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Stable or metastable crystal structures of assembled atoms can be predicted by finding the global or
local minima of the energy surface within a broad space of atomic configurations. Generally, this
requires repeated first-principles energy calculations, which is often impractical for large crystalline
systems. Here, we present significant progress toward solving the crystal structure prediction
problem: we performed noniterative, single-shot screening using a large library of virtually created
crystal structures with a machine-learning energy predictor. This shotgun method (ShotgunCSP) has
two key technical components: transfer learning for accurate energy prediction of pre-relaxed
crystalline states, and two generativemodels based on element substitution and symmetry-restricted
structure generation to produce promising and diverse crystal structures. First-principles calculations
were performed only to generate the training samples and to refine a few selected pre-relaxed crystal
structures. The ShotunCSPmethod is less computationally intensive than conventional methods and
exhibits exceptional prediction accuracy, reaching 93.3% in benchmark tests with 90 different crystal
structures.

The prediction of stable or metastable crystal structures from a given che-
mical composition has remained a fundamentally unsolved task in solid-
state physics for several decades1,2. In principle, the stable or metastable
crystal structures of assembled atoms or molecules in the solid state can be
determined using quantum mechanical calculations. Crystal structure
prediction (CSP) is based on finding the global or localminima of an energy
surface within a broad space of atomic configurations, in which the energy
can be evaluated by first-principles density functional theory (DFT) cal-
culations. The CSP problem can be solved by applying an exploratory
algorithm to determine the crystal structure at the global or localminima by
successively displacing the atomic configurations along the energy gradient.

A broad array of CSP methods have been developed to solve this
problem, including brute-force random search3–5, simulated annealing6,7, the
Wang–Landau method8, particle swarm optimization9,10, genetic
algorithms2,11,12, Bayesian optimization13, and look ahead based on quadratic
approximation (LAQA)14. More recently, the machine-learning interatomic
potentials have attracted increasing attention because they can expedite the
optimization process by bypassing time-consuming ab initio
calculations15–17. Conventionally, genetic manipulations such as mutation
and crossover are performed to modify a set of candidate crystal structures,
whereupon theirDFTenergies areusedas goodness-of-fit scores toprioritize

candidates for survival in the new generation. This process is repeated until
the energy minima are reached. For example, the pioneering software
USPEX implements a comprehensive set of genetic operations such as the
mutation and crossover of crystal objects2,11,12, while the CALYPSO code
employs a genetic operation known as swarm shift18. However, these algo-
rithms are time-consuming because of the need for ab initio structural
relaxation of the candidate crystals at every step of the optimization process.
In response, CrySPYwas developed to increase the computational efficiency
by introducing a machine-learning energy calculator14 based on the Gaus-
sian process regressor19. The predictive performance is successively
improved by accumulating a training set of candidate crystal structures and
their relaxed energies via Bayesian optimization20. The surrogate energy
predictor efficiently rules out unpromising candidates whose energies are
unlikely to reach the minima. However, most existing methods utilize
relaxed energy values to evaluate the goodness-of-fit in the selection process
or to produce instances to train a surrogate model. This requires a large
number of candidate structures to be relaxed at every step of the sequential
search,which is impractical and computationally expensive for large systems
that contain more than 30–40 atoms per unit cell.

A promising solution is to fully replace ab initio energy calculations
with machine-learning surrogates. Energy predictors trained using DFT
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property databases, such as the Materials Project21,22, AFLOW23,24,
OQMD25,26, andGNoME27, exhibit reasonably highprediction accuracy28–30.
However, models trained on instances of stable or metastable structures in
such databases are unsuitable for the prediction of pre-relaxed energies for a
given system31. As shown later, although these models can predict energy
differences between different crystalline systems, they cannot quantitatively
discriminate between the energy differences of distinct conformations for
the system of interest, which is a requirement for solving the CSP problem.

In this study, we employed a simple approach to building a predictive
model for formation energies. First, a crystal-graph convolutional neural
network (CGCNN)30 was trained using diverse crystals with stable or
metastable states from the Materials Project database. Subsequently, for a
given chemical composition, the energies of a few dozen randomly gener-
atedunrelaxed structureswere calculatedbyperforming single-point energy
calculations, and a transfer learning technique32,33 was applied to fine-tune
the pretrained CGCNN to the target system. Generally, limited data are
available formodel training, and randomly generated crystal conformations
are distributed in high-energy regions. Models trained on such data are
biased toward high-energy states and generally not applicable to the
extrapolative domain of low-energy states in which optimal or suboptimal
conformations exist. In CSP, a surrogate model must be able to predict the
energies of various conformations, with high- to low-energy states corre-
sponding to the pre- and post-relaxed crystal structures, respectively. We
demonstrate that a surrogate model derived using transfer learning exhibits
high prediction accuracy, even for low-energy states.

After creating candidate crystal structures, exhaustive virtual screening
was performed using the transfer-learning-based energy predictor. The
narrowed-down candidate crystals were relaxed by performing DFT cal-
culations. A wide variety of structure generators can be applied to generate
virtual crystal libraries, including (i)methods based on element substitution
using existing crystal structures as templates34–36, (ii) atomic coordinate
generators that consider crystallographic topology and symmetry37,38, (iii)
algorithms for reconstructing atomic configurations based on interatomic
distance matrices (contact maps) predicted by machine learning39, and (iv)
deep generative models that mimic previously synthesized crystals40–42. In

this study, we validated our framework using two sets of virtual libraries
created using methods related to (i) and (ii), that is, element substitution of
template crystal structures and a Wyckoff position generator for de novo
CSP. The search space was narrowed down in the latter by machine-
learning-based prediction of the space groups and Wyckoff-letter
assignments.

The ShotgunCSP workflow, which can be regarded as a high-
throughput virtual screening of crystal structures, is perhaps the simplest
among existing CSP methods to date. The entire workflow comprises first-
principles single-point energy calculations for, at most, 3000 structures to
create a training set for the transfer-learning-based energy predictor and the
structural relaxation of a dozen or fewer narrowed-down candidate crystals
in the final stage. Compared to conventional methods such as USPEX, the
present method is significantly less computationally demanding. Further-
more, the prediction performance is outstanding, as confirmed by experi-
mental validation; specifically, the method accurately predicted more than
90% of the stable structures of 90 benchmark crystals with diverse space
groups, structure types, constituent elements, system sizes, and application
domains.

Results
Outline of methods
The stable crystal structures of atom assemblies with chemical composition
Xwere predicted using the machine-learning workflow summarized in Fig.
1. Thismethod involves two key technical components: a high-performance
surrogate model for predicting DFT formation energies and two different
generative models for producing candidate crystal structures.

