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Gold is a very inert element, which forms relatively few com-
pounds. Among them is a unique material—mineral calaverite,
AuTe;. Besides being the only compound in nature from which
one can extract gold on an industrial scale, it is a rare exam-
ple of a natural mineral with incommensurate crystal structure.
Moreover, it is one of few systems based on Au, which become
superconducting (at elevated pressure or doped by Pd and Pt).
Using ab initio calculations we theoretically explain these unusual
phenomena in the picture of negative charge-transfer energy and
self-doping, with holes being largely in the Te 5p bands. This
scenario naturally explains incommensurate crystal structure of
AuTe;, and it also suggests a possible mechanism of supercon-
ductivity. An ab initio evolutionary search for stable compounds
in the Au-Te system confirms stability of AuTe, and AuTe3 and
leads to a prediction of an as yet unknown stable compound AuTe,
which until now has not been synthesized.

incommensurate crystal structure | calaverite | superconductivity

t is very well known that gold is one of the least reactive chem-

ical elements and it is typically mined as a pure native element.
It also occurs in alloys but very rarely it can be found in the form
of compounds. The only compound existing in nature from which
one can extract gold on an industrial scale is gold telluride—
AuTey, calaverite. This material is extremely interesting in many
aspects. It even influenced the gold rush in Australia, where min-
ers in gold mines first discarded calaverite as an “empty” waste
and used it for paving the roads, but, after discovering that it con-
tains real gold which can be extracted, very carefully scrapped all
these roads.

Another, very specific feature of AuTe, is that it is one of very
few materials having in natural form an incommensurate crystal
structure. This at one time was of much concern to mineralogists
and crystallographers: They could not understand the peculiar
faceting of calaverite crystals, contradicting Hatiy’s law. Usually
the stable natural facets of a crystal are those with small Miller
indexes, and in calaverite everything looked odd, until it was real-
ized that the very crystal structure is incommensurate (1). But
the origin of the incommensurability is still obscure. Last but not
least, AuTe> was found to be a superconductor at a relatively low
pressure of 2.3 GPa or upon Pt or Pd doping (2-5), with critical
temperature ~4 K.

In the present paper, we show that all these properties of
AuTe; can be naturally explained, if one takes into account that
it is in a negative charge-transfer energy regime, which drives a
charge disproportionation resulting in an incommensurate crys-
tal structure at normal conditions or a superconducting state at
higher pressures. Moreover, an extensive structural study of dif-
ferent gold tellurides allowed us to predict the existence of a
hitherto unknown compound: AuTe. We report the predicted
crystal structure and properties of this material.

www.pnas.org/cgi/doi/10.1073/pnas.1802836115

Old Puzzle of Calaverite’s Crystal Structure

AuTe, has a distorted layered CdIs-type structure [the aver-
age structure has space group C2/m (6)], with triangular layers
of Au with Te atoms in between. However, there is a periodic
displacive modulation along the [010] direction, which makes
overall crystal structure incommensurate (7). The mechanism
of incommensurability is unclear. One may argue that it can be
due to a specific electronic structure, which results in a charge
density wave (CDW) instability, but accurate band structure
calculations have not found nesting of the Fermi surface at corre-
sponding wave vectors (8, 9). Schutte and de Boer (10) proposed
another explanation based on the formal assignment of valencies
in Au®*(Te2)?~ [in analogy with another mineral—the “fool’s
gold” Fe?"(S2)?~]. However, whereas Fe' is a stable ionic
state, every chemist knows that Au®" is extremely difficult to sta-
bilize: It exists as Au'*(d'°) or Au®** (nominally low-spin d%).
If one could manage to really stabilize Au®*(d°), it would be a
realization of an old dream—a “magnetic gold.” [It was actually
indeed made, however not in oxides, but in systems with more
ionic bonds—in Au(AuF4)2 and Au(SbFe)2 (11).]

