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The initial aim of the crystal fingerprint project was to solve a very specific

problem: to classify and remove duplicate crystal structures from the results

generated by the evolutionary crystal-structure predictor USPEX. These

duplications decrease the genetic diversity of the population used by the

evolutionary algorithm, potentially leading to stagnation and, after a certain

time, reducing the likelihood of predicting essentially new structures. After

solving the initial problem, the approach led to unexpected discoveries:

unforeseen correlations, useful derived quantities and insight into the structure

of the overall set of results. All of these were facilitated by the project’s

underlying idea: to transform the structure sets from the physical configuration

space to an abstract, high-dimensional space called the fingerprint space. Here

every structure is represented as a point whose coordinates (fingerprint) are

computed from the crystal structure. Then the space’s distance measure,

interpreted as structure ‘closeness’, enables grouping of structures into similarity

classes. This model provides much flexibility and facilitates access to knowledge

and algorithms from fields outside crystallography, e.g. pattern recognition and

data mining. The current usage of the fingerprint-space model is revealing

interesting properties that relate to chemical and crystallographic attributes of a

structure set. For this reason, the mapping of structure sets to fingerprint space

could become a new paradigm for studying crystal-structure ensembles and

global chemical features of the energy landscape.

1. From a problem to a new paradigm

USPEX (Oganov & Glass, 2006) is a computational method

and code based on an evolutionary algorithm which enables

crystal-structure prediction at arbitrary conditions of pressure

and temperature given just the chemical composition of the

material. Its latest versions (Lyakhov et al., 2009) enable even

the prediction of the chemical compositions of all stable

phases given just the names of the constituent chemical

atoms.

Owing to the algorithm’s evolutionary nature, every

USPEX run produces hundreds or thousands of putative

crystal structures, but in practice many of them are the same

structure, perhaps described in a different, but equivalent, way

or based on a different coordinate reference frame or made

different by small numerical errors. It is therefore necessary to

reduce the results to a set of unique structures to concentrate

analysis on the configurations that could give insight on new

phenomena. This involves intensive manual labor, consisting

mainly of judging similarity from side-by-side visualization of

pairs of structures. We decided therefore to design an auto-

mated structure comparison and clustering method.

The approach adopted describes crystal structures as points

in a multidimensional space, each identified by a multi-

dimensional coordinate set (here called the fingerprint). This

space has a distance measure defined on it so we can quantify

structure ‘closeness’ and then use clustering methods to find

equivalent structures. Each equivalence group is then reduced

to a single representative structure.

The resulting CrystalFp classifier (Valle & Oganov, 2008)

has already substantially improved the quality of USPEX

structure predictions, leading to some new crystallographic

insight and discoveries (Ma et al., 2009; Oganov & Valle, 2009).

Now it has been incorporated inside USPEX, thus solving the

duplicate-structures generation problem at its roots.

We have solved the initial problem, but have also foreseen a

new line of research: gathering insight on crystal-structure sets

by analyzing them after transformation to the fingerprint

space. This shift was motivated by the unexpected correlations

we found (Oganov & Valle, 2009), for example, between



structures’ energy differences and their distance in fingerprint

space, by the insight gained using new derived quantities and,

finally, by the opportunities offered by the rich semantics of

high-dimensional spaces. Our thesis is that fingerprint spaces

have interesting properties that relate to the chemical prop-

erties of the whole set of structures, i.e. its ‘global’ chemistry.

Thus this model could become a new analysis tool for crystal-

structure ensembles, like the ones created in structure-

prediction simulations or in simulations of structural transi-

tions.

The present work starts with a review of the original design

and underlying ideas that give rise to the crystal-fingerprint

model as presented by Valle & Oganov (2008). Then we

analyze how the solution adopted changed from being a point

solution to become the foundation of a more general paradigm

for studying ensembles of crystal structures. The paper then

covers the current work and future directions of fingerprint-

space research.