For the energy calculation, a CGCNN with the same architecture as
that in a previous paper30 was pretrained from scratch on a set of 126,210
crystals for which DFT formation energies are available in the Materials
Project database. Thismodel, referred to as the globalmodel, can accurately
predict the baseline formation energies of diverse crystal structures; how-
ever, it is unable to discriminate between the local energy differences of
different atomic conformations for a given target system. Therefore, the
pretrained global model was localized to the target system X by transfer

Fig. 1 | Workflow of the ShotgunCSP algorithm. a Virtual screening using a
machine-learning-based energy predictor. A virtual library is created using a
machine-learning-based element-substitution method (ShotgunCSP-GT) or a
Wyckoff position generator (ShotgunCSP-GW). b Construction of formation-

energy predictor based on a CGCNN. The CGCNN was trained with the Materials
Project database and fine-tuned for the energy prediction of pre-relaxed candidate
crystal structures for a query composition X.
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learning. To this end, we randomly generated, at most, several thousand
virtual crystal structures and calculated their formation energies by per-
forming single-point energy calculations. The training structures were
generated by either template-based substitution or the Wyckoff position
generator, as described below. Using the dataset of generated structures, we
performed transfer learning to adapt the pretrained global model to a local
model applicable to the energy evaluation of different configurations for X.
Here, the output layer was trained from scratch, whereas the pretrained
weight parameters in the other layers were retained and fine-tuned (see
Methods).

We developed and tested two algorithms to generate virtual crystals:
element substitution (ShotgunCSP-GT) and a Wyckoff position generator
(ShotgunCSP-GW).

Method 1 —Element substitution (ShotgunCSP-GT): Elements of
already synthesized or theoretically possible crystals with the same
composition as X are randomly substituted (Fig. 2(a)).
Method 2 —Wyckoff position generator (ShotgunCSP-GW): For a
target composition, with the space group given a priori or predicted, the
generator randomly creates symmetry-restricted atomic coordinates
from all possible combinations of Wyckoff positions (Fig. 2(b)). A
machine-learning predictor is employed to efficiently reduce the degrees
of freedom in Wyckoff-letter assignment.

ShotgunCSP-GT cannot be applied unless a template is available for
substitution, which limits its applicability. Therefore, we developed Shot-
gunCSP-GW, which can generate novel structures when no template is
available. The configuration of space groups and assignment of Wyckoff
letters were deduced based on machine learning, as described below. The
two generators were used to produce training instances for fine-tuning the
CGCNN as well as candidate structures during high-throughput virtual
screening. The workflows for the two generators differed slightly, as
described below.

For ShotgunCSP-GT, crystal structures were generated by replacing
elements in existing crystals. This mimics the process whereby humans
synthesize new crystalline materials in a laboratory. For a given query
composition X, we collected a set of template crystal structures with the
same composition ratio as that of X from the Materials Project database.
Candidate structures were created by assigning the constituent elements of
the query composition to the atomic coordinates of the selected templates.
Elements with the same composition fraction in the template and query
composition were substituted. When two or more elements had the same
composition fraction, the assignment could not be uniquely determined. In
this case, the most similar element pair was selected for substitution using
the normalized Euclidean distance of the 58 element descriptors in the
XenonPy library33,43–46 as the similarity measure. The crystal structures with
the substituted elements inherited the atomic coordinates of the template
structures. The generated atomic coordinates were subjected to slight

random perturbations as an additional refinement step. Considering that
multiple crystals in the database have the same prototype structure (for
example, 8005 compounds have the composition ratio A1B1C2), a cluster-
based template selection procedure was introduced to select highly relevant
templates with query composition X while maintaining the diversity of the
template structures. We applied DBSCAN47,48 to classify the templates into
clusters in which the chemical compositions were converted into 290-
dimensional compositional descriptors using XenonPy. Then, only those
templates belonging to the same cluster as the query composition X were
selected to identify a set of templates with high compositional similarity (see
the Supplementary Information for a brief explanation of the DBSCAN
algorithm). In addition, to eliminate structurally redundant templates, we
used the StructureMatchermoduleof pymatgen49,50 to construct a unique set
of templates without any identical prototype structures. The number of
unique templates in the same cluster as the query composition is denoted by
Ktemp. A virtual library was created by generating 1000 structures from each
of the Ktemp selected templates by perturbing the atomic coordinates and
lattice constants to form 1000 × Ktemp candidate structures. This procedure
was also used to randomly generate ten structures for each template, which
served as a training dataset of 10 × Ktemp structures for the fine-tuning step.
(See Methods for additional details.)

By contrast, ShotgunCSP-GW produced random crystal structures
with a prescribed space group for a given composition. The space group of
the stable structure of a given composition X was predicted based on
machine learning. The assignment of Wyckoff letters to the constituent
atomswas narroweddownusing a predictivemodel trained on a given set of
crystal structures in the Materials Project database, as described later. This
predictive model enabled us to randomly generate promising Wyckoff
patterns while eliminating wasted search space. By restricting theWyckoff-
site multiplicity and symmetry, the atomic coordinates and lattice para-
meters were generated uniformly from specific intervals. Structures gener-
ated with two or more atoms within a certain distance were excluded a
posteriori. Here, a space-group predictor was used to estimate the space
group of X with the objective of predicting and limiting the space group of
the stable crystalline state for a given composition X. We compiled a list of
the chemical compositions and space groups of 33,040 stable crystal
structures from theMaterials Project database for the training set.Using this
model, the space group of the crystal system for X was restricted to the top
KSG candidates (where KSG was set as 30). Based on this setting, 100 × KSG

training instances and 15, 000 × KSG candidate crystals were generated for
the fine-tuning and virtual screening steps, respectively (See Methods for
additional details).

The transfer-learning-based energy predictor was then used for
exhaustive virtual screening using each of the two generators separately.
Finally, using DFT calculations, the promising structures that exhibited the
lowest predicted energies were optimized with the Vienna Ab initio
Simulation Package (VASP, version 6.1.2)51 combined with projector

Fig. 2 | Two different crystal structure generators
are used to generate training instances to refine
the energy prediction model and to create virtual
libraries to be screened. a ShotgunCSP-GT: ele-
ment substitution of template crystal structures in
the Materials Project database. b ShotgunCSP-GW:
Wyckoff position generator to produce symmetry-
restricted atomic coordinates.
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augmented wave (PAW) pseudopotentials52 (see Methods for details). The
top K lowest-energy structures were subjected to structural relaxation with
DFT. In this study, we selectedK=5×Ktemp andK=10×KSG structures for
CSP using ShotgunCSP-GT and ShotgunCSP-GW, respectively. Generally,
the top K candidates with minimized energies had similar structures, many
of which converged to the same crystal structure during structural relaxa-
tion. To eliminate this redundancy, we considered structural similarity
when selecting the top K candidate structures to maintain high structural
diversity (see Methods).

