First-principles study of phosphors for white-LED applications

X. Gonze Université catholique de Louvain, Belgium and Skolkovo Institute of Technology

Collaborators : Y. Jia, J. Bouquiaux, A. Miglio, M. Giantomassi, U.C. Louvain, Belgium S. Poncé, EPFL, Switzerland M. Mikami, Mitsubishi Chemical HC, Japan

> Supported by the Russian Scientific Foundation grant No. 19072-30043 "Computational materials design laboratory"

Lighting : energy consumption ...

"Lighting represents almost 20% of global electricity consumption. This consumption is similar to the amount of electricity generated by nuclear power." (Int. Energy Agency)

Im = Lumen = SI unit for the total *visible* flux emitted by a source Includes luminosity function ; 1 W of green light (555 nm) => 683 lm

Efficiency of light-emitting diodes : decades of improvements

Red ... blue ... Nobel prize in physics 2014 Akasaki, Amano, Nakamura + phosphor => PC-White : Phosphor converted white-light

Wall plug efficiency : ratio between electrical power (in) and optical power (out)

Electroluminescence : Light-emitting diode

Skoltech RSF Russian

Applying an adequate difference of potential inject holes in the p-region and electrons in the n-region => electron-hole pairs

Standard white PC-LED

Blue+yellow LED emission spectrum

Compare with solar spectrum

Skoltech RSF Steinstan

Wide diversity of LED+phosphors

Conventional typeBlue-LED + yellow phosphor
(typically, Y_3Al_5O_{12}:Ce^{3+})High color rendering typesBlue-LED + yellow & red
Near UV-LED + blue & green & red
Blue-LED + green & red

 Tab. 1.3
 Spectral position of the emission band of Eu²⁺ in some representative lattices.

SrB ₄ O ₇ :Eu	368 nm
Sr ₂ P ₂ O ₇ :Eu	420 nm
BaMgAl ₁₀ O ₁₇ :Eu	453 nm
Sr ₄ Al ₁₄ O ₂₅ :Eu	490 nm
Ba2SiO4:Eu	505 nm
SrGa ₂ S ₄ :Eu	535 nm
Sr ₂ SiO ₄ :Eu	575 nm
SrS:Eu	615 nm

Phosphor tuning ? Host/dopant ? Selection criterion ?

Overview

- 1. Role of phosphors in white-LEDs
- 2. Working principles, selection criteria, 4f-5d phosphors
- 3. How to model ? First-principles ... but not too much !
- 4. Theoretical study of lanthanum silicon nitrides hosts + Ce
- 5. Scaling up : results for 28 different hosts
- 6. Thermal quenching, width of emission, beyond 1D model

References :

Y. Jia, A. Miglio, S. Poncé, X. Gonze and M. Mikami, *Phys. Rev. B* 93 155111 (2016)
X. Gonze *et al, Comput. Phys. Commun.* 205, 106 (2016)
Y. Jia, A. Miglio, S. Poncé, M. Mikami and X. Gonze, *Adv. Opt. Materials*, 5, 1600997 (2017)
Y. Jia, A. Miglio, S. Poncé, M. Mikami and X. Gonze, *Phys. Rev. B* 96, 125132 (2017)
Y. Jia, A. Miglio, M. Mikami and X. Gonze, *Phys. Rev. Mat.* 2, 125202 (2018)
Y. Jia, A. Miglio, S. Poncé, M. Mikami and X. Gonze, *Phys. Rev. B* 100, 155109 (2019)
J. Bouquiaux, Y. Jia, S. Poncé, A. Miglio, M. Mikami & X. Gonze, *arXiv:cond-mat.mtrl-sci* 2010:00423 (2020)
+ Review on phosphors :
P. F. Smets, A. B. Parmentier and D. Poelmans
"Selecting Conversion Phosphors for White Light-Emitting Diodes"
J. Electrochemical Society 158 R37 (2011)

Absorption/emission/Stokes shift

See e.g. C. Braun ... W. Schnick, Chem. Eur. J. 16, 9646 (2010)

Criteria for selecting phosphors

- Emission spectrum that complements adequately the LED (+ other phosphors if use more than one) Importance of linewidth (missing: good red narrow width phosphor)
- 2. Excitation spectrum with good overlap with the pumping LED, and large absorption strength
- 3. Optical characteristics unchanged at elevated temperature (450K)
- 4. Quantum efficiency approaching unity
- 5. Chemical stability
- 6. Absence of emission saturation at high fluxes