2. Previous work

In the literature there are plenty of works proposing suitable

structure descriptors for organic molecules and distance

metrics based on them, but very few focused on crystal

structures. The work of Hundt et al. (2006) gives a compre-

hensive survey of existing methods and is focused on calcu-

lating some form of distance measure between structures.

Interatomic distances are a good choice as structure iden-

tifiers because they are independent of the coordinate refer-

ence frame and unit-cell choices. Chisholm & Motherwell

(2005) use them to investigate molecular packing and inspired

one of the methods we tried (see x3.1). Radial distribution
functions (RDFs) are other possible structure descriptors

based only on local characteristics. Willighagen et al. (2005)

use an RDF computed using distances from a central atom

weighted by the involved atomic partial charges to include

electrostatic interactions, which play a major role in crystal

packing. This method then calculates dissimilarities on the

basis of powder diffraction patterns as proposed by de Gelder

(2006). In our work we use a rapidly convergent function

based on distance distributions and related to RDFs and

diffraction spectra [equation (1)], but we focus on standard

multidimensional methods for distance computation. Another

interesting application of RDFs is the work of Hemmer et al.

(1999), which uses them to match structures to IR spectra

using a counterpropagation neural network. Their goal is

indeed different from ours, but they also found that RDFs

could be good crystal-structure identifiers.

The ideas and results of high-dimensional spaces, the basis

of the methods we employ in this work, will be covered in x6.

3. Crystal fingerprint spaces

Each structure’s fingerprint is a vector of N real values

computed from its structural parameters; each structure thus

becomes a point in an N-dimensional fingerprint space. A

distance measure between these vectors is defined and then

used to cluster them into groups of ‘near’ fingerprints, that is,

groups of similar structures.

3.1. Fingerprint definition

To be useful as a structure identifier, the associated finger-

print should be independent of: (1) translation and rotation of

the structure; (2) the choice of unit cell among equivalent unit

cells (modular invariance); (3) the ordering of cell axis and

atoms in the cell; and (4) inversions and mirroring of the

structure.

Whichever definition we choose for the structure finger-

print, it should be computed over the ‘infinite’ crystal struc-

ture. In practice, after a distance of Duc=2, where Duc is the

longest unit-cell diagonal, everything starts repeating in every

direction. Therefore in place of the unlimited crystal structure,

a set of unit-cell repetitions that cover the maximum distance

Rmax ¼ maxiðDuci
=2Þ over all structures in all directions

around the base unit cell is used. We call the union of these

replicas and the original unit cell the extended unit cell.

Our choice of fingerprint started from a simple concatena-

tion of per-atom distances (Fig. 1) and then moved to a rapidly

convergent function based on distance distributions and

related to RDFs and diffraction spectra (Fig. 2) that was

modified to take account of the different atomic species

present in the structure (Fig. 3). This evolution was driven by

the visual design approach (see x4) that guided us toward

fingerprinting methods that better identify structures and their

spatial relationships.

To make the selected fingerprint sensitive to the ordering of

atoms in a given structure and independent of their types, we

separate the components of the fingerprint function coming

from different pairs of atom types A–B, making the total

fingerprint a matrix, each element of which is a function

FABðRÞ ¼
X
Ai

X
Bj

�ðR� RijÞ
4�R2

ijðNANB=VucÞ�
� 1; ð1Þ

where i runs over all NA atoms of type A within the unit cell

and j runs over allNB atoms of typeB in the extended unit cell,

Rij is the distance between these atoms, Vuc is the unit-cell

volume and � is the Dirac distribution. Each peak is smoothed

before calculating the sum using a Gaussian kernel with � set

by the user (usually 0.02 Å) and accumulated into a histogram

with bin size� (usually 0.05 Å). Note that each FAB starts with

the value of�1 (at R = 0) and converges to zero. One example

of this fingerprint is given in Fig. 3.

We also note that our fingerprint definition is based on a

two-body correlation function, and in specific situations there

may be advantages in using three-, four- and higher-order

many-body correlation functions (the formal extension of our

formalism to such cases is trivial, but the computation is much

heavier).