Benchmark sets
The performance of the proposed CSP algorithm was evaluated on three
benchmark sets. The first consisted of 40 stable crystals (Dataset I; Table 1)
that were selected based on a literature survey using two criteria: (i) diversity
of space groups, constituent elements, number of atoms, and element spe-
cies; and (ii) diversity of applications such as battery and thermoelectric
materials. Because the selection of crystal structures for Dataset I may have
been biased due to the manual selection method, a second dataset of
50 stable crystals was randomly selected from theMaterials Project database
(Dataset II; Table 2). For Datasets I and II, the numbers of atoms in the unit
cells of the selected crystals were 2–104 (mean ± standard deviation: 23.13 ±
24.09) and 2–288 (32.68 ± 45.41), respectively (Fig. S1). Of the benchmark
crystals in Datasets I and II, 30% had more than 30 atoms; owing to the
computational complexity and search performance, solving these structures
was expected to be difficult with conventional heuristic searches based on
iterative first-principles calculations.

As a more challenging benchmark, we randomly selected 30 stable
structures from the Materials Project database for which no template exists
(Dataset III; Table S1). Most of the crystal structures in Dataset III had
considerablymore atoms per unit cell (22–152; 66.50 ± 34.40) than those in
Datasets I and II.

Space-group prediction
During virtual screening with ShotgunCSP-GW, to narrow down the huge
space of possible crystalline states, we introduced amulticlass discriminator
to predict the space groupYSG of a given chemical compositionX (Fig. 3(a)).
To train and test the classifier, we used 33,040 instances of chemical com-
positions with stable crystalline states, including 213 distinct space groups,
compiled from the Materials Project database. The 17 remaining space
groups were not registered in the database. The 120 benchmark crystal
structures were removed from the training dataset. The compositional
features ofXwere encoded into the 290-dimensional descriptor vector using
XenonPy33,43,44,46 (see Methods), and fully connected neural networks were
trained to learn the mapping from the vectorized compositions to the
213 space groups. Of the total sample set, 80% of the instances were used for
training, and the remaining instances were used for testing. To statistically
evaluate the prediction accuracy, training and testing were repeated inde-
pendently 100 times. Details of the model construction, including hyper-
parameter adjustment, are provided in the Supplementary Information.

Figure 3(b) shows the change in the recall rate from the top 1 to the top
40 predictions; that is, the change in the proportion of true labels included in
the top KSG most probable predicted class labels (KSG ∈ {1, …, 40}). The
average recall rates in the top 1, 10, 30, and 40 predictions were
60.22(±0.87)%, 85.35(±0.54)%, 92.61(±0.49)%, and 94.02(±0.43)%, respec-
tively. This indicates that focusing on the top 30 predicted labels allows us to
identify the space groups for 92.61(±0.49)% of the various crystalline sys-
tems.Using thismodel, the 213 space groupswerenarroweddown to the top
30 candidates, and for each of the selected candidates, a set of symmetry-
restricted crystal structures was generated using ShotgunCSP-GW.

To examine the differences in prediction performance by space group,
we visualized the relationshipbetween the top30 recall rates and the training

Table 1 | Results of ShotgunCSP-GT and ShotgunCSP-GW
generators for the 40 crystals comprising Dataset I

Composition Number
of atoms

Space
group

ShotgunCSP-
GW

ShotgunCSP-
GT

C 4 R�3m ✓ (✓ / ✓) ✓ (✓ / 37)

Si 2 Fd�3m ✓ (✓ / ✓) ✓ (✓ / 16)

GaAs 2 F�43m ✓ (✓ / ✓) ✓ (✓ / 27)

ZnO 4 P63mc ✓ (✓ / ✓) ✓ (✓ / 141)

BN 4 P63/mmc ✓ (✓ / ✓) ✓ (✓ / 137)

LiCoO2 16 R�3m ✓ (✓ / ✓) ✓ (✓ / 136)

Bi2Te3 5 R�3m ✓ (✓ / ✓) ✓ (✓ / 58)

Ba(FeAs)2 5 I4/mmm ✓ (✓ / ✓) ✓ (✓ / 27)

SiO2 6 I�42d ✓ (✓ / ✓) × (✓ / 12)

VO2 6 P42/mnm ✓ (✓ / ✓) ✓ (✓ / 38)

La2CuO4 7 I4/mmm × (✓ / ✓) ✓ (✓ / 33)

LiPF6 8 R�3 ✓ (✓ / ✓) ✓ (✓ / 12)

Al2O3 10 R�3c ✓ (✓ / ✓) ✓ (✓ / 91)

SrTiO3 10 I4/mcm ✓ (✓ / ✓) ✓ (✓ / 108)

CaCO3 10 R�3c ✓ (✓ / ✓) ✓ (✓ / 105)

TiO2 12 C2/m × ( × / ✓) × (✓ / 43)

ZrO2 12 P21/c ✓ (✓ / ✓) ✓ (✓ / 44)

ZrTe5 12 Cmcm ✓ (✓ / ✓) ✓ (✓ / 32)

V2O5 14 Pmmn ✓ (✓ / ✓) × ( × / 43)

Si3N4 14 P63/m ✓ (✓ / ✓) ✓ (✓ / 43)

Fe3O4 14 Fd�3m ✓ (✓ / ✓) ✓ (✓ / 47)

Mn(FeO2)2 14 Fd�3m ✓ (✓ / ✓) ✓ (✓ / 135)

ZnSb 16 Pbca ✓ (✓ / ✓) ✓ (✓ / 67)

CoSb3 16 Im�3 ✓ (✓ / ✓) ✓ (✓ / 4)

LiBF4 18 P3121 ✓ (✓ / ✓) ✓ (✓ / 26)

Y2Co17 19 R�3m ✓ (✓ / ✓) ✓ (✓ / 2)

GeH4 20 P212121 ✓ (✓ / ✓) ✓ (✓ / 48)

CsPbI3 20 Pnma × ( × / ✓) ✓ (✓ / 170)

NaCaAlPHO5F2 24 P21/m × ( × / ✓) −

LiFePO4 28 Pnma ✓ (✓ / ✓) ✓ (✓ / 107)

Cu12Sb4S13 29 I�43m ✓ (✓ / ✓) ✓ (✓ / 2)

MgB7 32 Imma × (✓ / ✓) × ( × / 9)

Li3PS4 32 Pnma ✓ (✓ / ✓) × ( × / 64)

Cd3As2 80 I41/acd ✓ (✓ / ✓) ✓ (✓ / 32)

Li4Ti5O12 42 C2/c ✓ (✓ / ✓) ✓ (✓ / 12)

Ba2CaSi4(BO7)2 46 I�42m × ( × / ✓) × ( × / 12)

Ag8GeS6 60 Pna21 × (✓ / ✓) ✓ (✓ / 7)

Nd2Fe14B 68 P42/mnm × ( × / ✓) ✓ (✓ / 2)

Y3Al5O12 80 Ia�3d ✓ (✓ / ✓) ✓ (✓ / 11)

Ca14MnSb11 104 I41/acd × (✓ / ✓) ✓ (✓ / 2)