Ce- and Eu- doped inorganic hosts

Best choice (at present) :

Ce³⁺ and Eu²⁺ - doped « inorganic hosts » : 4f – 5d transition [ternary/quaternary silicates, phosphates, (oxy)nitrides, (oxy)sulfides, etc] Ce and Eu substitutional to trivalent or divalent ions

Large absorption strength Excellent quantum efficiency (>90% for YAG:Ce) Tunable

But : Thermal quenching ? Adequate emission band ?

How can theory help for such complex materials ? High-throughput search, but which indicators ?

Dorenbos model for 4f – 5d transition

How to model ? First-principles ... but not too much !

Search for better phosphors

Empirical or semi-empirical search (cf Dorenbos) exp. data (e.g. emission) for >100 doped hosts ? quality of material

? data for linewidth, thermal quenching

Machine-learning based on such exp. data ?

First-principles :

either give new data for machine-learning (need accuracy) or allow direct high-throughput search (need speed)

Challenge for first-principles

- Optical excitations => electron-hole interaction !
- Bethe-Salpether equation (BSE) ?!
- Supercells 60 ... 120 atoms (Eu, Ce 6.25% 12.5%)
- Ce, Eu => 4f electrons !

UCL ouvain

- "Big"cells : cannot afford BSE
- Need to relax the geometry !
- Simpler approaches to generate indicators ?

Ground state only ? Doped ? Bulk undoped ?

... And how address linewidth ?

... Thermal quenching ?

Indicators : speed vs accuracy

Accuracy

Bethe-Salpeter Equation (+ geometry relaxation)

Doped ground-state + Dorenbos model

Undoped bulk

Speed

Absorption: GGA + Dorenbos model

∆SCF method

ΔSCF method: mimic the interaction between electrons and a 4f-hole. Comparison of total energies of ground and excited states.

Calculate transition energy based on configuration coordination diagram (Seitz 1938, Mott 1938, Gurney 1939 ...).

For scintillator absorption see also : Chaudhry, Canning et al, PRB 83, 125155 (2011), JAP 109, 083708 (2011), PRB 89, 155105 (2014)

Indicators : speed vs accuracy

Accuracy

Bethe-Salpeter Equation (+ geometry relaxation)

 ΔSCF with 1D configuration diagram

Doped ground-state + Dorenbos model

Undoped bulk

Speed

First-principles calculations

- Density functional theory (DFT) +U => Total energy + bands
- Abinit software (http://www.abinit.org)
- Projector Augmented Wave (PAW) + Plane Waves
- Cutoff energy: 30Ha
- Supercells 60 ... 120 atoms (Eu, Ce 6.25% 12.5%)

ABINIT software project

Implementing Density-Functional Theory + Many-body Perturbation Theory. For solids and nanosystems, computation of :

energetics, electronic structure, vibrations, dielectric responses, optic, Raman, thermodynamics, ...

1997 Ideas :

- 1) Target a wide range of capabilities => need a worldwide collaboration
- 2) Linux software development : 'free software' model

1997... 2019 Development :

Releases of ABINIT (v1.0.0 to v8.10.2) 8 international ABINIT developer workshops (40 ... 60 participants) 2019 Assessment :

>2000 members on the forum 800 kLines of F90 about 50 contributors to ABINITv8

Ab Initio at work: Ce-doped Ianthanum silicon nitrides

Moscow, November 11, 2020

Skoltech RSF Russian

LSN DFT electronic structure

Ab-initio simulation: Density functional theory (DFT), GGA level

Ce-doped LSN : DFT electronic structure

LaSi₃N₅:Ce

La₃Si₆N₁₁:Ce_{2a}

La₃Si₆N₁₁:Ce_{4c}

 The description of Ce_{4f} state relies on the DFT+U method, U = 4.6eV
 Ce_{5d} state not located inside band gap in ground state calculation (DOES NOT correspond to luminescent excited state of LSN:Ce)

∆SCF method

ΔSCF method: mimic the interaction between electrons and a 4f-hole. Comparison of total energies of ground and excited states.

Calculate transition energy based on configuration coordination diagram (Seitz 1938, Mott 1938, Gurney 1939 ...).

