
Vol.:(0123456789)

Journal of Cluster Science (2025) 36:98 
https://doi.org/10.1007/s10876-025-02815-0

ORIGINAL PAPER

Structural Motifs and Evolution of Boron Nanoclusters

Ekaterina D. Anisimova1   · Elizaveta E. Vaneeva1,2   · Vladimir S. Baturin1   · Sergey V. Lepeshkin1,2   · 
Artem R. Oganov1 

Received: 22 January 2025 / Accepted: 29 March 2025 / Published online: 14 April 2025 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
Boron is a chemically versatile element, capable of forming diverse chemical bonds (e.g., single, double, triple, 3-center 
2-electron bonds, and more), which determines its chemical behavior as a pure substance and in compounds with other 
elements. Electron deficiency and tendency to form multicenter bonds give rise to the ubiquitous presence of clusters in 
structures of boron allotropes and of many boron compounds in bulk and molecular forms. Here we investigate a wide range 
of neutral boron clusters Bn (n = 2–60) using the first-principles evolutionary algorithm USPEX. We find clear preference 
for planar structures for n < 10, while there is a competition between planar, cage, bilayer, and tubular structures for n > 
10. We identify magic clusters as those having positive second-order differences of the total energy (and additionally ana-
lyze their fragmentation energy and HOMO–LUMO gap). Most of the magic clusters have even n, the most notable exception 
being magnetic cluster B39 with cuboctahedral shape. Investigating the concept of aromaticity of inorganic compounds, we 
applied such approaches as nuclear independent chemical shift (NICS) and adaptive natural density partitioning (AdNDP) 
to a number of boron clusters and found that two clusters, B10 and B13, are aromatic (the former being magic).

Keywords  Boron clusters · USPEX · Aromaticity · Antiaromaticity · Multicenter indexes · Adaptive natural density 
partitioning

Introduction

For many decades chemists, physicists and materials scien-
tists have been attracted and fascinated by unusual bonding, 
unique structures and interesting properties of boron and 
its compounds. Boron’s chemical complexity is caused by 
its chemical frustration, as we explained in work by Oganov 
and Chen et al. [1]: located between metals and nonmetals 
in the Periodic Table, it has only three valence electrons and 
therefore could be a metal, if its valence electrons were not 
localized so close and attracted so strongly to the nucleus. 
As a result of this frustration, all five established crystal 
structures of boron allotropes are complex [1–3]. Rhombo-
hedral β-B106, which is the most common crystalline phase, 

is a superhard material with a high melting point (2453 K) 
[4].

In the recently discovered1 structure of ɣ-B28 (and likely 
also in β-B106) some boron atoms have significant fractional 
positive and negative charges. Due to electron deficiency 
of boron, multicenter covalent bonding is widespread: 
3c–2e [5, 6] bonds are present within boron icosahedra in 
boranes and bulk boron; a 12c–2e bond has been found in 
the [B12H12]2–cluster [7]. To get better understanding of 
such compounds, one can use the electron counting rules 
proposed by Wade and extended by Jemmis [8, 9]. Electron 
deficiency can be removed when a boron atom accepts a 
whole electron. According to the Zintl-Klemm [10] rule, 
the structural behavior of a negatively charged boron atom 
is similar to that of a carbon atom, which is illustrated by the 
structure of graphene-like boron layers observed in MgB2 
[11] and in lonsdaleite-like boron framework in its predicted 
high-pressure phase [12].

While solid boron is non-magnetic, magnetism can 
appear in low-dimensional forms of this element: e.g., iso-
lated boron atom is magnetic, and magnetic moments have 
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been predicted in some low-energy forms of borophene [13]. 
Some boron clusters can be magnetic as well.

