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$1. Details of evolutionary simulations. Evolutionary algorithms are well-suited for the task of 

crystal structure prediction: using “learning” from the history of the simulation, evolution guides 

search towards low-energy structures; improving the results from generation to generation, such 

simulations “zoom” in on the most promising part of the energy landscape until the lowest-

energy structure is found. All evolutionary simulations were performed with the USPEX 

method30,4,5, using VASP for structure relaxation and energy calculations. As a test, we first ran a 

variable-cell run with 12 atoms/cell at 1 atm, which correctly produced the α-B12 structure as 

most stable for this system size. 

SUPPLEMENTARY INFORMATION

doi: 10.1038/nature07736

www.nature.com/nature 1



  
  

The first generation of structures (population size: 10-50 structures, increasing with system size) 

was always produced randomly. All produced structures were relaxed; the appropriate 

thermodynamic potential (total energy at constant volume and 0 K, enthalpy at constant pressure 

and 0 K) was used as fitness function. Every subsequent generation was produced from the best 

60% of the previous generation. New structures were created by heredity (i.e. combining 

spatially coherent slabs cut from two parent structures in a random direction at random positions 

and with random thicknesses) and, for variable-cell simulations, 15% of the new structures were 

obtained using lattice mutation (with Gaussian strength 0.5-0.7, see Ref. 4,5). In addition, the 

best structure of each generation was carried over into the next generation. Numerous tests show4 

that for systems with ~20 atoms/cell the global minimum (which, for well-known test cases, is 

the experimentally known stable structure) is usually reached well within ~20 generations (~600 

local optimizations). 

To solve the structure of γ-B28, we searched for the global energy minimum under constraint of 

experimental cell parameters. From densities of other boron phases, we estimated the number of 

atoms in the cell to be between 24 and 32. Since this number has to be even to produce an 

insulating state, we considered cases of 24, 26, 28, 30 and 32 atoms/cell. Each generation 

consisted of 50 structures, simulations were run for over 30 generations (but the optimal 

structures were always found within 11 generations). The 28-atom Pnnm structure (Fig. S1) had 

the lowest energy per atom, correct orthorhombic symmetry, and relaxed cell parameters and 

diffraction pattern in good agreement with experiment.  

Variable-cell evolutionary simulations were performed at 100 GPa and 300 GPa, with 2, 3, 4, 6, 

8, 9, 12, 16 atoms/cell and searched for the minimum-enthalpy structure. The population size 

was between 10 structures (for 2 atoms/cell) and 48 structures (for 16 atoms/cell). These 

calculations unambiguously indicated the α-Ga-type structure (Fig. S2) as stable.  
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Fig. S1. Best structures obtained with 24, 26, 28, 30, 32 atoms/cell. At experimental cell 

parameters, the lowest-energy structure contains 28 atoms/cell. The other structures are higher by 

0.21 eV/atom (for 24 atoms/cell), 0.10 eV/atom (26 atoms/cell), 0.16 eV/atom (30 atoms/cell), 

0.22 eV/atom (32 atoms/cell).  

 

Fig. S2. α-Ga-type structure found in evolutionary simulations at 100 GPa and 300 GPa.  
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$2. Illustration of an evolutionary simulation: Making icosahedra by evolution. Fig. S3 

shows the sequence of best structures in each generation for the 24-atom system at fixed 

experimental cell parameters. The first (random) generation did not contain any icosahedral 

structures. Increasingly large fragments of the icosahedra appear in generations 2 and 3, and at 

the 11th generation the lowest-energy structure is found. This structure becomes identical to α-

B12 after full relaxation.  

 

Fig. S3. Example of an evolutionary simulation (24-atom system at fixed cell parameters). 

Best structure at each generation is shown (with total energies relative to the final energy). Black 

rectangle shows the unit cell dimensions.  