This definition of fingerprint provided the best discrimina-

tive power and became the foundation for the definition of

new quantities, such as the quasi-entropy (see x7.2), but it also
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has some unpleasant characteristics: (1) some coordinates are

in a way redundant, for example, those having a value of �1

before the first peak; (2) the coordinates are not independent,

due to the Gaussian kernel smoothing; and (3) not all coor-

dinates have the same importance: the further one moves to

the right, the less different are the coordinate values and the

less dependent on the structure they are.

3.2. Distances measure

To enable the classification of structures, we should define a

distance or pseudo-distance1 measure between fingerprints.

We tried three distance measures (Valle & Oganov, 2008): (1)

Euclidean distance; (2) Minkowski norm with a fractional

exponent; and (3) cosine distance.

The cosine distance, the one finally adopted, is a popular

norm in the text-mining community (Salton & McGill, 1983;

Salton & Buckley, 1988). Here every text has an associated

vector of word frequencies and the similarity between texts is

based on the dot product between these vectors. We use a

slightly modified definition of similarity that produces a

distance in the [0 . . . 1] interval using, in place of the word-

frequency vectors, the fingerprint Fi associated with structure

i,

distði; jÞ ¼ 1

2
1� Fi � Fj

kFikkFjk
� �

: ð2Þ

We chose the cosine-distance measure for its ability to coun-

teract the distance-concentration phenomena (defined in x6)
by spreading distances much more than the other methods, as

seen in Fig. 4. The only unpleasant characteristics of the cosine

distance are that it is not translation-invariant and it does not

satisfy the triangular inequality.
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Figure 1
Per-atom distances fingerprint. Local atom distances for a GaAs crystal (top left) are concatenated to form a fingerprint section (top right). Sections are
then assembled to form the structure fingerprint (bottom).

1 Pseudo-distance is a distance measure for which the triangular inequality
distAB � distAC þ distCB does not hold.



3.3. Structure clustering

The basic idea of clustering is to assign two structures to the

same group if their distance, i.e. the distance between their

fingerprints, is less than a user-defined threshold. Then to

move from pairwise grouping to cluster building, we can

proceed by aggregation or by graph walking (Jain et al., 1999).

The clustering by aggregation is a ‘bottom-up’ approach:

each point starts in its own cluster, and pairs of clusters are

merged if the distance between their closest or furthest

elements falls below the threshold (Hastie et al., 2001).

The other approach starts from the graph generated by the

binary connection matrix obtained by thresholding the

distance matrix. The graph described by this matrix is then

separated into connected components that are our clusters of

similar structures. To refine these components we resort to

a density-based criterion: a connection is confirmed only if

the two connected vertices share at least K nearest neighbors.

We call this clustering approach the pseudo-shared nearest

neighbor (pseudoSNN) method to distinguish it from the full

SNN method (Ertoz et al., 2003), which adds a refining step

based on the cluster’s density. After experimentation we

selected the pseudoSNN clustering method with at least one

shared nearest neighbor.

4. Visualization role in design and analysis

How did the various definitions of a fingerprint, distance

metric and classification algorithm evolve within the common

framework? They changed as direct

consequence of the domain-expert

exploration and validation of the clas-

sifier during analysis runs made on real

data. To make this exploration possible

we built an end-user application around

the classifier to support the USPEX

results analysis workflow and to

provide interactive visual diagnostics

on the behavior of the algorithms (Fig.

5). These provide visual representa-

tions of key algorithm quantities so the

domain expert could judge the algo-

rithm behavior. The visual validation and analysis, plus the

user’s algorithm selection and parameter modifications,

support a very effective exploratory design approach.

The end-user application was built inside the molecular

visualization toolkit STM4 (Valle, 2005, 2009) based on AVS/

Express (Lever et al., 2000; Advanced Visual Systems, 2009).

Complete coverage of the tool and the visualization is

provided by Valle & Oganov (2008).

