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Optimizing supercell structures for Heisenberg exchange interaction calculations
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In this paper, we introduce an efficient, linear algebra-based method for optimizing supercell selection to
determine Heisenberg exchange parameters from density functional theory (DFT) calculations. A widely used
approach for deriving these parameters involves mapping DFT energies from various magnetic configurations
within a supercell to the Heisenberg Hamiltonian. However, periodic boundary conditions in crystals constrain
the number of extractable exchange parameters. To identify optimal supercell structures for extracting a target
number of exchange parameters, we systematically generate supercells within a specified volume range using
Hermite normal form matrices. Then, for each supercell, we perform a null space analysis on the coefficient
matrix obtained by mapping magnetic configurations to the Heisenberg Hamiltonian. By analyzing the null
space results for each supercell structure, we identify the optimal configuration for extracting a target number
of exchange parameters. This optimal supercell selection approach significantly reduces computational time and
resource requirements. This method, which involves generating and analyzing supercells before performing DFT
calculations, has demonstrated a reduction in computational costs by one to two orders of magnitude in many
cases.
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I. INTRODUCTION

Predicting material properties using theoretical and com-
putational methods is appealing because it reduces the cost
of designing materials for specific functions. However, pre-
dicting magnetic properties poses unique challenges due to
both theoretical and computational difficulties. Theoretically,
approximations in electronic structure calculations, especially
in density functional theory, often result in inaccurate es-
timates of electron exchange-correlation energy, leading to
incorrect predictions in magnetic systems [1]. Even advanced
techniques such as continuum quantum Monte Carlo can be
unreliable for comparing magnetic states due to the fixed-node
approximation [2]. Computational challenges include long
run times and difficulties in achieving electronic convergence,
particularly when using large supercells. Therefore, finding
an appropriate supercell with fewer atoms can reduce com-
putational cost and may even enable the use of more refined
ab initio methods [3], such as coupled cluster singles and
doubles (CCSD) [4] through density matrix embedding theory
(DMET) [5,6].

One common approach for obtaining thermodynamic mag-
netic properties is to derive a spin model Hamiltonian from
electronic structure results, which can then be used to cal-
culate such properties as transition temperatures. There are
two main methods for deriving spin models: One involves
explicitly calculating interatomic exchange interactions using
Green’s function methods [7], while the other maps the total
energies of different magnetic configurations from electronic
structure calculations onto the spin model. This paper focuses
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on the latter method, which is applicable to any electronic
structure calculation that determines total energy through vari-
ational methods.

The main interaction in a spin model Hamiltonian is the
Heisenberg exchange interaction, so we assume the Hamilto-
nian includes only the Heisenberg term. However, including
other interactions, such as the Dzyaloshinskii-Moriya (DM)
interaction, does not impact the method for determining the
optimal supercell presented in this paper. In the mapping
method [8], the total energies of various magnetic configura-
tions are used to extract the exchange interactions Ji, j between
magnetic moments at sites i and j in the Heisenberg term,
given by − 1

2

∑
i, j Ji, j Ŝi · Ŝ j , where Ŝi and Ŝ j represent the

normalized magnetic moment vectors.
For collinear magnetic configurations, where the spin vec-

tors Ŝi and Ŝ j simplify to a single value of ±1, the mapping
equation reduces to

Ek =
m∑
i

αk,iJi + c0. (1)

Here, k denotes the kth magnetic configuration, Ji represents
the exchange interaction for the ith nearest neighbor, and
Ek is the total energy obtained from electronic structure cal-
culations for that magnetic configuration. The term c0 is a
constant. The coefficients αk,i and c0 form a matrix An×m+1,
where n is the number of different magnetic configurations.
From this matrix, one can determine, for a given supercell, up
to which neighbor the exchange interactions can be reliably
calculated [1].

To visually demonstrate the limitations of calculating
exchange interactions in a supercell, we consider a 2 ×
2 hexagonal monolayer supercell containing four magnetic
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FIG. 1. The figure illustrates the effect of periodic boundary
conditions on Heisenberg exchange calculations. It shows a 2 × 2
supercell of a hexagonal monolayer, where each of the four atoms
in the supercell is represented by a distinct color, indicating different
magnetic directions. As shown, the colors for the first nearest neigh-
bors (inner circle) and second nearest neighbors (outer circle) are
identical. This demonstrates that the exchange interactions between
the first and second neighbors cannot be computed in this supercell
using the mapping method, as they share the same α coefficient
[Eq. (1)].

atoms, as shown in Fig. 1. Each atom is assigned a distinct
color to represent an independent magnetic direction. How-
ever, due to periodic boundary conditions, these colors repeat,
leading to a situation where the first and second nearest neigh-
bors share the same set of distinct colors. This implies that the
coefficients αk,1 and αk,2 are identical, making it impossible
to independently determine the exchange interactions J1 and
J2 in this supercell.