The phenomenon of skipped valence (12) of Au®*" can lead
to the possibility of charge disproportionation into Au'* and
Au®T, and it seems to naturally explain the ground-state prop-
erties of AuTey, as it works for example in Cs2Au2Clg (13).
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The fact that the CDW due to such charge disproportionation
is incommensurate in AuTes, in contrast to Csa AuzClg, may be
related to the triangular lattice, which Au ions form in AuTes.
This lattice is not bipartite, and the resulting frustration can
lead to incommensurate modulation. While overall modulation
of the lattice is complex, the local distortions seem to confirm
this skipped valence interpretation: Some Au ions, say at the
maximum of CDW, are in a linear, or dumbbell coordination
(two short and four long Au-Te bonds), typical for d'° ions,
here Au'", whereas at the “other end,” say in the minimum of
the CDW, Au ions are square coordinated—coordination typical
for Au?t (£5,(32% — r*)*(2* — y*)°) (5). Local surroundings for
other Au interpolate between these two limits.

This interpretation, however, was put in doubt. First, pho-
toemission (14) and then X-ray absorption (15) measurements
showed that apparently electronic configuration of all Au ions
is the same, close to Au'™. [A recent spectroscopic study, how-
ever, did show the existence of slightly inequivalent Au ions (4).]
Also ab initio calculations performed for the artificial supercell
structure with four Au ions mimicking the small-period CDW do
not show any difference in occupation of the d shell for different
Au ions (8). (Note that the structure used in ref. 8 is somehow
unnatural in a sense that four short Au-Te bonds do not lie in
one plane.)

We argue that nevertheless the physics of AuTe is related to
the eventual instability of Au* against charge disproportiona-
tion, which determines the main properties of AuTe,, including
not only incommensurate CDW, but also the tendency to super-
conductivity. As demonstrated below, the resolution of the con-
troversy mentioned above lies in the fact that actually AuTe; is a
negative charge-transfer (CT) energy system (16, 17), with all of
the holes predominantly in the 5p bands of Te.

The notion of CT insulators was introduced in the semi-
nal paper by Zaanen, Sawatzky, and Allen (18). These are
materials with strongly correlated electrons. However, the low-
est charge excitations in them correspond not to transfer of
electrons between localized d states, d"d” — d"t1d""!, as in
Mott-Hubbard insulators, but to electron transfer between ions
of transition metals (TMs) and ligands, that is, to the pro-
cesses d"p® — d"+1p® = d"T' L, where L stands for the ligand
hole. In CT 1nsulators this CT excitation energy is positive,
Acr=E(d""'p®) — E(d"p®) >0, but in principle it can be very
small or even negative (naively speaking, when anion p levels
lie above d levels of TM ions). In this case we refer to nega-
tive CT energy. Usually this situation is met when the oxidation
state of a metal is unusually high—e.g., 4+ for Fe or 3+ for
Cu. If such states are created by doping, as in high-T. cuprates,
the doped holes go predominantly to oxygen p states (although
these are of course strongly hybridized with d states of Cu).
But this situation can be realized also in undoped stoichiomet-
ric compounds such as CaFeOs. In this case there can occur
spontaneous transfer of electrons from ligands to the TM ion,
that is, Fe** —Fe®" L. This situation can be called a self-doping
(19). This picture, which in physics we describe by the (nega-
tive) CT energy, is reminiscent of the notion of dative bonding
in chemistry [A “dictionary” helping to establish the correspon-
dence between physical and chemical language is contained in
the famous book by Goodenough (20) and a very clear paper by
Hoffmann et al. (21).]

Interestingly enough, in many systems of this class there
occurs spontaneous charge disproportionation, like 2Fe*" —
Fe3T+Fe®", but occurring predominantly on ligands; that is,
this “reaction” should be visualized as 2Fe®* L —Fe3t +Fe3t L2
This process is now well established also in nickelates RNiO3
(R = Pr, Nd), where it leads to a real phase transition, originally
interpreted as charge ordering on Ni (2Ni** — Ni** + Ni**)
(22), but which is actually much better described by the reaction
2Ni** L — Ni** + Ni'* L? (23).
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We claim that the same phenomenon also occurs in systems
containing Au®", such as, e.g., Cs2AuzCls (13), and also in
calaverite AuTez, where one can write this reaction as

2A0%T(d%) = Au' T (d') + Au® T (d®), [1]

but in fact it should be visualized as
2AuT =2Au' T L — Au'T + Au' T LA [2]

Two holes (L?) in the Te p band form something like a bound
state, with the symmetry of a low-spin d® state of Au*" with
which it hybridizes. Below we confirm this picture by the ab initio
band structure calculations.