From the beginning of this work we embraced an explora-

tory approach to finding the correct scientific questions to

pose. In this approach, visualization continues to play a

prominent role. As we see in x5, visualization made possible

the identification of interesting correlations between data,

derived quantities and surrogate data sets. As a consequence,
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Figure 3
A multicomponent fingerprint. A fingerprint like the one in Fig. 2 is computed for each pair of
element types. Then all of them are concatenated to form the structure fingerprint (this example is
for a GaAs structure).

Figure 4
Distance distributions for the MgSiO3 post-perovskite 120 GPa data set
using the three distance measures analyzed. The distributions are
presented together after normalizing the distance values.

Figure 2
A fingerprint related to RDFs and diffraction spectra. Note that for this fingerprint values start at �1 and converge to 0.



we plan to rely on visualization help in the next steps of this

research as well. To this end, the initial end-user tool has been

enhanced with a more flexible way to correlate data across

data sets and across parameter changes.

5. Transition to the new paradigm

The initial problem of removing duplicate crystal structures

from the results generated by the evolutionary crystal-

structure predictor USPEX was solved at its roots by incor-

porating the CrystalFp classifier inside it. But the story does

not end here. During the visual design of the algorithm, the

ease of addition of new visualizations and new analysis to the

library, coupled with the simplicity in accessing them from the

end-user application, uncovered interesting and unanticipated

insights, such as the following.

Energy versus distance correlation. For some structures the

chart depicting the energy difference versus distance shows a

strong linear correlation; for others the relationship is more

complex, but not random (see Fig. 6). We were able to relate

this behavior to the shape of the energy landscape (Oganov &

Valle, 2009).

Random structures distance distribution. Looking at the

statistics for distances between structures in a random set of

structures, we often discovered a striking Gaussian-like shape

of distributions with a clear peak (Fig. 7a). In some cases we

find more than one peak (Fig. 7b); this could be a signal of

complex chemistry involving different coordination numbers,

or could be caused by non-random sampling of the config-

uration space.

Energy versus order correlation. In many tests of USPEX

we see order increasing during the run (see Fig. 10), and

observe a clear correlation with energies: high order usually

means low energies. This is natural; disordered structures are

expected to have high energies. But energy–order correlations

also revealed cases of geometric frustration, where less

ordered or more complex structures are made energetically

favorable by competition of opposing factors.

These discoveries prompted us to consider the fingerprint-

space choice not just as a point solution, but also as a useful

tool for analyzing ensembles of crystal structures. Our hope is

that the fingerprint space could have attributes correlated to

the chemical and crystallographic properties of the starting

structure set. We want to analyze, for example, fingerprint-
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Figure 5
The CrystalFp end-user application. The control panel (left), the scatter plot and ordered distance matrix (top), one diagnostic chart and the visual
pairwise structure comparison (bottom) are shown.



space topology, how it relates to chemical composition and

how it changes with experimental conditions. We also hope to

find interesting new correlations between physical quantities

and distances in fingerprint space. As a side result, we expect

to shed more light on the behavior of the USPEX algorithm.

Why is this mapping interesting? Because high-dimensional

spaces are semantically richer than physical spaces; because

there are available tools, methods and ideas from entirely

different fields, like data mining, and because looking at

known problems from outside the discipline increases the

chances of finding unplanned ‘cross-fertilization’ between

fields.

However, there are problems to surmount. The first one

derives from the peculiar behavior of high-dimensional spaces

(see x6) that forces us always to check whether findings made

in fingerprint space originate from chemical and crystal-

lographic reasons or whether they are artifacts of the mapping.

Another problem is how to validate the modeling approach

itself: that is, how to verify that the mapping of structures to

fingerprints is a faithful one (see x9).

6. High-dimensional spaces

We usually limit our analysis to data that readily fit into our

physical space – data that we can see in our mind and visualize

on a computer screen. But the really interesting data, like

crystal fingerprints, are almost always multivariate. These data

normally have no trivial connection with a physical space, and

have a sizable number of attributes associated with each data

point. We can say that these points live in a high-dimensional

space.

