Cluster structure prediction in USPEX: basics, examples and recent developments

Vladimir Baturin

Russian Science Foundation

Skolkovo Institute of Science and Technology

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

Contents

- 1.New variable-composition method for cluster structure prediction
- 2. Application to $Si_n O_m$ clusters in wide area of compositions: $1 \le n \le 15$, $0 \le m \le 20$
- 3. Charge trapping in Cd_nSe_m clusters

Theoretical structure prediction of nanoclusters is a very complicated problem:

- 1. A large number of atoms in a cluster to consider
- 2. In most cases the real cluster structure differs from the model structures either cut from bulk lattice or built considering some point symmetry. Low symmetry of the system is possible
- 3. The experimental data on the structure of nanoclusters is also very limited

Fixed composition cluster structure prediction

In the current version the **000** method is available 1. 1-st generation is initialized randomly, with clusters obeying one of 32 crystal point group plus some important non-crystallic point groups:

Crystallographic point groups:				
Hermann-Maugin	Schönflies	In USPEX		
1	C ₁	C1 or E		
2	C_2	C2		
222	D_2	D2		
4	C_4	C4		
3	C_3	C3		
6	C_6	C6		
23	Т	Т		
1	S_2	S2		
M	C_{1h}	Ch1		
mm2	C_{2v}	Cv2		
$\overline{2}$	S_4	S4		
3	S_6	S6		
6	C_{3h}	Ch3		
$m\overline{3}$	T_h	Th		
2/m	C_{2h}	Ch2		
mmm	D_{2h}	Dh2		
4/m	C_{4h}	Ch4		
32	D_3	D3		
6/m	C_{6h}	Ch6		
432	0	0		
422	D_4	D4		
3m	C_{3v}	Cv3		
622	D_6	D6		
43m	T_d	Td		
4mm	C_{4v}	Cv4		
3m	D_{3d}	Dd3		
6mm	C_{6v}	Cv6		
m3m	O_h	Oh		
$\overline{4}2m$	D_{2d}	Dd2		
$\overline{6}2m$	D_{3h}	Dh3		
4/mmm	D_{4h}	Dh4		
6/mmm	D_{6h}	Dh6		
m3m	O_h	Oh		

Important non-crystallographic point groups						
	Hermann-Maugin	Schönflies	In USPEX			
	5	C ₅	C5			
	5/m	S_5	S5			
	5	S ₁₀	S10			
	5m	Cv _{5v}	Cv5			
	$\overline{10}$	Ch _{5h}	Ch5			
	52	D_5	D5			
	$\overline{5}m$	D_{5d}	Dd5			
	$\overline{10}2m$	D_{5h}	Dh5			
	532	Ι	I			
	$5\overline{3}m$	I_h	Ih			

Fixed composition cluster structure prediction

2. The following generations are produced via similar operators to 3D, but with some important differences

 Usually supercell approach is applied
 In that case all variation operators are applied to the "small cell"
 The fingerprint vector is changed:

3. The fingerprint vector is changed:

$$F_{A_iB}(R) = \sum_{B_j} \frac{\delta(R - R_{ij})}{4\pi R_{ij}^2 N_B \Delta}$$

4. Slab-by-slab heredity is replaced by the cut-and-splice operator

For practical applications tens or hundreds of cluster compositions should be considered:

- in experiments clusters are often formed as ensembles of various sizes and compositions
- to study nucleation processes;
- to find compounds with required properties;
- etc.

The computation of *N* different cluster compositions is *N* times longer than one individual foxed-composition calculation.

New method: New search space, new fitness function, new variation operators

1. New search space – the union of search spaces of clusters with different compositions from a user-defined range:

- % atomType
- Cu Au
- % EndAtomType
- % numSpecies
- 6 10
- 6 10
- % EndNumSpecies

New method: New search space, new variation operator, new fitness function

New fitness function:

Total energy doesn't work

The only thermodynamically stable cluster is an infinite one, i.e. bulk \rightarrow cohesion, reaction, formation or binding energy don't work either

The solution is to exploit the idea of the **magic clusters** – the most abundant in nature and in the mass spectra of particle beams

Stability of the clusters: magic clusters

For clusters, stability can be determined with respect to neighboring clusters

Magic clusters

Model system: Lennard-Jones clusters

Stability criterion (magic clusters): $\Delta^2 E = E(n+1) + E(n-1) - 2E(n) > 0$, or E(n) < (E(n+1) + E(n-1))/2

Method: computational scheme; choosing the target function of optimization

New fitness – energy is counted with respect to a line connecting neighboring magic clusters

Method: variation operators

<u>Operators in the standard fixed-composition mode:</u>

- Random initialization
- Heredity (parents and offspring of the same composition)
- Softmutation
- Permutation

New operators in the variable-composition mode:

- Transmutation
- New heredity (parents may have different compositions)
- Add or remove atom

Add and remove atom

Coordination numbers: $o_i = \frac{\sum_j (\exp(-(\Delta r_{ij} - R_i - R_j)/0.37))}{\max(\exp(-(\Delta r_{ij} - R_i - R_j)/0.37))}$

 R_i - covalent radius of atom i:

Probability of addition or removal atom (for every type of atom):

 $\mathbf{p}_i \sim \mathbf{o}_{i max} - \mathbf{o}_i$

Variable-composition vs. fixed-composition

Number of relaxations

For binary model clusters: **Speed up is up to 50 times**

Ab initio study of Si-O clusters

Si-O clusters:

- practical importance in many fields:

- astrophysics: formation of silicates from SiO molecules in a circumstellar space;
- experiments on growth of oxide-coated Si nanowires from gasphase SiO
- Super-oxided clusters (Si_nO_m, m>2n) can manifest biological activity.

very complicated for structure prediction:
 crystalline silica alone has 14 structural forms.