Mechanism of Incommensurability in AuTe,: Negative
CT Gap Energy

It is impossible to carry out ab initio calculations for the real
incommensurate structure with the existing codes based on den-
sity function theory (DFT). One needs to approximate this
structure by some supercell with a commensurate CDW. We bor-
rowed an idea on how to construct it from nature, taking the
initial crystal structure from the mineral sylvanite—AuAgTe,.
Au and Ag ions in sylvanite are ordered in stripes, with Ag
being in a linearly coordinated site, typical for ions with d'
configuration, that is, it is Ag'™ (Au-D in Fig. 1B); and Au
ions occupy a square-coordinated position, corresponding to,
nominally, Au** (Au-P in Fig. 1B) with its strong Jahn-Teller
distortion (6). This structure was relaxed in the generalized gra-
dient approximation (GGA), taking into account the spin—orbit
coupling (SOC), and then Ag was substituted by an Au ion
and relaxed again, keeping the unit cell volume the same as
in real AuTe;y (this structure is labeled as AuAu’Tes in what
follows).

First, we found that the AuAu’Te4 structure is stable and there
are still two differently coordinated Au ions. Second, this struc-
ture is lower in energy than the average C'2/m structure (6)
at experimental volume [by 22 meV/formula units (f.u.)]. Thus,
one may see that we gain a lot of energy by making distortions
corresponding to the CDW (in this case a commensurate one).

A close inspection of the Au 5d occupation numbers in the
AuAu’Te, structure, however, shows that from the point of view
of d occupation both Au ions are 1+: Corresponding occupan-
cies of the d shell [as obtained within the projector augmented
wave (PAW) method] are 9.90 and 9.92, so that the difference
is negligible: dna,—q =0.02 electrons [the Bader analysis (24)
gives an even smaller difference, <0.01 electrons] (note that in
real sylvanite, AuAgTe,, dn ~ 0.5 electrons; that is, in sylvanite
we can indeed refer to Ag'™ and Au", Au®" again with a lot
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Fig. 1. (A) GGA + SOC total and partial density of states for the AuAu'Te,
structure (for experimental volume). (B) Charge density p(r) correspond-
ing to the topmost, partially filled band [isosurface corresponding to
0.003 e/,z\3 ~10% of maximal value of p(F) is presented. Shown are results
of the GGA + SOC calculations for AuTe; in the fully optimized “AuAgTe,”
structure. Au-P and Au-D stand for Au ions having plaquette and dumbbell
surroundings.
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of ligand holes). This, however, seems to be in strong contrast
with results from the lattice optimization, which give very dif-
ferent local coordination for two Au ions: We have one linearly
coordinated (1+) and another square-coordinated (3+) Au. The
difference between short and long Au-Te bonds is ~0.25 A in
linear-coordinated and ~0.35 A in square-coordinated Au. This
is of the order of magnitude of Jahn-Teller (JT) distortions in
such classical JT systems as LaMnO3 (0.27 A) (25) and K2 CuF,
(~0.3 A) (26). What drives such strong lattice distortions, if not
the CDW on Au sites?

To answer this question we plot in Fig. 1B the distribution of
the charge density corresponding to the topmost, partially filled
bands illustrating a hole distribution. One may see that there is
only a minor contribution from the Au 5d states to the charge
density corresponding to the least-filled band, while the largest
part comes from the Te 5p orbitals. Thus, one may note a signif-
icant contribution of the ligand holes to the ground-state wave
function. The symmetry of the (Z?) hole state around “Au®*”
(Au-P in Fig. 1B) is the same as that of a hypothetical JT active
Au?* ion with two holes on the 22 — y? orbital; that is, it nat-
urally explains why this ion has square coordination typical for
such a state. (Note that this orbital lies in the plane of the Te
plaquette, while the central part of the charge density at Au-D
is spherically symmetric and, thus, this band corresponds instead
to the 322 — r* orbital.)

