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| am a mathematician

e 1997-2014: BSc, MSc, PhD, 2 postdocs in Mathematics
(Computational Fluid Mechanics, Numerical Methods)

e Since 2014: application of (ideas of) Machine learning to interatomic
interaction models (mostly, materials)

My interest:

e technology (“the how”) of machine-learning interatomic potentials
(as opposed to the science /“the what and why”/ of atomistic
simulations)



Molecular modeling

* ~40% of supercomputing time is —
spent on Molecular Modeling FOSmE

Scalabl®
"\, Solvers

[Adopted from nersc.gov] VENERGY



Motivation:

more and more materials properties
can be computed with DFT




Ab initio Melting point calculation

Aluminum (8x8x8 k-point mesh):

Zhu, Kbrmann, Ruban, Neugebauer, Grabowski (2020):
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From rapid prototyping to high performance computing

Structure

Relaxation

TG GU UG

» 3 Potential

4 Minimize position

_‘

7 NPT - solid

8 NPT - liquid

> 9 Combine

P » 10 strained interface

user interface

Python

user space interface

operator
overload

factoring

v

automation

pyiron object
. data resources

‘—f

data storage

HDF5 SQL serialize

nested
objects
]
1 setof | resources
! pyiron 1 —
: objects ! specialized | computer | parameter
i ! codes cluster | database

J. Janssen, et al., Comp. Mat. Sci. 161 (2019) - http://pyiron.org - https://github.com/pyiron/
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Prediction of convex hull of stable alloys
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Machine-learning interatomic potentials

My perspective



Machine learning as interpolation,

... data-driven and multidimensional.

* Problem: Given E9™(X), interpolate
it with E'(X)

* Issue: no transferability w.r.t. the X
number of atoms

e Solution: use locality! (An atom
interacts only with 10-100
neighboring atoms)




Locality: Energy

E: Ev(ril'riZ"") 0 0 0o 0O 0o 0o o o o0 o
l

e Most interatomic potentials are
covered. (Coulomb should be added

explicitly.) °e el
* Problem: find a good V. o o o



Traditional fitting

e Embedded atom model: E =}, V (11, 752, --- ),

¢ V(rl)=Z]g0(‘ru)+F(Z]p(rU)) ©O 00 00O 0O O O 0 O O

e Early interatomic potentials (=force fields) had few
(three) parameters fitted from few experimental

data (elastic constants, defect formation energy, °© °°
EtC.) O 0 0 ©

O O @]

e Later potentials have tens of coefficients (e.g., 0 o o

spline coefficients) fitted from the QM data. o o o

e What is different now: there are lots of data! © 0 0 0 0o o0 o o00O©

e So, the question is: how to incorporate lots of data
into the models?



Machine-learning ideology:

1. Choose a (machine-learning) model E = E(x)
(x is an atomic configuration)

2. We want to minimize |E9™ — E|.
So we:

e Generate data: x(V, x(@ ... Eqm(x(l)) , Eqm(x(z)),..., fqm(x(l)),
* Minimize on data: Zi‘E(x(i)) — Eqm(x(i))‘2 + (forces)+...

But what if sampling the right x(®)
is a part of the problem?



Illustration: calculating convex hull

Formation energy,
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Problem:

e accurate sampling of ground
state structures

needs
e accurate approximation of PES
which needs

e accurate sampling of ground
state structures

which needs ...
14



Solution: Active learning / Learning on-the-fly

Active learning simulation

Molecular Simulation

Active
learning

YES HEEdS no

learning? potential
(MLP)

Get QM data

15



Overview

Overview
Moment Tensor Potentials
Active learning (how to learn while sampling a PES)

O\ =

Applications

16



Moment Tensor Potentials: descriptors

Descriptors of atomic environments:
* Moments of inertia of surrounding atoms

* They satisfy the needed symmetries (rotation,
permutation, translation, ...);

* Math:
* My (ri) = X ful|rij])ry ® - @15

m times

Qi

M = itertia tensor




Moment Tensor Potentials, basis functions

* V(u;0) = Xq 0,B, ()

* B, (u) are (all) different multiplications (contractions) of inertia tensors
My, »(u) yielding a scalar.