Overall 31/40 = 77.5% 33/40 = 82.5%

The top 5 × Ktemp or top 10 × KSG (where KSG = 30) virtual structures with the lowest surrogate
energies from ShotgunCSP-GT and ShotgunCSP-GW, respectively, were selected for DFT
structural relaxation. The second column indicates the number of atoms in the primitive unit cells. In
the fourth and fifth columns, symbols ✓ and × denote prediction success and failure, respectively,
and dashes (− ) indicate cases forwhich therewas no template for element substitution or for which
the calculation failed. For the fourth column, the left and right sides of the parentheses indicate the
success or failure of Wyckoff-letter generation and space-group prediction, respectively. For the
fifth column, the left and right sides of the parentheses indicate whether a sufficiently similar
template structure (τ ≤ 0.2) was found and the total number of templates selected (Ktemp),
respectively.
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data size (Fig. S2). The 25th, 50th, and 75th percentiles of the space-group-
specific recall rateswere 53.05%, 72.62%, and84.25%, respectively. Thus, the
variability in recall rateswas partially correlatedwith the number of training
instances for each space group.

The distribution of composition ratios in the dataset was highly
skewed, raising the concern that the prediction performance may vary
greatly from one composition ratio to another. To address this concern, we
conducted a robustness test by evaluating changes in thepredictionaccuracy
upon varying the upper limit on the number of samples with the same
composition ratio in the training set. The results were similar to those in Fig.
3(b), demonstrating that the prediction performance did not vary sig-
nificantly from one composition ratio to another (Fig. S3).

Wyckoff pattern prediction
After narrowing down the space groups with machine learning, Wyckoff
letterswere randomly assigned to each atom to generate atomic coordinates.
As the number of combinations of atoms andWyckoff letters increases, the
complexity of de novo CSP grows. For example, for the space group lmma
(No. 74) ofMg8B56, themultiplicity ofWyckoff letters {a, b, c, d, e, f, g, h, i, j}
is {4, 4, 4, 4, 4, 8, 8, 8, 8, 16}. In this case, the number of possible assignments
for the Wyckoff letters exceeds 1755. If the assignments are incorrect, CSP
usually fails. On the other hand, for the space group la�3d (No. 230) of
Y24Al40O96, the multiplicity of Wyckoff letters {a, b, c, d, e, f, g, h} is {16, 16,
24, 24, 32, 48, 48, 96}. Despite the substantial number of atoms in the unit
cell, only 27 possible assignments exist. Successfully narrowing down the
space groups andaccurately predicting the assignments ofWyckoff letters is,
therefore, expected to improve the CSP task significantly.

This led us to construct a model to predict the occurrence frequencies
of Wyckoff letters for stable structures based on the chemical composition
(Fig. 4(a)). A model was created for each space group, with the input che-
mical composition represented by a 290-dimensional descriptor using
XenonPy. The output is the probability distribution of the occurrence of
Wyckoff letters. Using the 33,040 instances of stable structures in the
Materials Project database (excluding the 120benchmark crystals; 80%were
used for training and 20% for testing), we trained a random forest regressor
for each space group.

Figure 4(b) summarizes the prediction accuracy for the test set. The
discrepancies between the output probability distribution p1,…, pM of the
trained model and the actual relative frequencies q1,…, qM ofMWyckoff
letters were measured based on the Kullback–Leibler (KL) divergence:

XM

i¼1
qi log

qi
pi

ð1Þ

Table 2 | Results of ShotgunCSP-GT and ShotgunCSP-GW
generators for the 50 crystals comprising Dataset II

Composition Number
of atoms

Space
group

ShotgunCSP-GW ShotgunCSP-GT

CsCl 2 Fm�3m ✓ (✓ / ✓) ✓ (✓ / 52)

MnAl 2 P4/
mmm

✓ (✓ / ✓) ✓ (✓ / 37)

HoHSe 3 P�6m2 ✓ (✓ / ✓) ✓ (✓ / 71)

ErCdRh2 4 Fm�3m ✓ (✓ / ✓) ✓ (✓ / 113)

Eu2MgTl 4 Fm�3m ✓ (✓ / ✓) ✓ (✓ / 114)

Pm2NiIr 4 Fm�3m ✓ (✓ / ✓) ✓ (✓ / 113)

VPt3 4 I4/
mmm

✓ (✓ / ✓) ✓ (✓ / 60)

Gd(SiOs)2 5 I4/
mmm

✓ (✓ / ✓) ✓ (✓ / 28)

LaAl3Au 5 I4mm ✓ (✓ / ✓) ✓ (✓ / 44)

U2SbN2 5 I4/
mmm

✓ (✓ / ✓) ✓ (✓ / 120)

MnGa(CuSe2)2 8 I�4 ✓ (✓ / ✓) ✓ (✓ / 11)

SmZnPd 9 P�62m ✓ (✓ / ✓) ✓ (✓ / 2)

Sn(TePd3)2 9 I4mm × ( × / × ) ✓ (✓ / 96)

V5S4 9 I4/m ✓ (✓ / ✓) ✓ (✓ / 17)

Cs3InF6 10 Fm�3m ✓ (✓ / ✓) ✓ (✓ / 6)

Eu(CuSb)2 10 P4/
nmm

✓ (✓ / ✓) ✓ (✓ / 26)

Rb2TlAgCl6 10 Fm�3m ✓ (✓ / ✓) ✓ (✓ / 3)

Ca3Ni7B2 12 R�3m ✓ (✓ / ✓) ✓ (✓ / 18)

DyPO4 12 I41/
amd

✓ (✓ / ✓) ✓ (✓ / 138)

LaSiIr 12 P213 ✓ (✓ / ✓) ✓ (✓ / 33)

SmVO4 12 I41/
amd

✓ (✓ / ✓) ✓ (✓ / 136)

VCl5 12 P�1 ✓ (✓ / ✓) ✓ (✓ / 32)

YbP5 12 P21/m × (✓ / ✓) ✓ (✓ / 3)

Eu(Al2Cu)4 13 I4/
mmm

✓ (✓ / ✓) ✓ (✓ / 1)

Zr4O 15 R�3 × ( × / × ) × ( × / 16)

Ba3Ta2NiO9 15 P�3m1 ✓ (✓ / ✓) × ( × / 39)

K2Ni3S4 18 Fddd ✓ (✓ / ✓) ✓ (✓ / 78)

Sr(ClO3)2 18 Fdd2 ✓ (✓ / ✓) ✓ (✓ / 76)

LiSm2IrO6 20 P21/c × (✓ / ✓) ✓ (✓ / 83)

Pr2ZnPtO6 20 P21/c × (✓ / ✓) ✓ (✓ / 85)

Sc2Mn12P7 21 P�6 ✓ (✓ / ✓) ✓ (✓ / 7)