Ground-state structures of Si-O clusters

Si_nO_m clusters, $1 \le n \le 15$, $0 \le m \le 20$ (315 different compositions) USPEX + VASP

20 best structures for each composition are refined with GAUSSIAN code, B3LYP/6-311+G(2d,p) approach

Results:

99 (of 315) clusters – reproduced results of other studies (empty cells);

17 (of 315) clusters – optimal structures were improved (+);

199 (of 315) clusters – were predicted for the first time (*).

Stability of binary clusters

$$\frac{\text{Binary A}_{n}\text{B}_{\underline{m}} \text{ clusters}}{\Delta_{nn}(n,m)=E(n+1,m)+E(n-1,m)-2E(n,m),}{\Delta_{mm}(n,m)=E(n,m+1)+E(n,m-1)-2E(n,m)}$$

$$\Delta_{\underline{min}}(\underline{n,m}) = \min\{\Delta_{\underline{nn}}(\underline{n,m}), \Delta_{\underline{mm}}(\underline{n,m})\}$$

 $\Delta_{\min}(n,m) < 0$ – cluster is unstable

 $\Delta_{\min}(n,m) > 0$ – cluster is stable (magic)

 $\Delta_{\min}(n,m)$ – numerical degree of stability

Stability map of Si_nO_m clusters: $\Delta_{min}(n,m)$

Regions of instability are marked by blue color.

Stability map of Si_nO_m clusters: $\Delta_{min}(n,m)$

Regions of instability are marked by blue color.

Stability map of Si_nO_m clusters: $\Delta_{min}(n,m)$

Charge traps in CdSe clusters

λ depends on cluster size
 making them perfect candidates
 for LEDs/dyes, however
 quantum yield is limited by
 charge trapping (due to
 localized surface states)

Charge traps in CdSe clusters

 λ depends on cluster size making them perfect candidates for LEDs/dyes, however quantum yield is limited by charge trapping (due to localized surface states)

Solutions:

- 1. Core-shell structures with dielectric shell
- 2. Passivation by ligands

Charge traps in Cd_nSe_m clusters: final picture

To study charge trapping one must inspect the localization of the near-gap electronic states

$$\begin{aligned} \mathrm{PR}_{i} &= \frac{1}{\sum_{a} P_{i,a}^{2}} \\ P_{i,a} &= \mathrm{contribution \ of \ atom \ a \ to \ i-th \ MO, \sum_{a} P_{i,a} = 1 \\ \end{aligned}$$

$$\begin{aligned} \mathrm{These \ are \ usually \ taken \ via \ Mulliken \ population \ analysis:} \\ \Psi_{i} &= \sum_{i} c_{\mu i} \phi_{\mu} \ i\text{-th \ MO \ is \ expanded \ over \ basis \ set \ of \ atomic \ orbitals \ \varphi_{\mu}} \\ P_{i,a} &= \sum_{i} c_{\mu i}^{*} c_{\nu i} \langle \varphi_{\mu} | \varphi_{\nu} \rangle \end{aligned}$$

$$P_{i,a} = \sum_{\mu \in a} c_{\mu i}^* c_{\nu i} \langle \varphi_{\mu} | \varphi_{\nu} \rangle$$

$$\overrightarrow{\text{overlap}}$$
integral
$$P_{i,a} = 0 = 1/3 = 1/3 = 1/3$$

$$P_{i,a} = 0 = 1/3 = 1/3 = 1/3$$

Maps of the localizations in Cd_nSe_m clusters: The higher N/N_{loc} – the more localized state

Maps of the localizations in Cd_nSe_m clusters: The higher N/N_{loc} – the more localized state

1. Localized states are mostly in lower right triangle – traps are mostly observed in Se-rich clusters

Maps of the localizations in Cd_nSe_m clusters: The higher N/N_{loc} – the more localized state

Maps of the localizations in CdnSem clusters: The higher N/N_{loc} – the more localized state

3. Despite the absence of passivating ligands, most clusters are **trap-free**.

Contrary to the previous studies where traps were thought to be inherent to unpassivated crystalline surface.

The reason is the **self-healing effect** due to passivation

Self-healing of traps

Three stages of stabilization:

1 Cluster is simply cut from a zincblende:

(near-zero gap)

2. Same cluster, relaxed

(opening the gap, mid-gap states are suppressed)

3. Global optimum structure

(gap is wide, no mid-gap states)

Types and mechanisms of trapping

New mechanisms

New mechanisms: T^{I}_{b} (Se π^*)

π- and σ-bonding have different energies ($h_{\sigma} >> h_{\pi}$

$$\psi_{\pi^*}(\mathbf{r}) \sim \exp\{-d_{\sigma}|(h_{\sigma}-h_{\pi})2m/\hbar^2|^{1/2}\}$$

Conclusions (CdSe)

1. Electron localization in Cd_nSe_m is inspected in a wide area of compositions (n, m = 1, ..., 15)

2. The most widespread traps were find in an unbuased way and classified into three types

3. The corresponding confinement mechanisms are explained at the atomistic level

3. The effect of localization on the HOMO-LUMO gap is investigated

Physical Chemistry Chemical Physics, 2020, DOI: 10.1039/D0CP05139J