Boron nanoclusters get increasing attention due to their 
potentially interesting electronic and chemical (e.g., cata-
lytic) properties. Boron-containing compounds are widely 
utilized in luminescent materials, liquid crystals, polymers, 
sensors, nonlinear optics, and coordination polymers. In 
addition to these applications, boron is notable for its excep-
tionally high gravimetric and volumetric energy densities 
(for example, in combustion processes) among elements. 
This makes it a valuable additive to traditional hydrocar-
bon fuels, such as n-decane and kerosene, to enhance their 
energy density and improve combustion efficiency. Boron 
can significantly increase the combustion temperature due 
to its high heat of combustion, resulting in improved thermal 
efficiency and greater thrust or energy output of the fuel. 
While crystalline boron allotropes contain icosahedral B12 
groups, structures of small boron nanoclusters are quite dif-
ferent [14]. So, it is interesting to find at which size boron 
clusters become similar to the structures of bulk boron allo-
tropes. Pure boron nanoparticles are expected to form single-
atom planar sheets, cages, or nanotubes, which has been con-
firmed by many theoretical and experimental studies. The 
preferred geometry (planar [14], tubular [14–16], bilayer 
[17], cage [17], and core–shell [18]) depends on the cluster 
size. Small clusters (with up to 20 atoms) have been mostly 
found to exist in planar configurations [19, 20]. In medium-
sized clusters, there is a competition between two structural 
motifs [17, 21]. For example, the well-known quasi-planar 
structure B36 is known from experiment and is thought as a 
building block for producing a single-atom borophene sheet 
[22]. The smallest tubular boron structure seen in the experi-
ment consists of 20 atoms and is a potential precursor for 
single-walled boron nanotubes [22]. Boron cages have also 
been subject of great interest, with B40 being the first syn-
thesized. Accurate calculations have confirmed that clusters 
containing 46, 48, and 50 atoms exist in three competitive 
structures: core–shell, bilayer, and quasi-planar [17]. Larger 
clusters have been demonstrated to form core–shell, rather 
than hollow-cage structures [18]. First-principles stud-
ies of B80, B68, and B74 have established the existence of 
a B12 icosahedral core which makes the core–shell geom-
etry more stable than cage [18]. These large clusters can 
be viewed as already reminiscent of the structures of bulk 
boron allotropes.

An interesting and for now elusive aspect of inorganic 
molecules and nanoclusters is aromaticity. The very con-
cept of aromaticity is rather ambiguous, and has led to six 
criteria [23] to determine if a compound is aromatic, non-
aromatic, or antiaromatic (i.e., having 4n π-electrons that 
destabilize cyclic systems and make them more reactive 
[24]): electronic, energetic, geometric, magnetic, and the 
ones based on reactivity and spectroscopy. In the case of 

inorganic compounds, the final conclusion about aromaticity 
is considered reliable only after careful consideration when 
multiple criteria are met. For some compounds, aromatic-
ity, antiaromaticity, and non-aromaticity can be evaluated 
directly from the calculated current density maps. Accord-
ing to this criterion, strongly diatropic rings mean that the 
molecule is aromatic, strongly paratropic—antiaromatic; if 
there is no ring, the conclusion about non-aromaticity can 
be made [25]. Here it is important to remember that the 
ground state of the nanocluster could be in the triplet state 
and Baird's rule is applied. According to this rule, planar 
cyclic structures are aromatic in their lowest triplet state 
if they have 4n π-electrons, and antiaromatic if they have 
4n+2 π-electrons. This is the photochemical counterpart to 
Hückel's rule, which applies to the singlet ground state.

For boron clusters, in the absence of relevant experimen-
tal data, only four criteria can be evaluated—magnetic, spec-
troscopic, bonding analysis, and resonance energy. Similar 
approach to assess structural evolution and stability was used 
in a number of previous works [26–30]. In this work, we 
want to get a full understanding of the Bn clusters’ behavior 
through an investigation of their optimal and low-energy 
metastable structures in a wide range of compositions (n = 
2–60). Structural competition and evolution as a function of 
the number of atoms were investigated and compared with 
the previously reported results. Another goal of our study is 
to determine magic clusters (and factors stabilizing them), 
explore the evolution of the type of structure with increasing 
number of atoms, and check the possible effect of aromatic-
ity on  stabilization of clusters.

Computational Details

The initial search for lowest-energy boron clusters was per-
formed using the first-principles evolutionary algorithm 
USPEX [21, 31, 32]. This method offers an important advan-
tage of enabling simultaneous prediction of structures of 
different composition, taking advantage of their evolutionary 
competition and exchange of structural information. This 
leads to a significant speedup of the calculations, relative to 
traditional approach of predicting structures for each compo-
sition separately [33]. Our approach allows one to efficiently 
determine not only the ground-state structures for each com-
position, but also many low-energy isomers, which allows 
one to study competition between different structure types.

The local geometry relaxations during global optimiza-
tion search were performed within density functional theory 
(DFT) using PAW method [34] and Perdew–Burke–Ernz-
erhof (PBE) functional [35], as implemented in the VASP 
code [36, 37]. Subsequently, the 10 lowest-energy isomers 
from each composition were selected for further refine-
ment using the GAUSSIAN software [38], applying the 
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PBE0 hybrid functional [39] and the Def2-TZVPP basis 
set [40], finding spin multiplicity corresponding to lower 
electronic state (M=1, M=2 or M=3). All energetic charac-
teristics and HOMO-LUMO gaps were calculated using the 
same level of theory.