The most striking differences to physical spaces are that

high-dimensional spaces are almost empty and that their

volume is concentrated in strange places.2

In Fig. 8 the volume of a hypersphere of radius 1 is plotted

(blue line). At space dimensionality D = 20 its volume is

already almost zero and thus cannot contain any points. Now

the hypersphere is put inside a hypercube of side 2. The ratio

between the volume of the circumscribed hypercube that lies

outside the hypersphere and the volume of the hypercube

itself (red line in Fig. 8) shows that the space is concentrated

outside the sphere, in the ‘corners’ of the hypercube. To grasp

an idea of this monstrosity, consider that the diagonals of the

hypercube grow as D1=2 so the hypercube is a highly aniso-

tropic body with ‘spikes’ around the contained hypersphere

(Köppen, 2000).
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Figure 6
(a) GaAs structures exhibit a clear energy–distance correlation. (b) In contrast, MgNH shows a more complex landscape.

2 Introductions to these and other phenomena are given in Weber et al. (1998)
and Köppen (2000).



In high-dimensional spaces the points are all at about the

same distance from each other (Beyer et al., 1999). This

distance grows steadily with dimensionality and decreases

only marginally as the number of points increases (Weber et

al., 1998). Instead, the variance of their pairwise distance

depends strongly on the distance measure adopted and the

shape of the space. This phenomenon is very simple to observe

experimentally (Köppen, 2000; François et al., 2007). For

example, a numerical derivation for Euclidean distances gives

for the expectation EðdistÞ ! ðD=6Þ1=2 and for the variance

�2ðdistÞ ! 0:49 (Schmitt, 2001). Instead, for cosine distances

we have EðdistÞ ! 0:5 and �2ðdistÞ ! 1=4D. The concept of

relative contrast, CR ¼ ðdistmax � distminÞ=distmin, formalizes

this phenomenon as limD!1 CR ¼ 0.

The above phenomenon, which causes pairwise distances to

seem the same for all points, is called ‘concentration of

distances’ (François et al., 2007) and makes some of the

concepts that we take for granted in low-dimensional spaces

meaningless. One of them is the concept of nearest neighbor.

It is no longer meaningful, not only because all points are

almost at the same distance, but also because a small pertur-

bation can change the nearest point into the farthest one.

Space partitioning, needed for example by search algo-

rithms, becomes intractable as the space dimension grows.

Simply cutting in half the space along each dimension gener-

ates 2D partitions, each containing zero or a small number of

points. That is, the space is almost empty (Weber et al., 1998).

For example, in a 100-dimensional space the first partition

contains about 1030 blocks. If the space contains 106 points, on

average only one partition in 1024 contains a single point!

This empty-space phenomenon is the reason why in high-

dimensional spaces there are never enough data points. For

example, histograms are often very different from the under-

lying theoretical probability density function, because there

are too few points to construct them. The same happens for

interpolation: having too few points means we cannot be sure

of the quality of any of the results.

All these phenomena are usually called ‘the curse of

dimensionality’, an expression introduced by Bellman (1961).

Luckily, this curse is not inevitable. Knowing why it arises

helps us design strategies for overcoming or at least mitigating

its effects. Strategies include selecting a distance measure

different from the usual Euclidean one or checking whether

the high-dimensional data under analysis are instead a low-

dimensional data set embedded into a high-dimensional space.

6.1. High-dimensional analysis tools

Moving into high-dimensional spaces does not change the

basic operations we want to do on data: understand them,

discover hidden knowledge, search for similar points, group

and partition them and, finally, use the data to predict

missing points. Visualization is a useful tool for understanding

high-dimensional data and for discovering information and

knowledge hidden in them. Unfortunately, the techniques

used for high-dimensional data are generally unintuitive and

far more abstract than scientific visualization techniques

(Keim et al., 2004). The use of parallel coordinates (Inselberg,

1985) tries to overcome these difficulties through its sound

mathematical foundation.