LaSi2Ni9 24 I41/
amd

✓ (✓ / ✓) ✓ (✓ / 2)

CeCu5Sn 28 Pnma ✓ (✓ / ✓) ✓ (✓ / 2)

LiP(HO2)2 32 Pna21 × (✓ / ✓) ✓ ( × / 99)

Mg3Si2H4O9 36 P63cm ✓ ( × / × ) × ( × / 1)

Y4Si5Ir9 36 P63/
mmc

✓ (✓ / ✓) −

Na(WO3)9 37 R�3 ✓ (✓ / ✓) −

Sm6Ni20As13 39 P�6 ✓ (✓ / ✓) ✓ (✓ / 2)

BaCaGaF7 40 P2/c ✓ (✓ / ✓) ✓ (✓ / 6)

Tm11Sn10 42 I4/
mmm

✓ (✓ / ✓) ✓ (✓ / 3)

AlH12(ClO2)3 44 R�3c ✓ ( × / × ) ✓ (✓ / 11)

Table 2 (continued) | Results of ShotgunCSP-GT and
ShotgunCSP-GW generators for the 50 crystals comprising
Dataset II

Composition Number
of atoms

Space
group

ShotgunCSP-GW ShotgunCSP-GT

K2ZrSi2O7 48 P21/c ✓ (✓ / ✓) ✓ ( × / 32)

LiZr2(PO4)3 72 P21/c × ( × / ✓) ✓ (✓ / 21)

K5Ag2(AsSe3)3 76 Pnma ✓ (✓ / ✓) −

Be17Ru3 80 Im�3 ✓ ( × / ✓) ✓ (✓ / 1)

Cu3P8(S2Cl)3 80 Pnma × ( × / ✓) ✓ (✓ / 2)

Al2CoO4 84 P3m1 × ( × / × ) ✓ (✓ / 15)

Li6V3P8O29 92 P1 × (✓ / ✓) ✓ ( × / 5)

ReBi3O8 96 P213 ✓ (✓ / ✓) ✓ (✓ / 7)

Na5FeP2(O4F)2 288 Pbca × ( × / ✓) −

Overall 39/50 = 78.0% 43/50 = 86.0%

See the caption of Table 1 for details.
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The distribution of KL divergence for the test set was found to be highly
concentrated around zero in most cases (Fig. 4(b)). This indicates that the
Wyckoff letters for stable structures are predictable from the chemical
composition.

Using the Wyckoff-letter occurrence probability for a query compo-
sition, we randomly assigned Wyckoff letters using the procedure in the
Methods section. The possible assignment of Wyckoff letters to elements is
constrainedby theirmultiplicity andquery composition ratio. The sampling
algorithm was designed to satisfy these constraints; the frequency of gen-
erated Wykoff labels generally matched the probabilities predicted by the
random forest regressors.

Figure 4(c) shows the differences in the Wyckoff patterns generated
with andwithout theWyckoff-letter predictor by comparing the frequencies
of actual and sampledWyckoff letters for six randomly selected crystals. In
all cases, the frequencies of Wyckoff letters generated from the predictor
agreed well with the true frequencies. By contrast, those of randomly gen-
erated Wyckoff letters deviated significantly from the true frequencies.

Energy prediction
The global energy prediction model was constructed by training the
CGCNN on 126,210 stable and metastable crystal structures whose for-
mation energies were retrieved from theMaterials Project database; the 120
benchmark crystals were excluded from the training set. To validate the
predictive capability and uncertainty of the global model, we randomly
extracted 80% of the overall dataset and created 100 bootstrap sets. The
average mean absolute error (MAE) across the 25,249 test cases reached
0.074 eV/atom, with a standard deviation of 0.003, which is comparable to
that in previous studies30. Figure 5(a) shows the prediction results for the 90
benchmark crystals in Datasets I and II.

Note that the global model is unsuitable for predicting the energies of
different randomly generated conformations for each composition X (Fig.
5(c)). In addition, it failed to discriminate between the energies of different
randomlygenerated conformations for the90benchmarkcrystals.We tested
the predictive capability of the global model on the DFT energies of 100
randomly generated pre-relaxed conformations for each of the 90 bench-
mark crystals. The averageMAEdecreased to6.126 eV/atomwith a standard

deviation of 2.010. A similar result was obtained when the global model was
trained with approximately 1,021,917 instances from theOQMD, including
the formation energies of both relaxed and unrelaxed structures.

Toovercome this limitedpredictive ability, the pretrained globalmodel
was localized to the target system X by transfer learning. For each X, the
formation energies of a maximum of 3,000 virtual crystals, generated as
described above, were obtained by DFT single-point energy calculations,
and the pretrained global model was fine-tuned to the target system. As
shown in Fig. 5(d), transfer learning improved the prediction performance
for the formation energies of the 9,000 additional conformations. The
averageMAE reached 0.488 eV/atomwith a standard deviation of 0.453 eV/
atom. This is a 12.6-fold improvement compared to that of the pretrained
global energy prediction model.

CSP using the library generator based on ShotgunCSP-GT
Weused thefine-tuned surrogate energypredictor to sort the virtual crystals
generated by ShotgunCSP-GT, narrowed them down to the top five
structures for each template as described above, and then performed
structural relaxation using DFT. The J relaxed structures with the lowest
DFT energies were used as the final set of predicted structures. Figure 7
shows the top two (J = 2) predictions and the true structures for some
selected cases. Figure S6 shows the top two predicted structures for all 120
benchmark crystals. Tables 1 and 2 summarize the success or failure of the
top 5 × Ktemp predictions for all crystal systems in Datasets I and II. The
accuracies for Datasets I and II were 82.5% and 86.0%, respectively. No
significant differences were observed in the accuracies between the two
benchmark sets. Interestingly, increasing the number of atoms in the unit
cell did not degrade the performance.Among the failure cases,five instances
(NaCaAlPHO5F2, K20Ag8As12Se36, Na1W9O27, Na80Fe16P32O128F32, and
Y8Si10Ir18) didnothave template structures in theMaterials Project database
with identical composition ratios. Excluding the five cases without a tem-
plate, the accuracies for Datasets I and II reached 84.6% and 93.5%,
respectively. For the other nine failure cases, for which a template was
available but prediction failed, none of the Wyckoff-letter patterns of the
true structures were included in the template structure set in the Materials
Project database.

Fig. 3 | Space-group prediction. aMachine-
learning workflow. bChange in recall rate across the
top 1 to the top 40 predictions of the space group.
Narrowing down to the top 30 predicted labels
should, on average, enable the inclusion of the true
space groups for 92.61% of the entire set of crystal-
line systems.
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In summary, crystal systems with one or more replaceable template
structures can be largely predicted by substituting the elements in existing
crystals. For example, in theMaterials Project database, the proportion of
crystals with one or more interchangeable template structures was 98.0%.
A similar conclusion was reached with another element-substitution-
based CSP machine-learning algorithm called CSPML36. The prediction
accuracy of ShotgunCSP-GT for Datasets I and II was higher than that of
CSPML, which was 65.6% for the top ten predictions (see Table S4 for the

testing results and the Supplementary Information for an outline of the
methods).