 

$3. Lattice dynamics calculations and dynamical stability of the γ-B28 structure. Using 

density-functional perturbation theory25, as implemented in the ABINIT code26, we have 

calculated phonon dispersion curves and phonon density of states of the γ-B28 phase. Interatomic 

force constants were determined on a 2x2x2 q-grid (corresponding to a 224-atom supercell) and, 

in combination with the calculated Born effective charge tensors and dielectric constants, were 

used to calculate phonon frequencies throughout the Brillouin zone. The resulting phonon 
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dispersion curves and the phonon density of states are shown in Fig. S4. There are no soft modes 

and the structure is dynamically stable. Similar lattice dynamics calculations were performed 

also for α-B12 and α-Ga-type phases of boron, and demonstrated that they have no soft modes 

within their stability fields shown in Fig. 3. 

 

Fig. S4. Phonon dispersion curves and density of states in the γ-B28 structure. The phonon 

density of states contains two sets of very narrow bands, separated from the other bands by 

pronounced gaps.  

 

$4. Bader analysis (Ref.16).  

Robustness of Bader charges. Bader charges are determined solely by the ED distribution, rather 

than by arbitrary partitioning of the wavefuction contributions. For this reason, their sensitivity 

to the basis set is not very large. For example, with a triple-ζ basis set the charge of the (B1)2 pair 

is +0.358, whereas with the quadruple-ζ basis used here it is equal to +0.341, and with another 

(more complete and flexible) quadruple-ζ basis, derived from the aug-ccpvQZ basis, it is equal to 

+0.384. The value obtained using the PAW method (+0.484) is likely to be the most accurate 

one, close to the basis set limit.  

The negative charge on the B2 atoms is somewhat more sensitive: its values are -0.300 with the 

triple-ζ basis set, -0.143 with the quadruple-ζ basis set used here, and -0.152 with the quadruple-ζ 

basis derived from the aug-ccpvQZ basis. The value obtained using the PAW method (-0.168) is, 

within uncertainties, equal to the quadruple-ζ basis values.  
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Bader charges are rather insensitive to the details of the exchange-correlation functional. Using 

the quadruple-ζ basis set and the LDA exchange-correlation functional31, we get very similar 

Bader charges: e.g. +0.338 for the (B1)2 pair, -0.142 for the B2 atoms. 

Technical details of Bader analysis. LCAO calculations are the main tool for Bader analysis 

(integration of atomic volumes and charges and investigation of bond critical points) reported 

here. All-electron LCAO densities were analysed using the TOPOND code32,33, which is 

interfaced to CRYSTAL. Integrated charges and volumes with TOPOND are very accurate, 

within 0.01 and 0.l a.u., for charges and volumes, respectively, and with a magnitude of the 

integrated Laplacian never exceeding 0.004 a.u. Location of critical points and evaluation of 

their properties is performed using fully analytical density derivatives and density interpolation 

techniques are not needed. The gradient of the density at critical point locations never exceeds 

10-15 a.u. 

We used uniform grids (200x224x280 for γ-B28, 200x200x200 for α-B12) with PAW densities 

and atom-centred grids with LCAO densities (308 angular and 120 radial points for the 

innermost part of the atomic basin, with a fixed radius of 0.59 Å; 1536 angular and a variable 

number of radial points for the outermost part, with each radial length, associated with a given 

angular point, determined by the zero-flux surface condition). In the case of PAW densities, 

charge symmetrisation and density interpolation techniques enabled us to obtain precise (within 

0.01 |e|) Bader charges. PAW densities were obtained as a sum of core and valence densities and 

were analysed using the code presented in Ref. 34. We have verified that the two methods are 

consistent – i.e. for the same ED distribution the code of Ref. 34 and TOPOND produce identical 

Bader charges. For instance, for the LCAO density obtained with the quadruple-ζ basis set the 

two methods give +0.338 and +0.341, respectively, and for the charge of the B2 atom the values 

are -0.147 and -0.143, respectively.  