Another approach to understanding high-dimensional data

is to reduce their dimensionality so usual visualization tech-

niques could be applied. To this effect the first step is checking

whether the data are truly high-dimensional. Often the data

live in a low-dimensional subspace of the high-dimensional

one: that is, we need fewer than D free variables to uniquely

identify the points. In this case, we can ignore the extra
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Figure 7
(a) Some data sets, like SiO2 (nine atoms per cell), have a distance
distribution decomposable into two Gaussians. (b) Others, like H2O (12
atoms per cell), have a complex distance distribution that needs many
Gaussians to be acceptably approximated.

Figure 8
Unit-radius hypersphere volume and the ratio between the circumscribed
hypercube volume outside the hypersphere and the hypercube volume
itself as function of space dimensionality.



dimensions and project the data into the low-dimensional

space without loss of information. Even if this is not possible,

we can attempt the same projection while trying to minimize

the loss of information and the inevitable distortions. In both

cases the first step is to compute the effective dimensionality

of the data (Camastra, 2003; Levina & Bickel, 2005; Pettis et

al., 1979). Then the extra dimensions can be removed using

methods such as principal component analysis (PCA) (Jolliffe,

2002) and multidimensional scaling (MDS) (Borg & Groenen,

2005; Lee & Verleysen, 2007), or we can try to find, and

remove, them using our knowledge of the data.

7. Current results

The exploration of the paradigm is still at its beginning, but

some results have already been obtained, as seen in x5 and

here below, and some promising areas are actively being

worked on. The areas on which we plan to work in the near

future will be covered in the next section.

7.1. Energy landscapes

To understand the relationship between structures, we

project the fingerprint-space points to a two-dimensional or

three-dimensional physical space. The ‘scatter plot’ tool in the

end-user application does exactly this, projecting the finger-

print space into the plane. Interpolating the energies asso-

ciated with each structure (point) creates an energy surface

(Fig. 9) which gives an idea of the true energy landscape

(Oganov & Valle, 2009). This result adds a highly comple-

mentary point of view to the traditional concepts in studies of

energy landscapes, such as those reviewed by Wales & Bogdan

(2006). Moreover, energy versus order and energy differences

versus distance charts visually revealed unexpected correla-

tions (see x5) that can be interpreted in the framework of

these energy landscapes.

7.2. Definition of new quantities

For structures we specified several degree-of-order

measures derived from their fingerprints. The simplest one is

defined as

� ¼ �

Vucð Þ1=3 Fj j2; ð3Þ

where Vuc is the unit-cell volume and � is defined in equation

(1). While the angles between fingerprint vectors F measure

structural differences, the lengths of these vectors show the

degree of order of each structure (Oganov & Valle, 2009). The

order seems to increase and saturate or remain almost

constant during an USPEX run, but exhibits an increasing

number of isolated high-order peaks at the end (Fig. 10).

Based on our distance metric, we have also introduced a

novel measure of disorder and complexity of structures, called

‘quasi-entropy’ (Oganov & Valle, 2009) and defined as

Sstr ¼ �P
A

ðNA=NtotÞhð1�DAiAj
Þ lnð1�DAiAj

Þi; ð4Þ

where distancesDAiAj
are measured between fingerprints of all

ith and jth sites occupied by chemical species A, and the total

quasi-entropy is a weighted sum over all chemical species.

Note that the definition above is slightly modified from the

paper of Oganov & Valle (2009), to make it look more like a

traditional formula for the entropy.

Quasi-entropy Sstr has a much better correlation with

energy than the set of orientational bond-order parametersQn

proposed by Steinhardt et al. (1983). These parameters

successfully differentiate between liquid-like and crystal-like

configurations and could be expected to be good predictors of

the energy. However, for all systems examined, even as simple

as MgO, the correlation ofQn parameters with energy is either

very weak or nonexistent.

7.3. Intrinsic dimensionality

Typical dimensionalities of fingerprint spaces are between

102 and 103. These values are clearly redundant compared to

the theoretical dimensionality D ¼ 3N þ 3 derived from

degrees-of-freedom considerations, where N is the number of

atoms in the unit cell. However, evenD overestimates the true

dimensionality of the space, because it ignores short-range

order that leads to certain constraints � on the relative posi-

tions of the atoms. The actual intrinsic dimensionality is thus

Dintrinsic ¼ 3N þ 3� � or, better, Dintrinsic ¼ ð3� �AÞN þ 3,

where �A ¼ �=N is the mean constraint per atom.