To identify particularly stable clusters, expected to have 
particularly high abundances, we computed the second-order 
differences in the total energies Δ2E. As additional criteria, 
we used the fragmentation energies and HOMO–LUMO 
gaps. We also investigated the aromaticity in boron clus-
ters following different criteria that can be evaluated for 
inorganic compounds: adaptive natural density partitioning 
method (AdNDP) [41–45], and nuclear independent chemi-
cal shift (NICS) [46].

Results and Discussion

Structure

All predicted clusters were divided into the planar, cage, 
tubular, core–shell, and bilayer groups. A cluster is consid-
ered planar when all its atoms lie approximately in the same 
plane. Another type is tubular clusters, including clusters 
with one or two atoms sticking out of the tube. Three-dimen-
sional structures consisting of a shell and core containing 
fewer than five atoms were classified as cage structures. 
Structures consisting of two connected planes were classi-
fied as bilayer ones. Finally, boron shells encapsulating an 
icosahedral B12 core were classified as core–shell structures. 
These five types were discerned among 5100 structures of 
boron clusters containing from 10 to 60 atoms (50 different 

compositions with 100 isomers for each) that were found 
through evolutionary search.

All obtained ground-state structures of Bn clusters (n = 
2—60) are shown in Fig. 1. The xyz coordinates of all calcu-
lated ground-state structures are provided in ESI Section S2. 
The clusters, containing 3-5, 8, 10, 11, 13, 15-18 atoms are 
planar, clusters with 6, 7, 9, 12, 23 and 36 atoms are quasi-
planar (exhibit a nearly planar geometry with slight devia-
tions), all the rest are attributed to non-planar clusters. For 
further study, we have selected clusters containing 10–60 
atoms, where the structure competition occurs. For these 
structures, we looked at the structural tendencies of boron 
cluster isomers (Fig. 2) as a function of structural patterns 
from the number of atoms in each cluster plotted as energy 
difference between structures and their ground states. Boron 
clusters with 10-20 atoms adapt mostly planar structure with 
exceptions of B14, B19, which are cage, and tubular B20. Bn 
clusters with n = 21-40 showed the tendency to be cage with 
the exception of tubular B21, quasi-planar B23 and B36, the 
latter being highly symmetric. Clusters with 41-60 atoms 
usually are bilayer, except B41 in cage form and B59 with 
core-shell structure. 

Our results on the structural competition agree with those 
previously reported.[19–21, 47, 48] The remarkable mag-
netic cluster B39, first found by Wu and colleagues [21] and 
characterized by a highly symmetric cage (Oh) of 38 atoms 
around the central boron atom, was also predicted in our 
calculations.

For compositions B31, B32, B33, B35, B37, B38, B41, B43, 
B44, B45, B49 and B50 we identified ground-state structures 
not previously described in the literature.[21] These clus-
ters exhibit lower energy by ~0.3–1.2 eV and mostly have 
low-symmetry structures, except B50 with D2d symmetry. 

Fig. 1   Ground-state structures of Bn clusters (n = 2–60) in two projections with their point groups
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Indeed,  lowest-energy structures are not always bound 
to demonstrate high symmetry, and USPEX algorithm is 
capable of discovering such clusters.

Energetics

One should remember that any cluster is higher in energy 
than its infinite periodic counterpart—the bulk crystal, and 
therefore stability of clusters should be discussed not in 
terms of the lowest possible energy, but using local cri-
teria (comparing a given cluster with clusters of similar 
size). Second-order differences in the total energy Δ2E 
have been shown to work well for this purpose [49, 50], 
while additional insight is also provided by the fragmenta-
tion energy (the minimum energy required to split a given 
cluster into two smaller clusters) and the HOMO–LUMO 
gap. In addition to evaluating stability of our clusters, we 
were interested in the trends—spin states (singlet, doublet 
or triplet), point group symmetries, and wanted to know 
how our results agree with previous studies [19–21, 47, 
48, 51].