For scintillator absorption see also : Chaudhry, Canning et al, PRB 83, 125155 (2011), JAP 109, 083708 (2011), PRB 89, 155105 (2014)

Core-hole interaction and anti-bonding character affect position of Ce_{5d} state

∆SCF Energies in ground- and excited-states

Case	LaSi ₃ N ₅ :Ce	La ₃ Si ₆ N ₁₁ :Ce _{2a}	La ₃ Si ₆ N ₁₁ :Ce _{4c}			
A ₀	-20774.76eV	-25363.89eV	-25363.98eV			
A ₀ *	-20771.26eV	-25361.10eV	-25360.70eV			
A	-20774.53eV	-25363.68eV	-25363.52eV			
A*	-20771.42eV	-25361.28eV	-25360.92eV			
$\Delta E_{abs}(A_{0}^{*}-A_{0})$	3.50eV	2.79eV	3.28eV			
$\Delta E_{abs}(Exp.)$	3.43eV	2.58eV				
∆E _{em} (A*-A)	3.12eV	2.40eV	2.60eV			
∆E _{em} (Exp.)	2.95eV	2.25eV)			
∆S(Cal.)	3080cm ⁻¹	3160cm ⁻¹	5456cm ⁻¹			
∆S(Exp.)	3815cm ⁻¹	2717cm ⁻¹				
1000cm ⁻¹ =0 124eV Y. Jia <i>et al.</i> PRB, 93, 15111 (2016)						

- Accurate absorption and emission energy, within 0.2eV error.
- Stokes shift value is provided within 20% difference.

UCLouvain

Skoltech RSF Steinstan

Luminescent center in La₃Si₆N₁₁:Ce is determined to be Ce_{2a} site

Ce environment and Dorenbos model parameters

_	LaSi ₃ N ₅ :Ce	La ₃ Si ₆ N ₁₁ :Ce _{2a}	La ₃ Si ₆ N ₁₁ :Ce _{4c}
χ_{av}	1.74	1.68	1.68
α_{sp}^{N}	7.07	7.52	7.52
ε_c , GS	21380 cm^{-1}	25166 cm^{-1}	23671 cm^{-1}
ε_c , EX	23950 cm^{-1}	28242 cm^{-1}	_
β	5.67×10^{8}	1.20×10^{9}	1.20×10^{9}
R_{av}, GS	281 pm	265 pm	270 pm
R_{av}, EX	280 pm	260 pm	_
ε_{cfs} , GS	7181 cm^{-1}	17088 cm^{-1}	16461 cm^{-1}
ε_{cfs} , EX	7232 cm^{-1}	17751 cm^{-1}	-

	La ₃ Si ₆ N ₁₁	:Ce _{2a} 8 NN
2.657	2.645	N1 Ce ₂ N1 N1
2.638	2.555	
	$La_3Si_6N_{11}$:Ce _{4c} 8 NN
2.512	2.389	N2 ^b N2 ^a
2.670	2.596	N2 ^b Ce ₄ N2 ^a
2.901	2.895	N4
2.802	2.718	N3
2.641	2.472	
	2.657 2.638 2.512 2.670 2.901 2.802 2.641	La ₃ Si ₆ N ₁₁ 2.657 2.645 2.638 2.555 La ₃ Si ₆ N ₁₁ 2.512 2.389 2.670 2.596 2.901 2.895 2.802 2.718 2.641 2.472

$$D(A) = \varepsilon_c(A) + \frac{\varepsilon_{cfs}(A)}{r(A)} - 1890cm^{-1}$$

$$\varepsilon_c(A) = 1.44 \times 10^{17} \Sigma_{i=1}^N \frac{\alpha_{sp}^i}{R_i^6}.$$