Analysis of the density of states, shown in Fig. 14, also con-
firms that the largest number of holes are in the Te 5p bands
and one may note a negative CT energy situation. The local elec-
tronic structure of Au ions in this case corresponds to 1+ valence
state for all Au ions (d'°). These results allow us to reconcile the
picture of charge disproportionation driven largely by skipped
valence of Au®" with the experimental data (14, 15), which show
that all Au ions are Au'™ from the spectroscopic point of view.

Moreover, a redistribution of electrons between Te and Au
favors a strongly distorted calaverite crystal structure, reminis-
cent of the formation of the CDW. Indeed, if the CT energy were
positive and there were a real CDW with the Au'" and Au®"
ions having 5d*° and 5d® electronic configurations, this would
cost a lot of Coulomb energy (two holes on the same d site repel
each other with the energy U, which is ~10 eV). Redistributing
a part of the charge density to ligands, we minimize the energy
costs of the formation of the CDW.

However, analysis of only two structures can be only qualita-
tive. There is no guarantee that there are no other structures,
which would give a lower total energy. In addition, the equi-
librium volume in the DFT can be different from that in the
experiment. To overcome the first difficulty we used the evolu-
tionary algorithm USPEX (27) to search for all possible struc-
tures of AuTe; with all experimentally known structures included
in the calculation. USPEX was previously successfully applied for
investigation of structural properties of many different materials,
including those based on heavy metals (28-30). For AuTe; we
found that the AuAu’Te, structure with distortions resembling
the CDW still has the lowest total energy among hundreds of
other structures obtained with the USPEX. There appear to be
only two structures (in the interval of 100 meV per atom) which
may compete with it: the high-pressure P3m1 phase, where
the incommensurate superstructure disappears and all Au ions
become structurally equivalent, and a structure characterized by
the Cmmm space group, the total energy of which is by 90 meV
per atom higher than that of AuAu’Tes.

In the second step we carefully checked how total energies
of these crystal structures depend on the volume (Fig. 2). The
AuAu’Tey structure corresponding to the CDW is still the lowest
one, while the equilibrium volume is slightly overestimated. The
next one is P3m1 with 5.5% smaller volume, and the average
C2/m and Cmmm structures are much higher in energy.

Streltsov et al.
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Fig. 2. Total energy vs. volume for different possible crystal structures
(GGA + SOC results). For each volume, optimization of the crystal structure
was performed.

At this stage one can demonstrate a crucial role of the CT
energy for the formation of the AuAu'Tey structure with dis-
tortions, imitating the real structure of AuTe;. For this we
performed model calculations, where the Au 5d bands were arti-
ficially shifted up in energy, thus increasing the CT energy and
reducing the contribution of Te holes. We found that the shift
of only 1 eV is enough to destabilize the AuAu’Te, structure,
and it makes the high-pressure P3m1 phase with all Au ions
structurally equivalent the lowest in energy: The total energy dif-
ference is Ep3,1 — Eavawte, = —2 meV/fu. In the real AuTey,
modeled by AuAu’Tey, the Au 54 states lie below Te 5p (Fig.
14), which corresponds to a negative CT energy Acr. Shifting
the Au 5d orbitals up leads to a decrease of absolute value of
Acr or even can make it positive. Then the charge dispropor-
tionation would have been mostly on the Au sites, which leads
to a drastic increase of the energy costs of the CDW due to
Coulomb interaction, as explained above, and as a result the
AuAu’Tey structure with inequivalent Aus becomes much higher
in energy.

An important question is why in real AuTe; the superstructure
is incommensurate. As explained above, due to computational
limitations we had to model it by the closest commensurate struc-
ture of a sylvanite, our AuAu’Te4. To check for the possibility to
get incommensurate structure we calculated the phonon spec-
trum (31) of AuTe,. We indeed found that when we start from
the homogeneous high-pressure phase P3m1, some phonon
frequencies became imaginary with the minimal frequency at
incommensurate wave vectors q~ 0.41a+ 0.5¢ (where a and ¢
correspond to the P3m1 structure) (SI Appendix, Fig. S1B).
Thus, the real instability of the homogeneous structure would
indeed lead to an incommensurate superstructure.