These criteria of stability have been successfully used in 
our previous studies [33, 52–59]. In the first criterion, we 
consider the stability with respect to the exchange of one 
boron between two identical nanoclusters Bn. This corre-
sponds to the so-called second energy difference (discrete 
analog of the second derivative of the energy) and can be 
written as:

A cluster with n atoms is considered stable (“magic”) 
when two clusters Bn have lower energy than two clusters 
of neighboring compositions—Bn+1 and Bn–1. Physically, 
this means that a collision of two such clusters will not lead 
to transfer of an atom from one cluster to the other, and 
such clusters can accumulate in significant concentrations. 
Mathematically, such stability is expressed by positive sec-
ond-order energy difference Δ2E, which reveals 30 “magic” 
boron clusters (Fig. 3a), most of which have even numbers of 
boron atoms (and, consequently, even numbers of electrons). 
The magic clusters Bn with n = 4, 10, 12, 14, 16, 18, 20, 22, 
24, 28, 30, 32, 34, 36, 40, 46, 52, 54, 56, 58 are in the singlet 
state, those with n = 3, 5, 7, 27, 39, 43, 49, 51, 59 have an 
odd number of electrons (i.e., are open-shell and magnetic), 
and are in the doublet state, and the unique case n = 8 cor-
responds to a cluster with an even number of electrons in 
the triplet state. Total energies and magnetic moments are 
given in Section1, Table S2, Supplementary Information.

Additionally, we have used the second criterion—the 
HOMO−LUMO gap. A wide HOMO–LUMO gap is usu-
ally associated with increased stability, but it is not expected 
to be completely correlated with Δ2E. The HOMO–LUMO 
gaps (Fig. 3b) have particularly high values for the follow-
ing eleven magic clusters: B3, B4, B6, B8, B9, B12, B14, B24, 
B30 and B40. Wide HOMO-LUMO gaps are related to low 
electronic polarizability, which implies relatively low reac-
tivity and high kinetic stability.

(1)Δ2E = E
[

Bn+1

]

+ E
[

Bn−1

]

− 2E
[

Bn

]

Fig. 2   Structural competition in the Bn clusters (n = 10–60). Vertical axis represents ΔE between different structures and the most stable struc-
ture at each atomic composition n.



Structural Motifs and Evolution of Boron Nanoclusters﻿	 Page 5 of 9  98

Another stability criterion characterizes resistance to 
fragmentation. Here we identify molecules that could spon-
taneously decompose. To this end, we consider all possible 
channels of fragmentation of a given molecule for the decom-
position into two fragments:

The energy of each fragmentation reaction n → a + (n-a) is 
found as:

We are looking for the decomposition into the most stable 
fragments, hence, we calculated the minimal value of all frag-
mentation energies:

(2)B
n
= B

n−a + Ba, where0 ≤ a ≤ n

(3)Efrag,(n, a) = E(a) + E(n − a) −E(n)

(4)Efrag(n) = minaEfrag(n, a)

Interestingly, the lowest-energy  fragmentation path 
for all boron clusters is the removal of one boron atom. The 
dependence of the fragmentation energy on the number of 
atoms is shown in Fig. 3c. Again, we see that clusters with 
even numbers of boron atoms tend to have particularly high 
fragmentation energies. Interestingly, clusters with high 
energy of removal of one boron atom also have high values 
of Δ2E (the exception is B23 with high Efrag and nearly zero 
Δ2E). The energy of removal of one B atom is the structural 
analog of the ionization potential (energy of removal of one 
electron). Its high values are indicative of a closed structural 
shell.

To obtain a full picture, the atomization energy (Fig. 4d) 
was calculated using the formula:

(5)Eat(n) =
(

E
[

B
n

]

−nE
[

B1

])

∕n,

Fig. 3   a Second-order differences of energy Δ2E, b HOMO–LUMO 
gaps, c fragmentation energies ΔEfrag and d atomization energies 
Eat of the ground-state structures of the Bn clusters (n = 2–60). The 
theoretical band gap of α-boron is equal to 1.802 eV, and the calcu-

lated atomization energy of crystalline α-B is − 6.18 eV; one can see 
how the band gaps and atomization energies of large boron clusters 
asymptotically approach bulk values.
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where E[B1] is the energy of an isolated boron atom, E[Bn] 
is the total energy of the cluster, and n is the number of 
atoms. As expected, Eat decreases with the number of atoms, 
approaching the bulk value, and bulk crystal has lower 
energy than any cluster.

Summarizing the results analyzed above, energetic cri-
teria show that mostly even-numbered clusters are showing 
special stability. These are B8, B10, B12, B14, B20, B24, B30, 
B32, B34, B36, B40. It is worth mentioning that B8 has a triplet 
ground state, and hence, due to Baird’s rule, is aromatic (has 
4n π-electrons). The symmetry of magic clusters is higher 
than that of the neighboring non-magic ones. Magicity 
stems from closed electronic and/or structural shell—the 
former implies singlet state, whereas the latter implies high 
symmetry.

