors

LEARN MORE >

USPEX: Computational Materials Design

Crystal Structure Prediction		Crystal Structure: 300: yesterday talk by ARO 301: yesterday talk by Zhu
System		310: This talk
Dimension 0: Nano-particle;	Stoichiometry	311: This talk
 polymers; surfaces/crystals; Bulk 	Building block 0: atom; 1: molecule	
Target		
 Density Hardness Dielectric constants 	 Band gap Magnetic moment 	Materials Discovery: Next talk by ARO

USPEX workshop, Guilin, China, 2013 August

Crystal Structure Prediction in USPEX: The variable composition systems

USPEX

Universal Structure Predictor: Evolutionary Xtallography

Evolutionary Algorithm Ab initio determination

Given information as least as possible

* Powerful Searching

invariant with the system Self-improved learning process

Website: http://uspex.stonybrook.edu

Oganov A.R., Lyakhov A.O., Valle M. (2011). How evolutionary crystal structure prediction works - and why. *Acc. Chem. Res.* 44, 227-237.

- (Random) initialization: from INPUTs : chemical formula, P/T, etc
- **Relaxation**: (free) energy (done by VASP, .etc)
- Selection: lowest-energy structures as parents
- New population: Standard variation operations

(1) Heredity (crossover)

(4) Permutation

Missing Xenon Paradox

" our atmosphere contains far less xenon, relative to the lighter noble gases, than meteorites similar to the rocky material that formed the Earth,"

----- Anderson, E, .*Science*, 1977

Hypothesis: Xenon is stored in the Earth's mantle ? (most likely with perovskite, oxides or silicates, Sanloup, Science, 2005)

Xenon Chemistry

Ambient condition

Earth's mantle condition

Prediction on Xe-O system

Pressures(GPa): 5, 50, 100, 120, 150, 180, 200, 220

Stoichiometry: XeO, XeO₂, XeO₃, XeO₄

Xenon does exhibit multiple valence state Grochala, Chem. Soc. Rev, 2007

How to evaluate the thermodynamical stability

How to evaluate the thermodynamical stability

Stable structure must be below all the possible decomposition lines !!

How to evaluate the thermodynamical stability

Stable structure must be below all the possible decomposition lines !!

Xenon oxides at high pressure

Stability of Xenon Oxides at high T

Q. Zhu, et al, Nature Chemistry, 2013

nature chemistry

Stability of xenon oxides at high pressures

Qiang Zhu¹*, Daniel Y. Jung², Artem R. Oganov^{1,3}*, Colin W. Glass⁴, Carlo Gatti⁵ and Andriy O. Lyakhov¹

General Rule:

New stoichiometric compounds might exist under high pressures ! -- can we predict them automatically?

To predict all stable

stoichiometries and structures simultaneously?

On-the-fly optimization:

Mutations

take the advantage of all the instantly learned knowledge

Softmutation/Permutation

Initialization To generate structures with random space groups

Selection

Variable energy window widths

USPEX workshop, Guilin, August, 2013

Applicable systems

A always good strategy: to split the compositional space based on the previous calculations

New Findings Could Change Our View of Planet Formation

Team led by Artem Oganov challenges existing chemical models and current understanding of planetary interiors

New Findings Could Change Our View of Planet Formation

Team led by Artem Oganov challenges existing chemical models and current understanding of planetary interiors

Zhu, et al, PCCP, 2013

Na-Cl

NaCl₃, stable from ~20 GPa

NaCl₇, stable from ~147 GPa

Zhang, ARO, et al, unexpected stable stoichoimetries of sodium chlorides, arxiv

165504 (2013)

PHYSICAL REVIEW LETTERS

U P X S E

Pressure-Induced Stabilization and Insulator-Superconductor Transition of BH

Chao-Hao Hu,^{1,2,*} Artem R. Oganov,^{2,3} Qiang Zhu,² Guang-Rui Qian,² Gilles Frapper,⁴ Andriy O. Lyakhov,² and Huai-Ying Zhou¹

USPEX: Computational Materials Design

Crystal Structure Prediction System		Crystal Structure: 300: Sunday talk by ARO 301: Sunday talk by Zhu 310: This talk 311: This talk
 Dimension O: Nano-particle; 1: polymers; 2: surfaces/crystals; 3: Bulk 	 Stoichiometry 0: fixed; 1: variable Building block 0: atom; 1: molecule 	Low -Dimensions 000 110 200/201 -200
► Density ► Hardness ► Dielectric constants	rget ≻Band gap ≻Magnetic moment ≻	Wednesday! Materials Discovery: Next talk by ARO

USPEX workshop, Guilin, China, 2013 August

Question:

What's the origin of stoichiometric variation?

- New valence states in Chemistry? (Xe-O)
- New interactions in Physics? (Mg₃O₂)
- Close packing Mechanically? (Alloys)

–?

U P X S E

TO

Dr. A. O. Lyakhov