Theorem:

* B, (u) is an (over-)complete basis

Equiv. to Atomic Cluster Expansion [Drautz (2019)], see
[Bachmayr, Csanyi, Dusson, Etter, van der Oord, Ortner (2020)]



Learning curves

Database (Csanyi, Bartok, Szlachta, 2014)
* Tungsten: uniform and perturbed lattices, vacancies, dislocations

0.2+
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Performance tests

Database (Csanyi, Bartok, Szlachta, 2014)
* Tungsten: uniform and perturbed lattices, vacancies, dislocations

Potential: GAP MTP; MTP>

CPU time/atom [ms]: 134 2.9 0.8
basis functions: 10000 11133 760
Fit errors:

force RMS error [eV/A]:  0.0633 0.0427 0.0633
%] 4.2% 2.8% 4.2%

Cross-validation errors:
force RMS error[eV /A]: - 0.0511 0.0642
[%]: - 34%  4.3%




Comparison with more methods

Test error (meV/atom)
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Yunxing Zuo,
Chi Chen,
Xiangguo Li,
Zhi Deng,
Yiming Chen,
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arXiv:1906.08888
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Extrapolation, reliability, and active learning

Pathway between two equilibrium AgPd structures

Energy (e\/atarm)

0 2 4 6 8 10
Pathway snapshot number

Extrapolation grade

>
— DFT
— MTP
>

0 2 4 6 § 10
22

Active learning
Pathway snapshot number



Active Learning of
Interatomic Potentials



Active learning

Active learning simulation

Molecular Simulation

learning

YES nEEdS no

learning? potential
(MLP)

Get QM data

24



Active Learning of MLIP: Motivation

Higher accuracy => More parameters to fit => Lower transferability

6

25



Active learning

Solution: detect when we are extrapolating and switch on learning

26



Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning

e
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning

49



How we do it?

D-optimality

Skip to Applications

50



D-optimality

essentially

e detects hitting outside a
convex hull,

but for linear models

(convex hull -> simplex)

Algorithm: O(N?)

E. Podryabinkin, A. Shapeev (2017)

Interpolation - ok

Atomic descrAiptor 2 \

)
/mic descriptor 1

Extrapolation —
add to train set


Presenter
Presentation Notes
Different weighting by distance = extracting different shells of atoms; thus we have moment tensors for various shells.


Applications



Application

MD with empirical

Ab-initio MD
potential

4]

Empirical

4]

DFT

potential

+ Fast

— Time consuming
— Qualitative accuracy only

+ Accurate

1: Learning on the fly

Hybrid MD

evaluation of MLIP

e Detects and learns

“extrapolative”
configurations
Machine Learning
Potential
~1 21 e Robust

+ Fast

e Balancing accuracy and
+ Accurate (hopefully)

amount of QM calcs

e Combines training and

53



Application example #0: Learning on the fly in MD
process at NVT-ensemble of 128 BCC-Li atoms
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0

0

QM calcs while learning on the fly

QM calcs

Threshold
—0
0.01
—0.1

—1
—10
—AIMD

5000

10000

15000

20000

25000

MD steps
30000

0.0003

0.00025

0.0002

0.00015

0.0001

0.00005

0

RMS Energy error vs. QM calcs

AE, eV
10 1 0.1 0.01 0
QM calcs
0 1000 2000 3000 4000

Conclusion: Amount of QM calcs can be reduced several times at the cost -

of minor losses in accuracy
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Prediction of convex hull of stable alloys

How it is done:

1.

Start with 1500 crystal prototypes
(unequilibrated structures)

Equilibrate (relax) them with DFT and
choose the ones on the convex hull

Structure Sampling
2i1dXed
t re

[w }

e

We want to
machine-learn
this

56



K. Gubaev,E. Podryabinkin

Convex hulls now Gus LW. Hart, A.S. (2019)

How it is done:

1. Start with 400K crystal prototypes
(unequilibrated structures)

2. Equilibrate (relax) them with MLIP while
learning on the fly

Structure Sampling

N ﬁ.
A

re

rototy

w.x

A

confi

|
ot B

AL-MLIP

5

- config

.




Convex hulls now: details

1. Screen-1:
1. Start with 400K structures

2. Obtain 400K relaxed structures,
with RMSE = 25 meV/atom

3. Retain 40K low-energy structures
(within 4-c)
2. Screen-2:
1. Start with 60K structures

2. Obtain 60K relaxed structures,
with RMSE =9 meV/atom

3. Retain 7K low-energy structures
(within 4-c)

3. Final relaxation:
1. Relax 7K structures on DFT

Al



Results

 Some newly discovered structures are hard to “sample passively”:




Results and Discussion

 No approximation error in the answer!
(We only take a risk of missing a structure in the 4-c interval.)
e 100x speed-up; CPU time:
1. Final relaxation: 90%
2. Training set: 9%
3. Training, Relaxation: 1%

e Main challenge: reduce the 90% < improve accuracy (9 meV/atom):

e Sampling is now the bottleneck, not DFT (we should make friends with
Complex High-Dimensional Energy Landscapes)



Application 1b: Boron crystal structure
p rec lCtI on E. Podryabinkin, E. Tikhonoy,

A.S., Artem Oganov (2019)