Tables S1-S3 report some of our results obtained with LCAO calculations. Table S1 shows the 

properties of the density at (3,-1) bond critical points. One can notice a large difference between 

the ellipticities of 2-centre and 3-centre bonds – nearly zero ellipticity in the former, and large 

(>2) ellipticity in the latter case. Interestingly, the most electronegative atoms (B2) form the 

largest number of elliptic 3-centre bonds (seven), whereas the most electropositive atoms (B1) 

have only two such bonds. The Laplacian of the density at the bond critical point (∇2ρbcp) is 

strongly negative (-0.38-0.29 a.u.) for short 2-centre bonds, moderately negative for 3-centre 
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bonds (-0.13-0.11 a.u.), and very slightly negative (-0.05 a.u.) for the B1-B2 bonds (as expected 

for polar covalent bonds) 

Tables S2 and S3 show the large asymmetry of the bond critical points in the full self-

consistent density (Table S2) and a much smaller asymmetry in the IAM model (Table S3). We 

examined the bond asymmetry parameter:  

1

21
Bbcp

Bbcp

r

r
a

−

−
−= , 

where rbcp-B1 and rbcp-B2 are distances from the bond critical point to atoms B1 and B2, 

respectively. For normal intra- and intericosahedral bonds a=0-4%; for the “ionic” B1-B2 bond it 

reaches 20% (in the IAM model it is only 0% and 4%, respectively). 

In γ-B28, atomic charges are correlated with coordination numbers, which, according to Bader 

analysis are lowest (four) for the positively charged B1 atoms and highest (seven) for the 

negatively charged B2 atoms (nearly-neutral B3-B5 atoms are six-coordinate). Such correlation 

between the ionisation state, ionic radius and coordination number is well known for ionic and 

polar covalent crystals. Autoionization helps to adjust the ionic sizes for optimally dense packing 

and provides extra stabilisation energy (ca -0.06 eV/atom for charges from Table 1). 

 

Table S1. Summary of bond properties in γ-B28. All quantities are in a.u., except bond lengths, 

n represents the number of bonds of a given type formed by each of the B-atom type. (Re)av, 

(ρb)av, (∇
2ρ b)av, (εb)av are the averages of equilibrium distances, electron densities, Laplacians 

and ellipticities at the (3,-1) bond critical point, respectively. 

B atom type Type of bonding n (Re)av (ρb)av (∇2ρ b)av (εb)av 
B1 within (B1)2 units 1 1.732 0.139 -0.288 0.021 
 B1-B2 (3MR) 2 1.903 0.085 -0.052 2.271 
 B1-B4 1 1.674 0.156 -0.365 0.038 
B2 intra-icosahedral 5 1.798 0.115 -0.113 2.286 
 inter-icosahedral 1 1.819 0.112 -0.176 0.313 
 B2-B1 1 1.903 0.085 -0.052 2.271 
B3 intra-icosahedral 5 1.814 0.111 -0.105 2.364 
 inter-icosahedral 1 1.819 0.112 -0.176 0.313 
B4 intra-icosahedral 5 1.778 0.117 -0.124 2.318 
 B4-B1 1 1.674 0.156 -0.365 0.038 
B5 intra-icosahedral 5 1.774 0.119 -0.128 2.369 
 inter-icosahedral 1 1.661 0.158 -0.380 0.005 
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Table S2. Geometrical distances (Å) from (3,-1) bond critical points to their associated 

nuclear attractors in γ-B28. Notice strong asymmetry of bond critical point location for the B1-

B2 bond.  

Atom B1 B2 B3 B4 B5 
B1 0.87; 0.87 0.87; 1.04  0.85; 0.83  
B2 1.04; 0.87 0.87; 0.87 0.93; 0.90 

0.93; 0.92 
0.94; 0.92 

0.93; 0.88 0.93; 0.85 

B3  0.90; 0.93 
0.92; 0.93 
0.92; 0.94 

0.93; 0.93 0.90; 0.87 0.91; 0.88 

B4 0.83; 0.85 0.88; 0.93 0.87; 0.90  0.89; 0.87 
B5  0.85; 0.93 0.88; 0.91 0.87; 0.89 0.83; 0.83 

 
 
Table S3. Geometrical distances (Å) from (3,-1) bond critical points to their associated 

nuclear attractors in γ-B28 using the IAM model. One can see that the bond critical point is 

always located close to the bond midpoint, even for the B1-B2 bond. Strong asymmetry appears 

only as a result of chemical bonding (Table S2).  