Aromaticity

Aromaticity is an important property of a molecular cluster 
that can often be understood by analyzing the characteristic 
features of its individual fragments [60]. In some cases, the 
overall aromaticity of a system can be approximated as the 
sum of the aromaticities of its constituent parts. In this study, 
we aim to explore the relationship between aromaticity and 
magicity in boron clusters by analyzing both magic and non-
magic species. Specifically, we selected several representa-
tive clusters (B10, B11, B12, B13, B15, B16, B18 and B36) to 
determine whether their stability (magicity) correlates with 
their possibly aromatic character.

To assess aromaticity, we employed the Nuclear Inde-
pendent Chemical Shift (NICS) method [46], which falls 
under the magnetic criteria of aromaticity introduced by 
Paul v. R. Schleyer in 1996. The NICS approach is based on 
the response of an aromatic system to an external magnetic 
field, allowing for the quantification of aromatic character. 
For the selected boron clusters, we computed NICS values 
at their geometric centers to determine the extent of elec-
tron delocalization, which is often associated with enhanced 

stability. If a cluster exhibits a significant negative NICS 
value, it suggests a strong aromatic character due to electron 
delocalization in closed circuits.

Our results presented in Table 1 reveal that, among the 
studied clusters, only B10 and B13 exhibit negative NICS val-
ues, indicating their aromatic nature. Interestingly, despite 
its pronounced aromaticity, B13 is classified as a non-magic 
cluster, suggesting that aromaticity has very limited effect 
here and alone does not necessarily dictate the overall stabil-
ity of boron clusters. B10 is both aromatic and magic.

In addition to NICS analysis, we applied the Adaptive 
Natural Density Partitioning (AdNDP) method to further 
investigate the electronic structure and bonding patterns 
within these clusters. AdNDP provides an insightful rep-
resentation of molecular bonding by identifying localized 
and delocalized electron pairs. The method systematically 
recovers traditional Lewis bonding elements (such as 1c-2e 
and 2c-2e bonds) while also revealing multicenter delocal-
ized bonding patterns (for n > 2), which are strongly linked 
to aromaticity.

As shown in Fig. 4, our AdNDP analysis of B13 high-
lights the presence of multicenter 3c–2e and 4c–2e bonds, 
reinforcing its aromatic character. Meanwhile, B36 features 
a prominent 6c–2e bond, suggesting delocalization effects 
that may contribute to its stability.

Fig. 4   AdNDP analysis of a 3c–2e and b 4c–2e bonds of B13, and c 6c–2e bond of B36

Table 1   Calculated NICS values of corresponding clusters at the 
geometry center, 1 Å and 2 Å above were computed, given in ppm.

Cluster NICS(0) NICS(1) NICS(2)

B10 − 52.836 − 21.097 − 4.168
B11 25.995 19.158 7.912
B12 27.743 14.385 8.541
B13 − 12.363 − 8.439 − 7.695
B15 15.660 11.592 2.944
B16 24.012 15.898 5.827
B18 25.683 21.897 6.731
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Overall, our findings suggest that while aromaticity plays 
a role in the electronic structure and bonding of boron clus-
ters, it does not always correlate directly with their magicity.

Conclusions

In this study, we investigated a wide range of boron clusters 
and identified clear trends in their structural motifs. As the 
number of atoms increases from 10 to 60, boron clusters 
predominantly adopt planar, cage, or bilayer structures, with 
only a few tubular structures observed. For clusters con-
taining more than 60 atoms, structural diversity diminishes, 
and core–shell structures become the only motif present, 
resembling bulk boron structures. We identified previously 
undescribed ground-state structures for the compositions 
B31, B32, B33, B35, B37, B38, B41, B43, B44, B45, B49, and B50. 
These newly identified structures are ~0.3–1.2 eV lower in 
energy compared to alternatives reported in the literature, 
and most exhibit low symmetry, with the exception of B50, 
which exhibits D2d symmetry. To evaluate stability of the 
clusters, we employed a simple approach by calculating the 
second derivative of the cluster energy with respect to com-
position. This analysis revealed magic clusters, including B8, 
B10, B12, B14, B20, B24, B30, B32, B34, B36, and B40 and some 
others. The symmetry of these magic clusters is generally 
higher than that of their non-magic neighbors. Notably, B8 
has a triplet ground state and is aromatic due to Baird’s rule, 
possessing 4n π-electrons. To further investigate, we tested 
the concept of aromaticity on several magic Bn clusters (n 
= 10–60) using a nuclear independent shift approach. Our 
findings indicate that only two clusters, B10 and B13, are 
aromatic, with B10 being the only one classified as magic. 
Thus, aromaticity plays a minor role in the stabilization of 
boron clusters (magicity). Instead, the dominant factors are 
a closed-shell electronic structure, characterized by large 
HOMO-LUMO gaps and an even number of electrons, and 
a closed-shell atomic structure.
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