Boron structures prediction challenges:

e Alot of allotropes

 Some allotropes has more than 100 atoms (impossible with DFT)

B-12 (6.
10 days with DFT
3 days with MLIP

. B-106 B-108 = B12 x9
2 months with DFT 2 year on DFT Best Found on MLIP 10 years with DFT

5 days with MLIP 8 days on MLIP within 2 weeks > weeks with MLIPZ



(b)

Standard deviation (meV)

Application

* Vibrational entropy of a MoNbTaVW

quasi-random structure

25— 36
20— OK harmonic / | 25
. 16
15 effective
harmonic
. 9
1D+
— —— a4
EAM
S .
0 MTﬁ ~2 meV | j()
0 0.25 0.5 0.75 1
ref Coupling constant A DFT

hr)

3

CPU time (10

2: thermodynamic integration

Blazej Grabowski, Yuji Ikeda,
Fritz Koermann,

Christoph Freysoldt,
Andrew Duff, A.S.,

Joerg Neugebauer (2019)

0K harm. DFT
-2008 meV

-31 meV
anharmonicity

full DFT > NTP | meV
2039 meV 7 - ~2040 meV
< EAM
-2052 meV 63

effective harm.
-2059 meV



Application #6: automated phase diagrams

(collaboration with Machine Learned Phase Diagram via Nested Sampling: AgPd
Livia Bartok-Partay, Gabor 1600 ' !
Csanyi, Conrad Rosenbrock 1500 1
and Gus Hart) 1400 - | e
* Fitted a potential for 13001 P RARE
Ag-Pd binary system +2007 T
(solid and liquid) S
= 10001 o
S 900 -
©
L 800 -
c 0 20 40 60 80 100
a Composition (%AQ)
- — M= =27 —— A= =21 — Au=-—1.2
Au= =25 —— Au=-=1.9 ¢ Fixed Comp.

— Au=-2.3



Application

A.S., E. Podryabinkin,

4: elaStlc prope rtles K. Gubaey, F. Tasnadi,

lgor Abrikosov (manuscript)

e Elastic constants C,, > C,, > C,, (bcc-Ti)

Cjf (GPa)

110F

105

100 |

95+

90

86

80

25+

20

__H
' |
H%

190

1-a—

j_

1000

1200
T (K)

1400

1600

110 - DFT with uncertainty (50
105 000 DFT-MD time steps)
100

o5 MTP (negligible statistical

uncertainty)

186

We trade

e 1 GPa statistical error
for

e 1 GPa model error and

20 65
e >100x speed-up

180

125



First-principles multiscale mode

Computationally not
feasible

FEM

M

X

DFT

Key steps:
1. Ab-initio molecular dynamics simulations

Graphene Borophene

Graphene

2. Machine-learning interatomic potentials
m
Moment tensor potentials (MTPs): v (r,) = Z 6,B;(ry),

J=1

3. Classical molecular dynamics simulations
Heat transfer

Not accurate and/or

stable

FEM

FEM

*

| MLIP

*

DFT

ing of thermal conductivity

SCIENCE ADVANCES | RESEARCH ARTICLE

MATERIALS SCIENCE

Borophene-graphene heterostructures

Xiaolong Liu' and Mark C. Hersam'>>4*

ofd lar two-di (2D) materlals Is essentlal for nanoelectronic applications. Compared to
wvertical stacking, covalent lateral stitching requires bottom-up synthesis, resulting in rare realizations of 2D lateral
heterostructures. Because of Its polymorphism and diverse bonding geometries, borophene Is a promising candidate
for 2D heterostructures, although suitable synthesis conditions have not yet been demonstrated. Here, we report
lateral and vertical Integration of borophene with graphene. Topographic and spatially resolved spectroscoplc
measurements reveal nearly atomically sharp lateral rfaces despite imperfect crystall phic lattice and
symmetry matching. In addition, boron Intercalation under graphene results In rotationally commensurate vertical
heterostructures. The rich bonding configurations of boron suggest that borophene can be Integrated into a
diverse range of 2D heterostructures.

4, Finite element modeling of graphene/borophene heterostructures Science advances 5 (20 19): eaax6444

2930

Heat transfer

2920

2910

2900

2890

2880

2870

90%C/10%B

S, Mendeley

—_
b4
£
o
2
>
=
=
=
Q
3
=
c
Q
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(4]
2
g
=
w

10°

10'

10? 10°
Domain size (nm)

Mater. Horiz., 2020, https://doi.org/10.1039/DOMH00787K

104

10¢ Machine Learning Interatomic Potentials Enable First-
Principles Multiscale Modeling of Lattice Thermal
Conductivity in Graphene/Borophene Heterostructures