In our tests (see Table 1) we saw this rule almost always

obeyed, with �A distributed in the range ½0 . . . 3�. However, we

encountered a few data sets that violated this rule, where the

computed intrinsic dimensionality is much higher than the

theoretical one. There are various possible explanations for

this anomaly: (1) the quality of the statistics; (2) non-

randomness in the data sets; (3) approximate relaxation that

introduces noise; and (4) the thresholds used for removing

identical structures (before analyzing the dimensionality of

the data set, we remove identical structures, but the result

depends on the distance threshold used). The analysis of these
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Figure 9
An example of an energy landscape. The points are the two-dimensional
projection of the structures in fingerprint space with height values
proportional to the structures’ energies. The surface interpolates height
values between points.



and other effects that may distort the dimensionality estimates

will be part of our next steps.

We computed the intrinsic dimensionality using the

Grassberger–Procaccia algorithm (GPA) (Grassberger &

Procaccia, 1983) plus Camastra’s correction (Camastra &

Vinciarelli, 2001). This correction is needed because the GPA,

to give correct estimations of the intrinsic dimensionality,

requires an unrealistically large number of points. Camastra’s

method computes a function that computes the real intrinsic

dimensionality given the measured one, and utilizes it to

correct the results of the GPA applied to limited-size data sets.

The function above is obtained from the measurement of the

intrinsic dimensionality for sets of random points. For them

the intrinsic dimension is equal to the embedding one, so the

function can correlate the measured intrinsic dimension to the

real, known one.

We then applied a second correction to remove noise.

In fact, noise increases subspace dimensionality when the

embedding space dimension grows. The result is an intrinsic

dimensionality measure that grows with embedding dimen-

sion. After correction we have an estimate of the intrinsic

dimensionality that reaches a constant value above a minimum

embedding dimensionality.

8. Future

To continue this line of research we plan to deal with various

scientific questions related to the structure of fingerprint

spaces and to study the relationship between physical and

crystallographic quantities with abstract quantities extracted

from the space structure. Below are collected the main areas

we plan to approach together with a collection of questions

and references. There are also issues related to the definition

of more robust crystal fingerprints, to clustering algorithms

and to implementation choices that we should approach, but

these points will not be covered here.

Analyze the intrinsic dimensionality of fingerprint spaces.

First we must gain better understanding of the Grassberger–

Procaccia algorithm (GPA). This algorithm started as a tool

for the study of chaotic dynamic systems, but those systems are

temporally correlated and have small embedding dimension,

so they are quite different from ours. Are these differences

significant for our usage of the GPA? We should also explore

the GPA validity, derive statistical confidence intervals for

computed intrinsic dimensions and look at alternatives to the

GPA, like the Judd (1994) and Takens (1985) estimators. On

the scientific side, we must understand how �A depends on the

experimental conditions and we must find out what causes a

few data sets to violate the Dintrinsic � 3N þ 3 rule.

Study local space behavior. Intrinsic data dimensionality is a

local feature, but we compute the global intrinsic dimension,

which is an average of the intrinsic dimensionalities of the

subspaces. We should try the local intrinsic dimension (LID)

method (Buzug et al., 1995) to see whether, from a local

analysis, we can gain new insights on single structure behavior

and a rough idea of the cluster shapes. Are there local topo-

logical quantities that help us to locate a point (inside, on the

surface etc.) with respect to these clusters?

Study cosine distance behavior. The behavior of the cosine

distance measure using random sets of fingerprints should

be studied. These distances have a beta distribution (similar

to Gaussian, but with support limited to ½0 . . . 1� and the

capability to model asymmetric distributions). We have

already found that the variance of the distance distributions

depends on the intrinsic dimension according to �2 /
1=Dintrinsic. Could this fact be generalized?