Very significantly, when we shift d levels up, as explained
above, these imaginary phonon frequencies disappear. This once
again proves that the negative CT energy and corresponding
large contribution of ligand holes are crucial for the formation
of the incommensurate structure of AuTe,.

High-Pressure Phase and Superconductivity

Taking the first derivative of E(V'), one can find that a crit-
ical pressure (P.) required for the transition from AuAu’Teys
to P3ml is 2.6 GPa. It is striking that while our optimized
structure with the commensurate CDW (AuAu'Tey) slightly
overestimates equilibrium volume, the critical pressure for the
transition to uniform P3m1 is reproduced with good accuracy:
The experimental P, = 2.5 GPa (5).
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The high-pressure phase of AuTe, is also very interesting due
to another aspect—the superconductivity, which appears in it
below T.=2.3 K (2). One may stabilize this phase not only by
pressure, but also by Pt doping (3), which also results in the sta-
bilization of the same P3ml structure. The superconductivity
was proposed to be induced by breaking of Te-Te dimers, which
exist in the C2/m phase, but disappear in the high-pressure
superconducting P3m1 phase (3). In particular, it was specu-
lated that the formation of Te-Te dimers modifies the electronic
structure of AuTe, through formation of bonding (o) and anti-
bonding (¢*) Te 5p bands (3). We have seen that the bands at
the Fermi level indeed have a very large contribution of the Te
5p states, but they are strongly hybridized with Au 5d and have
the symmetry of Au 5d orbitals (Fig. 1), while the o-bonded Te
5p states are far away from the Fermi level (~5.2 eV below and
~3.2 eV above Er). Thus, it seems that the Te-Te dimerization
is not directly related to the suppression of the superconductiv-
ity. In fact, this is just one of the consequences of the formation
of the CDW. In Fig. 3 the directions of Te atom displace-
ments due to the CDW are indicated. One may see that the
formation of AuTe4 plaquettes and AuTe, dumbbells naturally
results in dimerization of the Te atoms, which, however, is not
a driving force but rather a consequence of the CDW formation
in AuTes,.

One can argue that the physics disclosed in our calculations,
specifically the origin of the incommensurability—the tendency
to the skipped valence and charge disproportionation of “Au®*,”
occurring in the situation with negative CT energy with the
self-doping—is also instrumental in providing a mechanism of
superconductivity in AuTes under pressure or with doping. This
tendency, both on the d levels (reaction Eq. 1) and more realis-
tically on ligand states (reaction Eq. 2), means that there exists a
tendency for holes to form pairs; that is, there exists an effective
attraction of these holes.

The idea that the tendency to charge disproportionation
(which actually means the local “chemical” tendency to form
pairs of electrons or holes) can be instrumental in providing the
mechanism of Cooper pairing was first suggested by Rice and
Sneddon (32) in connection with the superconductivity of doped
BaBiOs. This material is also known to experience charge dis-
proportionation of the type 2Bi*" — Bi*T + Bi°T (and again
with a lot of action on ligands, e.g., ref. 17). For high- T cuprates
a similar idea was proposed in ref. 33. It is also closely related
to some theoretical studies of superconductivity in systems with
coexisting ordinary electrons and bipolarons (e.g., refs. 34 and
35). We suppose, by analogy with the abovementioned papers,

Fig. 3. Formation of the Te-Te dimers due to charge disproportionation
on Au sites. The “strength” of distortions in AuTeg octahedra is not the
same for all Au-Te bonds. There are “strongly” distorted with respect to
undistorted P3m1 (Sau_te ~ 0.45 — 0.55 A) and “weakly” distorted Au-Te
bonds (5au_te ~ 0.15 A). Plotting (for simplicity) only strongly distorted Au-
Te bonds (red lines; arrows show direction of distortions), one immediately
obtains Te-Te dimers (shown by blue arrows).