Wersion 1 | DOW 10,1782/

Bahayra Mortazav, Aleander e

http://dx.doi.org/

b

10.17632/pbgscy3ptg.1
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First-principles multiscale modeling of thermal conductivity

Lattice thermal conductivity of pristine crystals

Classical MD simulations

120 4500
9 (a) (b) —MTP [PBE]
100 vl I gm fgii [ES\;U
— - N in 201¢ g
A i £ Qin 2018 [rPBE] _ s T
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= i VAV VANV AVARVAN = ---Peng 2016 [PBE] -
E 80 - o VARV AY Y S 3000] - -Gao 2018 [PBE] Sol
é PAY >~ ~=Fugallo 2014 2
Fy Zigzag \ Waval BE= 7
'2 i i y u.‘, N v A - g Vv A I.‘\,,, . ] | ’,"/:_4";'
© 60 1 ¢ ETANTAYY D—t AV g 2200 «:’F
S ol :"“f
o g £ 2000+ |
s R :
I
S 40+ 2 = 1500 y i
g ¢ g b Ed
5 50 ] ¢ 21000+
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= i — ey
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0 TTTT T TTTT 2 4
1 2 3 4 O - ('l T T TTTTT] T T T T TTTIT |||1r]) LI B I 2
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Length (nm) Mean free path (um)

MTP can be employed to estimate the thermal conductivity, either with MD simulations (desirable for

low-symmetry structures) or BTE solution.
MTP/ShengBTE: http://dx.doi.org/10.17632/fmkvzbk3nt.1

BTE solution of thermal conductivity

m Mendeley

Accelerating first-principles estimation of thermal
conductivity by machine-learning interatomic potentials: A
MTP/ShengBTE solution

Published: 8 jun 2020 Version 1 DOl 10.17632fmkvzbk3nt.1

Contributor(s): Bohayra Mortazavi, Alexander shapeev, Evgeny Podryabinkin , Xiaoying Zhuang

Mater. Horiz., 2020, https://doi.org/10.1039/DOMH00787K
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First-principles multiscale modeling of thermal conductivity

Thermal conductance of grain boundaries
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First-principles multiscale modeling of thermal conductivity

Finite element modeling of heterostructures

(a) 60%C/40%B

(b) D=10 nm, 60%C/40%B

‘ ' ‘
Outward heat flux

Inward heat flux

(c) D=250 nm, 90%C/10%B
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Mater. Horiz., 2020, https://doi.org/10.1039/DOMH00787K
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|
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Schematic of the (desired) algorithm Skd”a Hodapp, A.S.
Example for screw dislocation motion in bcc metals  siwew s o scence s rechnotogy

B  [S1] Run simulation

[S4] Retrain MLIP on [P

new training sct S

e [S2] Extract extrapolative
configurations

[S3] Construct periodic
configurations and add
them to the training set

CSP coloring of atoms after
applying periodic boundary
conditions to {r}} directly

Main difficulty: how to construct these periodic training configurations?

M. Hodapp, 15/05/2020 3



WORK IN PROGRESS:

Simulation of

nanoindentation for hardness calculation
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Calculated hardness vs. measured

Diamond

—_—

[ Our work -
] Experimental references
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Calculated nanohardness of the considered compounds with respect to the hardest diamond (111)
surface in comparison with the available experimental data



On-lattice models: HEAs

e Atoms of different kind sit in the
lattice sites.

* Problem: predict the interatomic
interaction energy (formation
energy, mixing enthalpy)
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T. Kostiuchenko,
Fritz Koermann,
Joerg Neugebauer, A.S. (2019)




Comparison with existing methods:
without local lattice distortions
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Results & discussion:

accounting for local lattice distortions
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Investigation of complex multicomponent alloys with

machine-learning interatomic potentials Tatiana Kostiuchenko

Andrei V. Ruban
Jorg Neugebauer
A.S.

Fritz Kirmann

VCoNi alloy (fcc, magnetic binary alloys)

Short-range order in face-centered cubic VCoNi alloys

Before accounting for local lattice relaxation _ _
After accounting for local relaxation
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Short-range order In face-centered cubic VCoNi alloys
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Full length article
High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy
enabled through dynamic recrystallization of a duplex microstructure of
ordered phases

Seok Su Sohn™*, Dong Geun Kim®, Yong Hee Jo®, Alisson Kwiatkowski da Silva®, Wenjun Lu,
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Summary: MLIP Code

* Public version: http://mlip.skoltech.ru/
e developer’s version (incl. unpublished capabilities) by request

e QM model interfaces:
e VASP, Gaussian (DFT)

e Atomistic Driver interfaces:
e LAMMPS, serial and parallel (but no learning on the fly)
e USPEX
o ASE
* RPMDrate

e Active learning / Learning on the fly


http://mlip.skoltech.ru/
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