CSP using ShotgunCSP-GW
The top ten candidate structures predicted using ShotgunCSP-GWwith the
lowest surrogate energies for each predicted space group were selected for
structural relaxation using DFT (J = 10 × KSG with KSG = 30). Figure 7
displays the top two predicted and true structures for some selected

Fig. 4 | Prediction of Wyckoff-letter assignments. aMachine-learning workflow.
b Histogram and empirical cumulative distribution function (ECDF) of KL diver-
gence between the relative occurrence frequencies and predicted probability

distributions of Wyckoff letters for the test set. c Histograms of distributions of
relative occurrence frequencies and predicted probabilities ofWyckoff letters for six
randomly selected compounds, with their space-group information in parentheses.
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examples, and Fig. S6 shows the top two predicted structures for all 120
benchmark crystals. For the top ten predicted structures, 77.5% and 78.0%
of the known stable structures were accurately predicted for Datasets I and
II, respectively. Tables 1 and 2 summarize the performance (success or
failure) of the top ten predictions for all crystal systems in Datasets I and II,
respectively. The overall performance was lower than that of ShotgunCSP-
GT. One reason for the decreased accuracy is the failure of space-group
prediction. Specifically, the model failed to predict the space groups for
approximately 5% of the 90 benchmark crystal structures in Datasets I and
II. This is almost the same level of accuracy as reported above.

ShotgunCSP-GW successfully predicted 31 and 38 of the crystals in
Datasets I and II, respectively. To highlight the predictionmechanismof the
proposed method, we focus here on three crystals that were successfully
predicted but for which no template exists in theMaterials Project database:
Y4Si5Ir9, K5Ag2(AsSe3)3, and Na(WO3)9. These compounds all have rela-
tively large numbers of atoms in the unit cells (36, 76, and 111, respectively).
Nevertheless, for the space group R�3 (No. 148) of the stable structure of
Na(WO3)9 (Fig. 6(a)), because theWyckoff letters {a, b, d, e} are coordinate-
fixed, the number of possible combinations ofWyckoff letters is reduced to
approximately 48 owing to its multiplicity constraints. Consequently, the
effective dimensions of the search space could be reduced by considering the
crystal symmetry. This explains why ShotgunCSP-GW successfully pre-
dicted the complex stable structure ofNa(WO3)9. ForK5Ag2(AsSe3)3,which
has 76 atoms in its unit cell (space group Pnma; No. 62) (Fig. 6(b)), the
possibility of replacing the Wyckoff letter {c} with {a} or {b} increases the
number of possible Wyckoff-letter combinations to over 300, even when
considering multiplicity constraints. Nevertheless, ShotgunCSP-GW
achieved success, primarily because the occurrence probability of Wyckoff
letters {a} and {b} was successfully predicted to be extremely low by the
Wyckoff-letter assignment predictor. This significantly narrowed the
extensive search space during candidate structure generation, highlighting

the significance of theWyckoff-letter assignment refinement strategy in the
success of the CSP task. The same mechanism facilitated the prediction of
Y4Si5Ir9.

On the other hand, of the 85 crystals for which the space groups were
correctly identified, the ShotgunCSP-GW could not predict 9 and 11 of the
true stable structures of crystals in Datasets I and II, respectively. Of these
failure cases, true Wyckoff pattern generation failed in 3 and 3 cases for
Datasets I and II, respectively, while ground-truth generation failed in 6 and
8 cases, respectively, despite correct true Wyckoff pattern generation. To
elucidate the origin of these failures, we examined the generated structures
in detail. The majority of structures that could not be predicted were
characterized by low-symmetry structures with a space-group number
below 142, particularly below 15, such as orthorhombic, monoclinic, and
triclinic structures. Because of their low symmetry, structures belonging to
these space groups have high degrees of freedom in their coordinate con-
figurations. Furthermore, the number of combinations ofWyckoff patterns
with the same multiplicity is greater for lower-symmetry space groups. For
instance, space groupC2/m (No. 12) has one coordinate-freeWyckoff letter
{j} withmultiplicity 8; three coordinate-freeWyckoff letters {g, h, i} and two
coordinate-fixed Wyckoff letters {e, f} with multiplicity 4; and four
coordinate-fixed Wyckoff letters {a, b, c, d} with multiplicity 2. Their pos-
sible combinations form an extensive search space. This was the case for
TiO2 (full formula: Ti8O16); despite the successful prediction of the
Wyckoff-letter configuration Ti: 4i, Ti: 4i, O: 4i, O: 4i, O: 4i, O: 4i, the
generation of precise atomic coordinates was unsuccessful (Fig. 6(c)).

Many of the predicted structures that were determined to be failures
have been experimentally reported as metastable structures (Fig. 7). For
example, for TiO2

53, the anatase type is the most stable structure according
tofirst-principles calculations,whereas the predicted structurewas the rutile
type, which is a known metastable state of TiO2. Similarly, the true stable
structure of Si3N4

54 is the hexagonal structure, β-Si3N4, whereas the

Fig. 5 | Performance of CGCNN for the prediction
of DFT formation energies with and without
transfer learning. The root mean square error
(RMSE), mean absolute error (MAE), and coeffi-
cient of determination (R2) for test instances are
shown on each parity plot. a Results of global model
for the prediction of relaxed formation energies of 90
benchmark crystals (orange). b Histogram of DFT
formation energies of relaxed and randomly gener-
ated pre-relaxed structures. c, d Prediction of pre-
relaxed formation energies of 100 randomly gener-
ated conformations for each of the 90 benchmark
systems (c) without and (d) with fine-tuning of the
pretrained global energy prediction model.
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Fig. 6 | Three crystal structures predicted with ShotgunCSP-GW:Na(WO3)9 (full
formula: Na3W27O81, space group: R

--
3), K5Ag2(AsSe3)3 (full formula:

K20Ag8As12Se36, space group: Pnma), and TiO2 (full formula: Ti8O16, space
group: C2/m). a For Na(WO3)9, the number of possible Wyckoff-letter combina-
tions is limited to 48 when the space group is considered. b For K5Ag2(AsSe3)3,

despite the number of possible Wyckoff-letter combinations exceeding 300, the
Wyckoff-letter assignment predictor reduces the search space considerably and
effectively. c For Ti8O16, which ShotgunCSP-GW failed to predict, the high degree of
freedom in the coordinate configurations prevented the generation of promising
atomic coordinates despite the successful Wyckoff-letter assignment.
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predicted structure was the willemite-II type, which has been identified as a
metastable structure of Si3N4 by DFT calculations. In many cases, even the
predicted crystal structures that were judged to be failures partially captured
structural features that were similar to those of the true structures. For
example, the predicted structures of ZrO2 and LiP(HO2)2 did not exactly

match the true structures, but differed only slightly in atomic positions (Fig.
7). The energy difference between the true and predicted structures of these
compoundswas <5meV/atom.Although the prediction of stable structures
for low-symmetry compounds was often not entirely accurate, metastable
structures or partial structural patterns can be predicted using this method.