In more complex systems, this limitation may not be as
easily detected, so a mathematical approach is necessary.
By applying Gaussian elimination and analyzing the null
space of matrix A, we derive a general relationship, αk,l =
β0 + ∑

i<l βiαk,i, which shows that Jl depends on the pre-
ceding exchange interactions Ji<l due to periodic boundary
conditions. To calculate exchange interactions beyond the lth
nearest neighbor, either a larger supercell or a supercell with
a different shape is required [see the Supplemental Material
(SM) [9]].

To calculate exchange interactions up to a specific number
of nearest neighbors, identifying the smallest supercell that
permits the computation of these interactions can significantly
reduce computational costs. Researchers typically extend the
primitive cell by integer factors n, m, and q to form a con-
ventional n × m × q supercell. However, generating supercell
structures can be more generally achieved using a 3 × 3 trans-
formation matrix. By applying all possible transformations
(up to a specific supercell size), one can explore the supercell
space and identify the optimal supercell structure for calculat-
ing the desired exchange interactions.

In this paper, we present a computational method for
efficiently identifying supercell structures that meet the
desired criteria. In the following sections, we provide a de-
tailed explanation of our approach for selecting the optimal
supercell structures. Next, we demonstrate the computa-
tional time savings achieved with this method using specific
examples. Finally, we present a practical example of ap-
plying density functional theory (DFT) with the optimal

supercell structures to calculate the exchange parameters
of Fe2O3.

II. METHOD

A. Building supercell structures

To construct a supercell from a parent cell, we can use
an integer matrix H to transform the parent lattice vectors
Vp into the supercell lattice vectors Vs using Vs = HVp. The
lattice vectors are represented in rows in both Vs and Vp. To
generate supercell structures for a specific size n, we use
Hermite normal form (HNF) matrices to transform the par-
ent lattice and then apply rotational symmetry of the lattice
to eliminate duplicate supercells. It has been shown that all
possible HNF matrices can be created in an upper-triangular
form [10–12],

H =
⎡
⎣

a b c
0 d e
0 0 f

⎤
⎦, 0 � b < d, 0 � c, e < f , (2)

where a, . . . , f are integers. In addition to the inequality
constraints, the size n of the supercell dictates the deter-
minant of the matrix (|H| = a × d × f = n). Using these
constraints, all possible combinations of a, . . . , f can be
identified [12,13]. When b = c = e = 0, the HNF matrix gen-
erates a conventional supercell.

However, relying solely on the HNF matrix transforma-
tion may result in superlattices with lattice vectors that differ
greatly in length, making them impractical. Minkowski reduc-
tion [14,15] helps to address this issue by providing shorter,
more orthogonal lattice vectors without altering the lattice vol-
ume. Therefore, in this work, we apply Minkowski reduction
after performing the HNF matrix transformation.

B. Finding optimal supercell structures

For each magnetic configuration (e.g., kth), within a super-
cell, the total energy of the electronic structure is related to
exchange interactions by Eq. (1). For n magnetic configura-
tions, we can represent this relationship using the following
linear algebra equation (AJ = E):

⎛
⎜⎜⎜⎜⎝

1 α1,1 α1,2 · · · α1,m

1 α2,1 α2,2 · · · α2,m

1 α3,1 α3,2 · · · α3,m
...

...
...

. . .
...

1 αn,1 αn,2 · · · αn,m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c0

J1

J2
...

Jm

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

E1

E2

E3
...

En

⎞
⎟⎟⎟⎟⎠

. (3)

By using Gaussian elimination to find the reduced row ech-
elon form (RREF) of matrix A and identifying null space
vectors [16], we can determine which columns depend on
earlier columns. This tells us the maximum distance (nearest
neighbor) for calculating exchange interactions. For example,
if the column for the qth nearest neighbor (column q + 1) is
the first one that depends on previous columns, we should set
Ji�q = 0 to avoid incorrect results due to this dependency. To
include exchange interactions beyond the qth nearest neigh-
bor, a larger supercell is needed. Note that the rank of matrix
A may not depend on the index of the first dependent col-
umn. This occurs because, in some cases, columns following
the first dependent column may be linearly independent on
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the preceding columns (we have provided an example in
the SM to clarify this issue [9]). As a result, the rank of
the matrix can exceed q. Therefore, focusing solely on rank
can be misleading when determining the limitations of a
supercell.