40f6 | www.pnas.org/cgi/doi/10.1073/pnas.1802836115
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Fig. 4. (A and B) Diagrams illustrating (A) conventional Bardin—Cooper—
Schrieffer “t-channel” pairing and (B) “s-channel” pairing proposed for
AuTe;.

that the chemical tendency of Au®" to charge disproportionately
into, nominally, Au'" and Au®*, which is the main ingredient
of our theory and which, as we argued above, plays a crucial
role in explaining the main properties of AuTez, may be also
instrumental in providing the mechanism, or at least helping the
realization, of superconductivity in AuTe, when doped or under
pressure.

One can phenomenologically describe this situation by an
effective Hamiltonian like the Anderson lattice model (where 5p
electrons of Te play the role of conduction electrons, while 5d
electrons of Au are localized), but with an effective attraction—
with negative U on localized levels. After excluding d electrons,
we get in effect also an attraction of conduction electrons, which,
on one hand, can provide the mechanism of CDW formation
(not even requiring nesting of the Fermi surface, although nest-
ing would help). And, on the other hand, in this model we have
a natural mechanism of formation of Cooper pairs leading to
superconductivity. In diagrammatic language, this mechanism
of pairing is described in Fig. 4B [two electrons (or holes) of
a conduction band “drop” into the Au 5d levels, where they
experience attraction and form pairs, before decaying again into
conduction electrons.] This situation is reminiscent of a model
with bipolarons (36) and is different from the usual electron—
phonon exchange in Fig. 44 (although the standard electron—
phonon coupling could also contribute). Thus, AuTe, may be
the long-sought second example of the same physics as pro-
posed for BaBiOs (32), with the same mechanism of both charge
disproportionation and superconductivity.

As Yet Unknown Compound AuTe

Since USPEX has shown its efficiency in determining the AuTe;
crystal structure, we extended these calculations to a whole
Au;_,Te, series with arbitrary z. Fig. 5 shows thermodynamic
convex hulls and a phase diagram of the Au-Te system in the
GGA and GGA + SOC approximations. A compound is ther-
modynamically stable if its thermodynamic potential (e.g., the
Gibbs free energy) is lower than that of any other phase or
phase assemblage of the same composition. On a graph show-
ing the enthalpy of formation of all compounds of a given system
(e.g., Au-Te system) from the elements, all points correspond-
ing to stable compounds can be connected to form a convex
hull. Height above the convex hull is a measure of thermody-
namic instability of a compound. One may note that in addition
to experimentally observed structures such as AuTes and AuTes
(37) there appears another one: AuTe.

AuTe has never been synthesized so far, but there exists min-
eral muthmannite, AuAgTe,, found in Western Romania (38),
where Au and Ag ions are in a 1:1 ratio. Muthmannite has a
distorted NiAs-type structure with space group P2/m. Our cal-
culations have shown that the C2/c structure predicted for AuTe
by USPEX is significantly more stable (by 0.164 eV per atom
with SOC) than the muthmannite structure. The predicted C2/c
structure of AuTe, shown in Fig. 6, can be considered a distorted
NaCl-type structure (NiAs and NaCl structures are relatives).

Streltsov et al.
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Fig. 5. Thermodynamic convex hulls and Gibbs free energy G vs. chemical
potential i for the Au-Te system with different Te concentrations.

The Au ions are in the strongly distorted plaquettes with two
short (2.68 A) and two long (2.90 A) Au-Te bonds.

It is worthwhile mentioning that the SOC additionally lowers
the position of the Au 5d band and thus affects stability of dif-
ferent phases in the Au-Te system. One can see from Fig. 5 that
while both GGA and GGA + SOC calculations show stability of
the same phases and crystal structures, there are large changes in
stability fields. The plot of Gibbs free energy vs. chemical poten-
tial demonstrates that inclusion of the SOC expands the stability
field of Au (in effect making it more inert) and AuTe;, at the
expense of shrinking the stability fields of AuTe and AuTes. The
relatively narrow stability field may explain why AuTe is not yet
known.