Fig. 7 | Examples of crystal structures predicted by the proposed CSP algorithms (depicted with VESTA62 version 3.5.8). For each generator (ShotgunCSP-GT and
ShotgunCSP-GW), the predicted structures with the two lowest DFT energies are shown. The true (target) stable structures are shown on the left.
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For the cases where the prediction failed, the energy differences
between the predicted and ground-truth structures are briefly discussed in
the Supplementary Information. Although there were a few cases where the
energy of the predicted structure was lower or almost the same as that of the
ground-truth structure, we decided not to delve deeper into these cases.

We also evaluated the predictive performance of our method in quite
challenging scenarios using Dataset III, which resulted in a notably low
accuracy of 6.7% (see Table S1). Despite this outcome, the rather complex
crystal structures ofAl8(Pb3O7)3 andMg10B16Ir19were accurately predicted.
However, predicting crystal structures for more complex systems would
require additional computational resources and enhanced methodologies.

Comparison with USPEX
The CSP tasks for Datasets I and II were conducted using USPEX by
applying the calculation conditions outlined in the Methods section, in
which the true space groups were given as initial parameters. The USPEX
calculations were executed on the SQUID supercomputer system at Osaka
University, which has two Intel Xeon Platinum 8368 CPUs with 76 cores
running at 2.40GHz at each node55. The calculation of each crystal structure
was allocated to one node, with the number ofMPI cores set to 38when the
number of calculated atoms was less than 38, and to 76 otherwise.

Using the settings described in the Supplementary Information, only
tasks involving small-unit-cell systems (comprising approximately 20 or
fewer atoms in the primitive unit cell) were accomplished successfully.
Specifically, within the allocated computational resources, 13 and 12 sys-
tems were completed for Datasets I and II, respectively. For the completed
tasks, USPEX had prediction accuracies of 92.3% and 91.7% for the
benchmark crystals inDatasets I and II, respectively (Table S5). Themedian
number of structure relaxation calculations performed was 167, with
computations taking 37.7 h on the designated supercomputer system. In
comparison, our method utilizing the ShotgunCSP-GW generator for the
same set of 25 benchmark structures yielded accuracies of 84.6% and 83.3%
for Datasets I and II, respectively (Table S5). The median number of
structure relaxation calculations performed was 172, with computations
taking 21.4 h.WhileUSPEXwas conductedwith the true space groups used
to create initial random structures, all other space groups were sampled
during the USPEX run. By contrast, our method searched for the top
30 space groups. Thus, our noniterative approach, utilizing an energy pre-
dictor to identify structures with sufficiently low energy followed by struc-
ture relaxation, reached almost the same level of accuracy as USPEX while
significantly improving the computational speed.

Discussion
This paper presents a CSPworkflow based on amachine-learning approach
for the efficient prediction of stable crystal structures without iterative DFT
calculations. The essence of the proposed method is a shotgun-type virtual
screening of crystal structures. A surrogatemodel that predictsDFT energies
is used to screen a large number of virtual crystal structures. The efficiently
narrowed-down candidate structures are then relaxed using DFT calcula-
tions to predict stable crystal structures. The key technical components in
this workflow are the surrogate model for energy prediction and the crystal
structure generators. To train the surrogate model for DFT energy calcula-
tions, a pretrainedCGCNN isfine-tuned for the prediction of the energies of
virtual crystal structures in pre-relaxed states to decrease the number of
training samples generated with DFT single-point energy calculations.
Virtual libraries of candidate crystal structures are constructed by either
element substitution of template crystals (ShotgunCSP-GT) or a Wyckoff
generator involving space-group prediction and Wyckoff-label prediction
(ShotgunCSP-GW).Of 90knowncrystal structures (Datasets I and II)with a
wide range of chemical compositions, symmetries, and structure types, the
ShotgunCSP-GT- and ShotgunCSP-GW-based workflows successfully
predicted 84.4% and 74.4% of the true structures, respectively.

The performance of the CSP algorithms was evaluated using a
benchmark set of 120 cases (Datasets I–III). Although various CSP algo-
rithms have been developed, they have often been assessed only in terms of

success or failure in individual cases, with few comprehensive performance
evaluations. In response, efforts to develop a benchmark set for CSP algo-
rithms have recently emerged. For instance, CSPBench56 consists of 180
cases of varying difficulty levels, carefully selected from theMaterials Project
database. Importantly, comprehensive testing with CSPBench has shown
thatmost existingmethods fall short of satisfactory predictive performance.
Our benchmark cases and reported prediction performance are expected to
facilitate systematic evaluations in subsequent research anddevelopmentsof
CSP algorithms.

For the 25 benchmark structures successfully predicted byUSPEX, our
ShotgunCSP-GW-based method achieved the same or better prediction
accuracy and reduced the computation time by approximately 40%. To our
knowledge, our method is the simplest CSP algorithm available today. A
significant contribution of this study is in proving that such a straightfor-
ward approach can effectively predict numerous crystal structures that
cannot be predicted using conventional methods, including those with low
symmetry and large-unit-cell systems. However, our method remains
incapable of predicting more complex crystal systems, such as those in
Dataset III, which were selected to be more challenging. The bottleneck is
expected to be partially eliminated by achieving the efficient prediction of
the true Wyckoff labels of large and complicated crystalline systems.

Nonetheless, the simplicity of the proposed method makes it well-
suited for parallel computing and managing a much larger database of
candidate structures. Moreover, it can be integrated with deep generative
models for crystal structure prediction, which are expected to advance
further in the future.

Methods
ShotgunCSP-GT: template-based structure generation by ele-
ment substitution
The calculation procedure for ShotgunCSP-GT is as follows:
1. Extract template structures with the same composition ratio as the

query composition X from 33,040 stable structures in the Materials
Project database.

2. Replace elements in the templates with elements that have the same
number of atoms in X. If the substitution target is not uniquely
determined, substitute the element that has the smallest Euclidean
distance in XenonPy’s 58-dimensional element descriptors.

3. Convert the chemical compositions of the template structures to the
290-dimensional descriptors in XenonPy and apply DBSCAN
clustering to group the template structures.

4. Extract template sets that belong to the same group asX. Furthermore,
using the StructureMatcher module of pymatgen49,50, remove struc-
turally redundant templates to obtain a unique template set (where
Ktemp is the number of unique templates in the same cluster as the
query composition).

5. Estimate the lattice constants using a model that predicts the unit-cell
volume from the composition X (see Supplementary Information).