Atom B1 B2 B3 B4 B5 
B1 0.87; 0.87 0.94; 0.98  0.83; 0.84  
B2 0.98; 0.94 0.87; 0.87 0.91; 0.91 

0.92; 0.92 
0.93; 0.93 

0.91; 0.91 0.89; 0.89 

B3  0.91; 0.91 
0.92; 0.92 
0.93; 0.93 

0.93; 0.93 0.88; 0.89 0.89; 0.90 

B4 0.84; 0.83 0.91; 0.91 0.89; 0.88  0.88; 0.88 
B5  0.89; 0.89 0.90; 0.89 0.88; 0.88 0.83; 0.83 
 
 
$5. Derivation of the LCAO basis sets. 
Triple-ζ basis (Table S4). Starting from 6-21-(1d)G basis set (6-21G*), a 6-111-(1d)G basis set 

was obtained by splitting the two Gaussian type functions (GTFs) of the innermost valence sp 

shell and by using a scale factor of 1.2 for the exponent of the outermost valence GTF. A smaller 

scale factor (1.1) was also tested. Integrated charges are stable enough and the results reported 

here refer to the computation with a scale factor of 1.2. The exponent of the d function is 0.8 as 

in the original 6-21G* basis set. 
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Quadruple-ζ basis (Table S5). This 6-1111-(1d)G basis has the same 1s core description as the 6-

21G basis, whereas the four sp valence shells are composed by a single GTF whose exponent is 

defined according to the rule of thumb of a factor of 3 between contiguous basis functions and 

starting from 0.17 as the lowest exponent. This latter was the lowest possible value to avoid 

linear dependency in both γ-B28 and α-B12. The exponent of the d function is 0.8 as in the 

original 6-21G* basis set. 

Quadruple-ζ basis from cc-pVQZ basis set (Table S6). The 1s and 1s' shells were left unchanged 

(so this basis has a double-ζ rather than a single-ζ description for the core). The outermost s and 

p functions of the cc-pVQZ have been removed because of  linear dependency. The remaining 

four s and four p valence shells have been transformed in four sp shells, each composed of a 

single GTF whose exponent is defined according to the rule of thumb of a factor of 3 between 

contiguous basis functions and starting from 0.14 as the lowest exponent. This latter was the 

lowest possible value to avoid linear dependency in this case. A single d function (α=0.8), rather 

then four of them, was retained. No f and g functions. 

 

$6. Basis set tables.  

In the CRYSTAL-2006 code, each crystal orbital, ψi(r;k) is a linear combination of Bloch 

functions, Φµ (r;k), defined in terms of local functions, ϕµ (r), referred to as Atomic Orbitals 

(AOs). These local functions are then expressed as linear combinations of a certain number, ng, 

of individually normalised Gaussian type functions (GTFs), G, characterized by the same centre, 

fixed coefficients Cj ,and exponents, αj, defined in the input: 

ϕµ (r) = Σj=1,ng Cj G(αj, k; r) 

G(αj, k; r) = Nl,m (αj ) χl,m(r) exp [-αj(kr)2]    , 

where Nl,mi is a normalizing factor, depending also on the angular and magnetic quantum 

numbers,  χl,m  is a real solid spherical harmonic and k is the scaling factor. The AOs belonging 

to a given atom are grouped into shells, which contain all AOs with the same quantum number, n 

and l (for instance 2s, 2p, 3d shells) or all AOs with the same principal quantum number, n, if the 

number of GTFs and the corresponding exponents are the same for all of them (sp shells, also 

known as the s = p constraint). In the tables below, C0, C1, C2 are the C expansion coefficients 

for l=0,1,2, respectively.    

doi: 10.1038/nature07736 SUPPLEMENTARY INFORMATION

www.nature.com/nature 9



  
  

 

Table S4. Triple-ζζζζ basis.  