$$\alpha_{sp} = \alpha_0 + \frac{b}{\chi^2}$$

Depend on type of

$$\varepsilon_{cfs} = \frac{\beta}{R_a^2}$$

Depend on type of
coordination incl. # NN

$$E(A) = 49340cm^{-1} - D(A)$$

Scaling up : results for 28 Ce- and Eudoped hosts

Thirteen Ce-doped hosts covering 2-5 eV range

		Calculation (this work)			Experiment		
	Compounds	Abs (eV)	Em (eV)	$\Delta S \ (cm^{-1})$	Abs (eV)	Em (eV)	$\Delta {\rm S}~({\rm cm}^{-1})$
LSN =	ightarrow La ₃ Si ₆ N ₁₁ :Ce	2.79	2.40	3160	2.58	2.25	2710
	$\mathrm{Ce}_3\mathrm{Si}_6\mathrm{N}_{11}$	2.81	2.42	3146	2.63	2.26	2974
YAG -	\rightarrow Y ₃ Al ₅ O ₁₂ :Ce	2.78	2.36	3424	2.67	2.30	2984
	$Lu_3Al_5O_{12}:Ce$	2.94	2.59	2823	2.77	2.48	2339
	$\rm CeSi_3N_5$	3.60	3.19	3307	3.35	2.88	3815
LSN =	\Rightarrow LaSi ₃ N ₅ :Ce	3.50	3.12	3080	3.43	2.95	3815
	${\rm LiYSiO_4:Ce}$	4.02	3.33	5575	3.54	3.10	3740
	$Lu_2Si_2O_7:Ce$	3.88	3.57	2480	3.55	3.27	2258
	LaBr ₃ :Ce	3.92	3.52	3226	4.03	3.48	4439
	YAlO ₃ :Ce	4.14	3.56	4678	4.09	3.59	4033
	LaCl ₃ :Ce	4.37	3.86	4113	4.41	3.70	5726
	$LaPO_4:Ce$	4.84	4.30	4355	4.51	3.91	4818
	LaF ₃ :Ce	5.38	4.74	5162	4.98	4.34	5162

Jia, Poncé, Miglio, Mikami & Gonze, Adv. Opt. Materials, 5, 1600997(2017)

Wide applicability of the first-principles methodology

First-principles absorption and emission energy are within 0.3 eV of experimental data, with two exceptions at 0.4 eV and 0.5 eV First-principles Stokes shifts are within 30%, except two values at 50%

Using first-principles geometrical parameters in Dorenbos model : larger dispersion

Statistical analysis

ME	Mean Error
MAE	Mean Absolute Error
MRE	Mean Relative Error
MARE	Mean Absolute Relative Error

	F	irst-princip	les	Semi-empirical			
	Absorption	Emission	Stokes shift	Absorption	Emission	Stokes shift	
ME	$0.175 {\rm eV}$	$0.205~{\rm eV}$	$33.5 {\rm ~cm^{-1}}$	-0.118 eV	$0.027~{\rm eV}$	-1118 cm ⁻¹	
MAE	$0.205~{\rm eV}$	$0.210~{\rm eV}$	$728 \mathrm{~cm}^{-1}$	$0.350~{\rm eV}$	$0.423~{\rm eV}$	$1502 \ {\rm cm}^{-1}$	
MRE $(\%)$	5.100	6.280	4.17	3.540	-0.01	-26.7	
MARE $(\%)$	5.850	6.410	19.1	10.8	14.6	37.3	
Slope	1.050	1.040	0.547	1.06	1.22	0.158	
Intercept	0.156	0.038	1734	-0.034	-0.682	1989	
R-Square $(\%)$	95.10	96.10	25.00	78.8	72.3	-15.4	

First-principle methodology clearly better than semi-empirical Dorenbos approach Still, the latter has the correct trends, and single out important factors

Jia, Poncé, Miglio, Mikami & Gonze, Adv. Opt. Materials, 5, 1600997(2017)