To search for the optimal supercell for maximizing the
number of exchange interactions within a range of sizes, the
following simplified steps can be applied: (1) Generate su-
percell structures using HNF matrices, then apply Minkowski
reduction. (2) Create random magnetic configurations for each
supercell and construct the A matrix. (3) Use Gaussian elimi-
nation to find the null space vectors of matrix A and identify
the first dependent column. (4) Sort the supercells based on
the index of the first dependent column.

We have two options in step (2): Use random or gen-
erate all possible linear magnetic configurations. However,
the total number of configurations increases exponentially as
the number of magnetic atoms increases, which makes the
random approach more practical. When constructing matrix
A, we remove duplicate rows, as duplicates can arise in small
supercells due to symmetry or repeated configurations. It is
advisable to avoid using such small supercells, as they reduce
the number of unique magnetic configurations required to
calculate exchange parameters. Therefore, the fraction of dis-
tinct configurations can also guide the selection of an optimal
supercell.

We can extend the method to a more general Hamiltonian,
− 1

2

∑
i, j

∑
α,β J

αβ
i, j Sα

i Sβ
j , where Sα

i and Sβ
j represent the com-

ponents of magnetic moments along the α and β directions
(i.e., x, y, and z). The tensor Ji, j includes three types of
interactions: Heisenberg (Ji j = 1

3 Tr Ji j), DM [Di j = 1
2 (Ji j −

J T
i j )], and anisotropic exchange tensor [�i j = 1

2 (Ji j + J T
i j ) −

Ji jI]. The non-Heisenberg interactions originate from spin-
orbit coupling and can lead to noncollinear magnetic ordering
phenomena, such as skyrmions [17,18]. For each pair of α and
β, we can construct a coefficient matrix and perform a null
space analysis on it. The results of the null space analysis are
influenced by the superlattice structure. Therefore, we antici-
pate that the null space analysis of this Hamiltonian—which
is a generalized version of the Heisenberg Hamiltonian—will
align with the findings from the analysis of the standard
Heisenberg Hamiltonian.

We have made a code available on GitHub [19] that can
generate optimal structures within a specified volume range.
The code requires only a parent cell (e.g., a primitive cell) to
find the best supercell structures. It is written in PYTHON, and
is both parallelized and efficient.

III. RESULTS AND DISCUSSIONS

To demonstrate the results of our method, we use a CrCl3

monolayer as an example (see Fig. 2). We generate super-
cell sizes ranging from 1 to 16 using HNF matrices. These
numbers (1–16) indicate how many times larger the volume
of the supercell structure is compared to the original (parent)
structure. Applying the algorithm leads us to a supercell size
of 8, which allows us to calculate exchange parameters up to
the eighth nearest neighbors. In contrast, using conventional
supercell construction, we would need a 4 × 4 supercell (size

FIG. 2. The figures illustrate different cell sizes of CrCl3. Larger
spheres represent Cr atoms, while smaller spheres represent Cl
atoms. Cyan lines outline the primitive cell, purple lines indicate a
4 × 4 supercell (size 16), and dashed lines mark a supercell of size
8. Both supercells allow for calculating the Heisenberg exchange
interaction up to the eighth nearest neighbor. However, the larger
supercell (size 16) requires approximately eight times more compu-
tational time compared to the supercell of size 8.

16) to calculate the same exchange parameters. This results in
an approximately eightfold reduction in computational time
for methods such as DFT, which scale as n3, where n is the
number of electrons.

Table I presents several examples that highlight the
method’s efficiency. As shown in the table, this approach
can speed up calculations by nearly an order of magni-
tude in many cases. According to Table I, the method
becomes significantly more efficient when the goal is to
calculate exchange interactions at greater distances. Among
the materials listed in Table I, we chose Fe2O3 to show-
case the effectiveness of our method in finding an optimal
supercell for calculating exchange interactions. When gen-
erating supercell structures with sizes ranging from 1 to 12,
we obtain 322 distinct structures for Fe2O3. Figure 3 dis-
plays the maximum number of nearest neighbors that can

TABLE I. The table presents examples of magnetic materials
to compare our method for finding the optimal supercell with the
conventional method. The primitive cells of NiO, MnTe, Fe2O3,
and MnO2 contain 2, 2, 4, and 2 magnetic atoms, respectively. The
table also indicates the number of allowed exchange interactions for
each optimal supercell size, along with the equivalent conventional
supercell that can be used to calculate the same number of exchange
interactions.