6. Add perturbations to the atomic coordinates of each template with
additive noise following the uniform distribution U( − 0.05, 0.05).

7. Add perturbations to the unit-cell volumes of each template with
additive noise following the uniform distribution U( − 0.1, 0.1).

ShotgunCSP-GW: Wyckoff position generator
The calculation procedure for ShotgunCSP-GW is as follows:
1. Predict the space group and probabilities of Wyckoff letters of the

query composition X ¼ X1
c1
X2
c2
� � �XK

cK
(where Xk denotes a chemical

element k = 1,…, K and ck is its composition ratio) for each predicted
space group.

2. Extract the set W = {(li, mi)∣i = 1, …, j} of Wyckoff letters li and
multiplicitymi for a predicted space group.

3. Randomly sample an element Xk from composition X and a possible
Wyckoff letter li with the predicted Wyckoff-letter-configuration
probability pi from set W, then assign li to Xk with its possible
multiplicitymi.
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4. Remove the assigned atoms from composition X and define the
remaining composition as new X.

5. Remove the used Wyckoff letter li from the set W if the Wyckoff
position is exclusive, and re-normalize the probability of the remaining
Wyckoff letters.

pi pi=
X

pi

6. Repeat steps 3–5 until all atoms are assigned.
7. Determine the fractional coordinates of atomic sites to which the same

Wyckoff letter is assigned. If the coordinates of theWyckoff position (x,
y, z) of the atomic sites are allowed to vary, sample each coordinate
position from a uniform distribution U(0, 1).

8. Estimate the lattice constants using a model that predicts the volume
from the composition X (see Supplementary Information). Add per-
turbations to the unit-cell volume of each template with additive noise
following the uniform distribution U( − 0.1, 0.1).

Compositional descriptor
The chemical formula of the query composition is X ¼ X1

c1X
2
c2 � � �XK

cK ,
where Xk denotes a chemical element k = 1,…, K and ck is its composition
ratio. Each element of the descriptor vector of length 290 takes the following
form:

ϕg;ηðXÞ ¼ gðc1; . . . ; cK ; ηðX1Þ; . . . ; ηðXK ÞÞ: ð2Þ

The scalar quantity η(Xk) on the right-hand side of Eq. (2) (where k = 1,…,
K) represents a feature value of the element Xk, such as the atomic weight,
electronegativity, or polarizability. Using function g, the element features
η(X1), …, η(XK) with compositions c1, …, cK are converted into a
compositional feature. For g, we used five different summary statistics:
weighted mean ϕave, weighted variance ϕvar, weighted sum ϕsum, max-
pooling ϕmax, and min-pooling ϕmin:

ϕave;ηðXÞ ¼ 1PK

k¼1 c
k

PK

k¼1
ckηðXkÞ;

ϕvar;ηðXÞ ¼ 1PK

k¼1 c
k

PK

k¼1
ckðηðXkÞ � ϕave;ηðXÞÞ

2
;

ϕsum;ηðXÞ ¼
PK

k¼1
ckηðXkÞ;

ϕmax;ηðXÞ ¼ maxfηðX1Þ; . . . ; ηðXK Þg;
ϕmin;ηðXÞ ¼ minfηðX1Þ; . . . ; ηðXK Þg:

Weused 58 distinct elemental features implemented in XenonPy, including
the atomic number, covalent radius, van derWaals radius, electronegativity,
thermal conductivity, band gap, polarizability, boiling point, and melting
point. The full list of 58 features is summarized by Liu et al.44. In summary,
composition X is characterized by a 290-dimensional descriptor vector (
= 58 × 5).

Fine-tuning of CGCNN
A CGCNN localized to the energy prediction of a specific system with
composition X was obtained by fine-tuning the pretrained global CGCNN
model from Xie and Grossman30 with randomly generated crystalline
conformations and their DFT formation energies. We generated 100
training crystal structures for each candidate space group using the
ShotgunCSP-GW generator or ten random structures from each selected
template using the ShotgunCSP-GT generator. The pretrained model
without the output layer was copied to the target model, to which a new
output layer was subsequently added, and its parameters were randomly
initialized. We then trained the target model on the target dataset. The
hyperparameters, including the learning rate and gradient clipping value,
were optimized by performing a grid search with the same range {0.01,

0.008, 0.006, 0.004, 0.002}, with early stopping based on the MAE of the
validation set. The maximum number of epochs was fixed at 350.

DFT calculations
AllDFTcalculationswereperformedusingVASP(version6.1.2)51withPAW
pseudopotentials52. The Perdew–Burke–Ernzerhof exchange–correlation
functional57was considered for generalizedgradient approximation.Brillouin
zone integration of the unit cells was automatically determined using the Γ-
centered Monkhorst–Pack mesh function implemented in the VASP code.
Single-point energy calculations (also known as self-consistent field calcula-
tions) were performed on unrelaxed crystal structures that were created
virtually toproduce a training set forfine-tuning thepretrainedCGCNN.The
geometry of the final selected candidate structure was locally optimized by
performing DFT calculations. We used the MPStaticSet and MPRelaxSet
presets implemented inpymatgen49with significantmodifications togenerate
the inputs for all VASP calculations (see Supplementary Information).

Structural similarity
To calculate the similarity between two structures, we encoded each query
into a vector-type structural descriptor with its local coordination infor-
mation (site fingerprint) from all sites58. Then, the structural similarity τ
was calculated as the Euclidean distance between the two vectorized
crystal structures. Note that the descriptor does not contain any infor-
mation about the element species. The calculations were performed in
matminer59, which is an open-source toolkit for materials data mining,
with the same configuration as that used officially in theMaterials Project
database. We also visually inspected the differences between structures
with different τ. Structures with a dissimilarity of τ≤0.2 were treated as
similar structures.

USPEX calculations
USPEX calculations were performed using the official USPEX package
(version 10.5)60. We specified the calculation parameters calcula-
tionMethod, calculationType, and optType as “USPEX,” “300,”
and “enthalpy,” respectively, to perform the CSP task for bulk crystals using
an evolutionary algorithm. The related parameters were specified according
to official recommendations61. For example, the number of structures in
each generation was set to 2 ×N rounded to the nearest ten, whereN is the
number of atoms. The calculation was terminated as soon as the best
structure remained unchanged overM generations, whereM =N (rounded
to thenearest ten; see Supplementary Information). Structure relaxationwas
executed automatically in VASP (version 6.1.2) combined with the PAW
pseudopotentials. The VASP calculation settings were the same as those
described in the DFT calculations section.

Data availability
The benchmark datasets are published on Figshare and can be accessed via
the following https://doi.org/10.6084/m9.figshare.26536375. Additional
data supporting the findings of this study are available from the corre-
sponding author upon reasonable request.

Code availability
The ShotgunCSP-GT generator is published as a Python package on the
GitHub website at https://github.com/TsumiNa/ShotgunCSP.
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