Fifteen Eu-doped hosts covering 2-3.5 eV range

Compound	Ca	lcula	tion	Experiment		
	Abs	Em	ΔS	Abs	Em	ΔS
Sr[LiAl ₃ N ₄]:Eu1	2.10	1.96	1129	2.03	1.91	956
$Sr[LiAl_3N_4]:Eu2$	2.16	1.99	1371	2.03	1.91	956
$Ca[LiAl_3N_4]:Eu$	1.99	1.82	1371	1.96	1.86	800
$Sr[Mg_3SiN_4]:Eu$	2.21	2.05	1290	2.26	2.02	1935
$\mathrm{Ba_3Si_6O_{12}N_2:Eu}$	2.95	2.46	3952	2.69	2.32	2790
$BaSi_2O_2N_2{:}Eu$	2.85	2.30	4436	2.71	2.52	1532
$CaAlSiN_3:Eu, M-I$	2.37	2.03	2742	2.41	1.91	4032
${\rm CaAlSiN_3:Eu,M-II}$	2.39	2.08	2508	2.41	1.91	4032
$SrAl_2O_4:Eu1$	2.97	2.37	4839	2.88	2.38	4033
$SrAl_2O_4:Eu2$	3.17	2.55	4996	3.11	2.79	2581
$\mathrm{Sr}_5(\mathrm{PO}_4)_3\mathrm{Cl:Eu}$	3.24	2.96	2258	3.06	2.78	2178
$SrI_2:Eu$	3.35	3.14	2339	3.05	2.85	2420
$CaF_2:Eu$	3.26	3.04	1774	3.06	2.92	1047
CaS:Eu	1.97	1.80	1399	2.07	1.90	1466
$\mathrm{SrBO}_4:\mathrm{Eu}$	3.84	3.63	1710	3.54	3.35	1502
$\mathrm{Sr}_{2}\mathrm{MgSi}_{2}\mathrm{O}_{7}\mathrm{:}\mathrm{Eu}$	3.11	2.52	4726	2.94	2.70	1936
$CaMgSi_2O_6{:}Eu$	2.97	2.45	4218	3.16	2.72	3188
$\mathrm{KSrPO}_4:\mathrm{Eu}$	3.61	3.00	4920	3.32	2.88	3500

	First-principles							
	Absorption	Absorption Emission Stokes shift						
ME	0.104 eV	$0.058~{\rm eV}$	428 cm^{-1}					
MAE	$0.154~{\rm eV}$	$0.159~{\rm eV}$	819 cm^{-1}					
MRE (%)	3.55	2.27	33.7					
MARE $(\%)$	5.50	6.36	44.2					
Slope	1.156	1.081	0.704					
Intercept	-0.310	-0.135	1117					
R-Square $(\%)$	94.4	89.1	25.5					

Jia, Poncé, Miglio, Mikami & Gonze, PRB 96, 125132 (2017).

Fifteen Eu-doped hosts covering 2-3.5 eV range

Jia, Poncé, Miglio, Mikami & Gonze, PRB 96, 125132 (2017).

Thermal quenching ? Emission width ? The 1-D model and beyond

See e.g. C. Braun ... W. Schnick, Chem. Eur. J. 16, 9646 (2010)

Models for thermal quenching

UCLouvain

Skoltech RSF Russian Science

The 4f-5d energy barrier (E_A) can be estimated in a 1-D picture + parabolic approximation, with only the usual 4 total energy calculations
 For the fifteen Eu-doped hosts, the energy barrier is estimated to be 1.9 eV or (much) larger. In favor of auto-ionization !

Emission : Full width at half maximum

Skoltech RSF Russian Science

Emission : shape/shift of the spectrum

Beyond the 1D model: 4f-5d crossing

 Example for YAIO₃:Ce
 Energy barrier is indeed lowered w.r.t. 1D model
 But not so much w.r.t parabolic approximation

Jia, Poncé, Miglio, Mikami & Gonze, *Phys. Rev. B* 100, 155109 (2019)

UCLouvain ETSF Skoltech RSF Storage More general statement of problem:
 in full coordinate space, find lowest E_A for a given
 ΔE(5d-4f) (that might be zero)

Adressed by Lagrange multiplier technique: geometry optimization on linked 4f and 5d systems

Wrap-up

The most efficient white LEDs are phosphor-based : downconversion of blue light

Need to optimize : Emission spectrum ; Excitation spectrum ; Quantum efficiency ; Optical characteristics at elevated temperature ; ... Ce³⁺ and Eu²⁺ - doped inorganic hosts : tunable 4f – 5d transition

- First-principle methodology
- Absorption, emission & Stokes shift
- Study of 13 Ce-doped hosts and 18 Eu-doped hosts, to validate the methodology.
- Outperform the semiempirical methodology (useful to get physical insights !)
- Thermal quenching & width