Study distance distributions. Looking at the statistics of

distances between structures, we often discover a striking
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Table 1
Intrinsic dimensionalities.

Data set
No. of
atoms

Theoretical
dimensionality

Intrinsic
dimensionality �A

Structures from random sampling
SiO2 3 12 8.71 1.10
SiO2 6 21 32.49 �1.92
SiO2 9 30 29.69 0.03
SiO2 12 39 29.85 0.76
SiO2 24 75 26.17 2.03
SiO2 36 111 35.98 2.08
SiO2 48 147 50.04 2.02
H2O 12 39 17.91 1.76
GaAs 8 27 23.45 0.44
MgNH 12 39 63.69 �2.06

Structures from USPEX runs and random sampling
Au8Pd4† 12 39 11.94 2.25
Binary Lennard-Jones
crystal A4B8‡

12 39 2.87 3.01

Mg16O16‡ 32 99 15.05 2.62

† Structures from an USPEX run. ‡ Random sampling and USPEX data.

Figure 10
Emergence of order from disorder in the evolutionary structure prediction for GaAs (eight atoms in the unit cell).



Gaussian-like shape of distributions, with a clear peak (Fig.

7a), but not always (Fig. 7b). We have already started

analyzing these curves by decomposing them into sums of beta

distributions.

Understand correlations with other physical quantities.

Initial tests show correlation between pressure and intrinsic

dimensionality and between pressure and order. It should be

interesting to study magnetic behavior, hardness, super-

conducting Tc and other quantities as they correlate with

distance and space topology. For the multicomponent finger-

print we will also study the correlation of each fingerprint

component FABðRÞ with energy.

Study landscape structure. Can we classify landscape

extrema in fingerprint space directly? Is the scaling behavior

of the number of minima versus the number of atoms, the

distribution of minima energy and the number of minima

versus energy consistent with published studies?

9. Is this model valid?

In the search for confirmations of the validity of the finger-

print method, we are prepared not to be able to assess insight

quality in the same manner as we do in physical spaces. Here

we can only look at the analysis results and compare them with

the real world using our crystallographic intuition. That said,

we do not have any objective proof that distances as computed

in fingerprint space really reflect true differences between

crystal structures, but we are confident that the things we study

are not meaningless for various reasons:

(1) Studies of sets of very similar structures (e.g. an Si

crystal with moving vacancies) show a clear correlation

between distances in fingerprint space and distances between

physical configurations (Sahli, 2009).

(2) Similar results are obtained using synthetic data sets. In

this case there are no chemical or crystallographic constraints

that could affect the results.

(3) Pragmatically, the results obtained so far make sense

both from the numerical and from the crystallographic point

of view, so we conclude that the underlying model makes

sense. For example, the correlations we have found between

distances and other quantities were unexpected outcomes, but

in some sense they validate our choice of space structure and

distance measure.

(4) Last, by analyzing how results change when the

computation method changes, we become confident that what

we see is not an artifact of a particular computational method.

10. Lessons learned

This research is still at its beginning and there is a lot of work

to do (see x8). However, the paradigm has already demon-

strated its usefulness in real situations (Ma et al., 2009; Oganov

et al., 2007; Oganov & Valle, 2009; Oganov et al., 2008). We are

thus confident that fingerprint spaces could become a useful

tool for studying structural transitions and crystal ensembles.

Apart from the scientific results, we have learned various

valuable lessons from this research:

(1) As has been said before, ‘discoveries happen on the

border between disciplines’. This is the most important lesson

learned.

(2) An exploratory approach is very important for under-

standing data and, primarily, for helping to formulate the right

questions.

(3) The role of visualization when coupled to analysis is

fundamental for data understanding.

Calculations were performed at the Joint Russian Super-

computer Centre (Russian Academy of Sciences, Moscow),

ETH Zürich, Swiss National Supercomputing Centre (Manno)

and New York Center for Computational Sciences. The

authors gratefully acknowledge the use of these facilities.
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