Shell (k) α C0 C1 C2 
s (1.0) 2082.0 

312.3 
70.89 
19.85 
6.292 
2.129 

0.00185 
0.01413 
0.06927 
0.2324 
0.4702 
0.3603 

  

sp (1.0) 2.282 1.0 1.0  
sp (1.0) 0.4652 1.0 1.0  
sp (1.2) 0.1243 1.0 1.0  
d (1.0) 0.8   1.0 
 

Table S5. Quadruple-ζζζζ basis. 

Shell (k) α C0 C1 C2 
s (1.0) 2082.0 

312.3 
70.89 
19.85 
6.292 
2.129 

0.00185 
0.01413 
0.06927 
0.2324 
0.4702 
0.3603 

  

sp (1.0) 4.59 1.0 1.0  
sp (1.0) 1.53 1.0 1.0  
sp (1.0) 0.51 1.0 1.0  
sp (1.0) 0.17 1.0 1.0  
d (1.0) 0.8   1.0 
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Table S6. Quadruple-ζζζζ basis from the cc-pVQZ basis set. 

Shell (k) α C0 C1 C2 
s (1.0) 23870     

3575       
812.8       
229.7       
74.69       
26.81           
10.32        
4.178    
1.727 

0.000088 
0.000687 
0.0036 
0.014949 
0.051435 
0.143302 
0.300935 
0.403526 
0.22534 

  

s (1.0) 23870     
3575       
812.8       
229.7       
74.69       
26.81           
10.32        
4.178    
1.727 

-0.000018 
-0.000139 
-0.000725 
-0.003063 
-0.010581 
-0.031365 
-0.071012 
-0.132103 
-0.123072 

  

sp (1.0) 3.78 1.0 1.0  
sp (1.0) 1.26 1.0 1.0  
sp (1.0) 0.42 1.0 1.0  
sp (1.0) 0.14 1.0 1.0  
d (1.0) 0.8   1.0 
 

 

$7. Additional experimental details.  

Synthesis. As described in the paper, samples of γ-B28 were synthesized in BN capsules. In 

previous studies28 BN has been proven to be non-reactive with crystalline boron up to at least 

2000 K and, therefore, the BN capsules be suitable for synthesizing chemically pure boron phases 

at temperatures below 2000 K. The starting material for high pressure synthesis was 99.9999% 

chemically pure β-B106. We have also tried to use metal (Pt) capsules for the high P-T synthesis. 

The product shows significant diffusion of Pt in the sample, colour change and heterogeneity. 

When BN capsule, which offers inert environment, was used, a very clean interface between the 

recovered sample and the capsule is observed under microscope, and the samples look very 

uniform in colour and texture. Conditions of synthesis were: 12 GPa and 1800 K (annealed during 

30 minutes), 15 GPa and 1800 K (annealed during 60 minutes), and 20 GPa and 2000 K (annealed 

doi: 10.1038/nature07736 SUPPLEMENTARY INFORMATION

www.nature.com/nature 11



  
  

during 10 minutes). The homogeneity of all γ-B28 samples was established by micro-Raman 

spectroscopy (Dilor XY system, 5 micron beam). The X-ray electron probe microanalysis (S400, 

Leica / PGT Spirit and SX-50 Camebax, Cameca) of the recovered samples has revealed that the 

impurities, if present in the γ-B28 samples, are at an undetectable level.  

Diffraction pattern and Le Bail refinement. While full Rietveld refinement of the structure cannot 

presently be performed (small size of the samples, which are not perfect powders; low scattering 

of X-rays by boron), partial refinement validating our determination of lattice parameters was 

possible and its results are presented in Fig. S5. The cell parameters resulting from this 

refinement are a=5.056(1) Å, b=5.641(1) Å, c=6.995(1) Å and Rwp=2.46 %. The values from the 

standard indexing procedure are a=5.0544 Å, b=5.6199 Å, c=6.9873 Å. Theoretical values are 

a=5.043 b=5.612 Å, c=6.921 Å.  

 

Fig. S5. Le Bail refinement of the powder diffraction spectrum of γ-B28. The wavelength is 

λ=0.7307 Å. Red line and black crosses are calculated and observed data, respectively, and green 

line is their difference. Blue vertical bars show the expected peak positions.  
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