Units for the visible spectrum

Detailed information of semi-empirical fitting

Compounds	State	χav	α^i_{sp}	Ec.	β	Rav	Ecfs	D(A) r=1.7	D(A) r=2.4	D(A) average
Maa	GS	1.425	2.694	13671cm ⁻¹	1.2×10^{9}	247.5pm	19614cm ⁻¹	25209cm ⁻¹	21844cm ⁻¹	23526cm ⁻¹
YAG:Ce	EX	1.425	2.694	15253cm ⁻¹	1.2×10^{9}	243.1pm	20331cm ⁻¹	27212cm ⁻¹	23724cm ⁻¹	25468cm ⁻¹
LaAc.c.	\mathbf{GS}	1.483	2.514	17612cm ⁻¹	1.2×10^{9}	234.6pm	21803cm ⁻¹	30437cm ⁻¹	26697cm ⁻¹	28567cm ⁻¹
LUAG:Ce	EX	1.483	2.514	14446cm ⁻¹	1.2×10^9	242.3pm	20440cm ⁻¹	26470cm ⁻¹	22963cm ⁻¹	24717cm ⁻¹
LaPO -Ca	GS	1.725	1.934	8403cm ⁻¹	5.67×10^{8}	260.3pm	8368cm ⁻¹	13325cm ⁻¹	11890cm ⁻¹	12608cm ⁻¹
LaPO ₄ :Ce	EX	1.725	1.934	8822cm ⁻¹	1.2×10^{9}	252.3pm	18875cm ⁻¹	19925cm ⁻¹	16687cm ⁻¹	18306cm ⁻¹
T., S. O. C.	\mathbf{GS}	1.543	2.346	10553cm ⁻¹	1.35×10^{9}	240.7pm	23301cm ⁻¹	24259cm ⁻¹	20262cm ⁻¹	22261cm ⁻¹
Lu251207:Ce	EX	1.543	2.346	11938cm ⁻¹	1.35×10^{9}	235.7pm	24300cm ⁻¹	26232cm ⁻¹	22063cm ⁻¹	24148cm ⁻¹
LoSi N. Co	\mathbf{GS}	1.74	7.07	21380cm ⁻¹	5.67×10^{8}	281pm	7181cm ⁻¹	25604cm ⁻¹	24372cm ⁻¹	24988cm ⁻¹
Lasians.ce	EX	1.74	7.07	23950cm ⁻¹	5.67×10^{8}	$280 \mathrm{pm}$	7232cm ⁻¹	28204cm ⁻¹	26963cm ⁻¹	27584cm ⁻¹
LASIN CO	GS	1.68	7.52	25166cm ⁻¹	1.2×10^{9}	265pm	17088cm ⁻¹	35218cm ⁻¹	32286cm ⁻¹	33752cm ⁻¹
La35161411.Ce	EX	1.68	7.52	28242cm ⁻¹	1.20×10^{9}	260pm	17751cm ⁻¹	38683cm ⁻¹	35638cm ⁻¹	37161cm ⁻¹
CoSi N.	\mathbf{GS}	1.74	7.07	21445cm ⁻¹	5.67×10^{8}	280.8pm	7191cm ⁻¹	25675cm ⁻¹	24441cm ⁻¹	25058cm ⁻¹
C6513145	EX	1.74	7.07	23885cm_1	5.67×10^{8}	280.7pm	7196cm_1	28118cm ⁻¹	$26883 \mathrm{cm}^{-1}$	27501cm ⁻¹
CosSieNer	\mathbf{GS}	1.69	7.46	25154cm ⁻¹	1.2×10^{9}	264.4pm	17166cm ⁻¹	35222cm ⁻¹	32306cm ⁻¹	33779cm ⁻¹
0630161911	EX	1.69	7.46	28198cm ⁻¹	1.20×10^{9}	259.6pm	17806cm ⁻¹	38672cm ⁻¹	35617cm ⁻¹	37145cm ⁻¹

The bright present and future of blue and white LEDs

- blu-ray technology (high-density DVDs, laser printers)
- white lighting (public, home, industry, greenhouse, transportation...)
- dominant technology in back-illuminated liquid crystal displays (mobile phones, tablets, laptops, computer monitors, TV screens ...)

Future

- UV for water purification

Skoltech RSF Russian

Optical RGB white-LED wireless transmission (> 3 Gbits/sec)

Excitation Spectra of Ce3+ and Eu3+

Kim et al, Sci. Reports 5, 7866 (2015).