Material
Conventional
supercell size Permitted Jn

Optimal
supercell

size Speedup

NiO 8 (2 × 2 × 2) J1 · · · J5 5 ∼4
27 (3 × 3 × 3) J1 · · · J7 7 ∼57

MnTe 18 (3 × 3 × 2) J1 · · · J7 8 ∼11
48 (4 × 4 × 3) J1 · · · J13 12 ∼64

Fe2O3 8 (2 × 2 × 2) J1 · · · J12 4 ∼8
27 (3 × 3 × 3) J1 · · · J22 8 ∼38
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FIG. 3. The plot shows the allowed exchange interactions for
supercell structures generated with supercell sizes ranging from 1 to
12. The x axis represents different supercell sizes, while the y axis
indicates the number of permitted exchange interactions for each
supercell structure. Each color indicates the data associated with a
specific supercell size. For each supercell size, there are multiple
distinct supercell structures. For example, at supercell size 8, there
are 42 distinct supercell structures. The size of the circles in the
plot reflects the population of structures that allow the calculation
of a specific number of exchange interactions for these supercell
structures. The data used to generate this plot can be found in Table
S2 of the SM [9].

be considered for each supercell structure in an ab initio
calculation. As shown, different structures allow varying num-
bers of nearest neighbors for each supercell size. Since the
supercell size primarily influences the computation time, it
is recommended to choose the structure with the highest
number of permitted nearest neighbors for more efficient
calculations.

According to Table I and the plot in Fig. 3, a super-
cell structure of size 4 can be used to compute exchange
interactions up to J12. This structure, along with the other
Fe2O3 supercell structure, is visualized in Fig. 4. Using
the least-squares method, we fit DFT results from 48 dis-
tinct magnetic configurations within this supercell to the
Heisenberg Hamiltonian, yielding exchange interactions up
to J12, as shown in Fig. 5. The significant values of J11

and J12 suggest that interactions beyond J12 may be rele-
vant, indicating the need for a larger supercell for accurate
calculation.

As shown in Fig. 3, a supercell structure of size 8 (vi-
sualized in Fig. 4) allows for the calculation of exchange
interactions up to J24. In contrast, a conventional supercell of
the same size (2 × 2 × 2) only permits calculations up to J12

(see Table I). According to Table I, a conventional supercell
larger than 3 × 3 × 3 would be necessary to compute interac-
tions up to J24, underscoring the importance of selecting an
optimal supercell structure.

With the new supercell structure of size 8, we observe that
the value of J10 differs significantly from those obtained using
the size 4 supercell. Additionally, we find notable values for
J13 (Fig. 5). Beyond the 13th nearest neighbor, the exchange
interactions approach zero, suggesting that interactions up

FIG. 4. The figure shows the primitive and supercell structures
of Fe2O3. (a) represents the primitive cell, (b) illustrates the con-
ventional 2 × 2 × 2 supercell, (c) displays the supercell structure of
size 4, which allows the calculation of exchange interactions up to
J12, and (d) shows the supercell structure of size 8, which permits
the calculation of exchange interactions up to J24. The small spheres
represent oxygen atoms, while the large spheres represent iron atoms.

to J13 are sufficient for accurate modeling. Thus, using the
size 8 supercell derived from our algorithm, we can compute
exchange interactions up to J24. In contrast, the conventional
2 × 2 × 2 supercell only resolves interactions up to J12, where

FIG. 5. The plot presents DFT results for two supercell structures
of Fe2O3, one with a size of 4 and the other with a size of 8.
Using the structure of size 4, we can calculate Heisenberg exchange
interactions up to J12. However, with a supercell of size 8, we can
estimate exchange parameters up to J24.
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ambiguities remain, as J10, J11, and J12 still exhibit significant
values, suggesting that interactions beyond J12 may still play
a role.

To investigate the impact of including exchange interac-
tions beyond J12, we calculated the transition temperature
using Monte Carlo simulations with the ESpinS code [20].
When using exchange interactions derived from supercell size
4, the transition temperature is 780 K, whereas using interac-
tions from supercell size 8 yields a transition temperature of
805 K. This difference highlights the significance of consider-
ing longer-range interactions. For further details, please refer
to the SM [9].

IV. CONCLUSION

In this paper, we introduced a method to identify optimal
supercell structures for calculating exchange interactions by

mapping spin-polarized ab initio results onto the Heisen-
berg Hamiltonian. This method can significantly accelerate
exchange interaction calculations, often by an order of mag-
nitude. It is particularly beneficial for ab initio methods
with convergence challenges, such as meta-generalized gra-
dient approximation (GGA) methods [21,22]. By selecting
the smallest possible supercell, convergence issues are miti-
gated, especially in spin-polarized calculations, where these
challenges are typically more pronounced.
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