Geometry relaxation : Ba₃Si₆O₁₂N₂

		ground state		excite	d state
	undoped ^b	Eu	diff %	Eu	diff %
$X_{I} - O_{2}$ (6×)	2.760	2.532	-8.3	2.388	-13.5
$X_{II} - O_2 (3 \times)$	2.959	2.869	-3.0	2.798	-5.4
$X_{II} - O_2 (3 \times)$	2.812	2.528	-10.1	2.352	-16.4
X_{II} –N (1×)	3.054	2.878	-5.8	2.763	-9.5
X_{II} –N (1×)	3.499	3.464	-1.0	3.578	2.3
binit	O ₂ Ba ₁ O ₂ O ₂ (a) Ba ₁ in Ba ₃ Si	O ₂ O ₂	(b) Ba _{II} i	in $Ba_3Si_6O_{12}N$	2
ETSE Skoltech	IN RSF Sterre Foundation	oscow, Nove	mber 11, 2020		

Geometry relaxation : Ba₃Si₆O₉N₄

		groun	d state	excit	ed state
	undoped ^b	Eu	diff %	Eu	diff %
$X_{I}-O_{2}$ (3×)	2.714	2.561	-5.6	2.414	-11.0
$X_{I} - O_{3} (3 \times)$	2.823	2.582	-8.5	2.489	-11.8
$X_{I}-N_{1}$ (3×)	3.498	3.729	6.6	3.768	7.7
X_{II} – O_2 (3×)	2.703	2.437	-9.8	2.343	-13.3
X_{II} – O_3 (3×)	2.860	2.758	-3.6	2.629	-8.1
X_{II} – N_2 (1×)	3.284	3.183	-3.1	3.059	-6.8
X_{II} – N_2 (1×)	3.579	3.469	-3.1	3.593	0.4
$X_{III}-O_2$ (3×)	2.730	2.535	-7.2	2.421	-11.3
$X_{III} - O_3 (3 \times)$	2.731	2.553	-6.5	2.450	-10.3
X_{III} – O_1 (3×)	3.375	3.579	6.0	3.388	0.4
$\begin{pmatrix} \mathbf{N}_1 \\ \mathbf{N}_2 \\ \mathbf{O}_2 \\ \mathbf{Ba}_1 \\ \mathbf{O}_3 $	N_1 O_2 O_2 O_2 O_3 $Si_6O_9N_4$	O ₂ O ₃ Ba _{II} (d) Ba _{II} in Ba	O ₂ O ₂ O ₂ O ₃ 2 a ₃ Si ₆ O ₉ N ₄	0 ₂ 0 ₂ 0 ₃ 0 ₃ (e) Ba _{III} in	O1 O2 O2 O3 Ba3Si6O9N4

Eu-doped band structure (excited state - GW)

Skoltech RSF Russian Science

The DFT bandgap problem

Comparison of DFT/LDA and Many-Body Perturbation Theory GW band structures with photoemission and inverse photoemission experiments for Silicon.

Eg (GW)=1.2 eV Eg (DFT/LDA)=0.6 eV Eg(exp)=1.17 eV **Problem** !

From "Quasiparticle calculations in solids", by Aulbur WG, Jonsson L, Wilkins JW,

Solid State Physics 54, 1-218 (2000)

La₃Si₆N₁₁:Ce_{2a} partial Density Of States

Moscow, November 11, 2020

Skoltech RSF Science

ETSF

Example : DOE Roadmap

A.1.3 Down Converters

Description: Explore new regulatory compliant, high-efficiency wavelength conversion materials for improved quantum yield and phosphor conversion efficiency for the purposes of creating warm white LEDs, with a particular emphasis on improving spectral efficiency with high color quality and improved thermal stability. Non-REM (rare earth metal) down converters are encouraged.

Metric(s)	2011 Status(s)	2020 Target(s)
Quantum Yield (25°C) across the visible spectrum	90%	95%
Thermal Stability across the visible spectrum – Relative Quantum Yield @ 150°C vs. 25°C	90%	95%
Avg. Conversion Efficiency (pc-LED)	66%	69%
Spectral Full Width Half Max. (FWHM)	150 nm (Red)	<30 nm All colors
Color Stability (pc-LED)	Color Shift 0.012 u'v' over life	Color Shift < 0.002 u'v' over life
Spectral Efficiency relative to a max. LER ~345 lm/W	90%	100%
Flux Density @ 85°C		