AuTe was found to be a nonmagnetic metal in the GGA +
SOC calculations. Analysis of the charge density, p(7), corre-
sponding to the bands at the Fermi level, shows that there are
nearly equal contributions to p(7) from Au 5d and Te 5p states.
This may explain why USPEX did not find the solution corre-
sponding to charge disproportionation, as it did for calaverite
(two inequivalent Au ions: in dumbbells and plaquettes): The
energy costs due to the on-site Coulomb repulsion are too large
in AuTe. Thus, in effect AuTe should resemble the high-pressure
phase of AuTe,, with all Au equivalent, and one could expect
that it could also be superconducting.

Conclusions

The Au-Te system presents an interesting example of com-
pounds of a very inert element, gold, with nontrivial properties.
We found that there exist in the Au-Te system three stable
stoichiometric compounds: AuTe, AuTe, and AuTes. [There
exists also AusTer with a simple cubic structure and statisti-
cal distribution of Au and Te atoms (39), but it is likely a
solid solution. We have not found a stable compound with such
stoichiometry in calculations at T = 0 K, which indicates that
it is probably entirely entropy stabilized.] The second and the
less “popular” third compound are known and studied. AuTe
has not been synthesized, however, although a similar mate-
rial, mineral muthmannite AuAgTe,, is known. It would be very
interesting to check our predictions and try to synthesize and
study AuTe.

Much better studied, but still presenting several, until now
unresolved puzzles, is calaverite, AuTe. This is the system whose
properties we now explain on the basis of ab initio calculations.
The picture emerging from our calculations is the following: The
nominal average valence of gold in AuTe; is 2+, similar to many
pyrites like FeS, and MnS» (140). But this state is, first of all,
chemically unstable (only Au'"™ and Au®* are known to exist,
with very few exceptions). And, most importantly, both Au**
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and Au®* in AuTes correspond to the situation with negative CT
energy, that is, practically Au®* —Au'* L and Au*" —Au'* L.
This means that in fact all of the holes go to ligand (here Te)
bands (but still with significant hybridization with d states of Au).
This is actually the situation of self-doping (17, 19). In this case
there occurs a phenomenon met also in several other systems:
the valence, or charge disproportionation, which, however, again
occurs not so much on the d shells themselves, but on ligands;
that is, corresponding disproportionation is described not as in
Eq. 1, but instead as in Eq. 2. This transition is accompanied
(and is largely driven) by the change of the Au-Te bond lengths
(and local coordination—linear for Au' " and square for Au®" =
Au't L?); that is, it should be better called not charge, but bond
disproportionation (17). But the outcome is very similar: There
occurs in this case a structural transition with the formation of
corresponding superstructures, commensurate as in, e.g., nicke-
lates RNiO3 (17, 22, 23) or incommensurate as in the case of
a frustrated triangular lattice of AuTe,. This picture naturally
explains both the structural characteristics of AuTe; and the
spectroscopic data, showing apparently constant occupation of
d shells of Au. Despite this equivalence, the tendency to this
charge or bond disproportionation is intrinsically connected with
the “atomic” property of, here, Au (skipped valence Au**). Sup-
pression of this superstructure by pressure or doping leads to the
formation of a homogeneous metallic state with all Au (or Ni in
RNiO3) becoming equivalent, and in AuTe, this state becomes
superconducting. The situation with negative CT gap and with a
lot of ligand holes existing in particular in AuTes is the solid state
analogue of dative bonding known in coordination chemistry.

We argue that the same mechanism—the tendency to charge
disproportionation, which is in fact the tendency to form electron
or hole pairs—may be instrumental for the appearance of super-
conductivity in doped AuTez or AuTe; under pressure. Thus,
this exciting material, gold telluride, indeed is extremely inter-
esting, both because of its rich history and, more important for
us, as an example of very interesting physics.

Methods

The DFT calculations were performed within the Perdew-Burke-Ernzerhof
functional (41) using the all-electron PAW method (42) as realized in the
VASP code (43). We took into account the SOC and used scalar-relativistic
GW PAW potentials with an [Xe] core (radius 2.1 a.u.) and [Kr] core (radius
2.2 a.u.) for Au and Te atoms, respectively, and plane wave cutoff of
400 eV. The evolutionary structure prediction algorithm USPEX (27) was
applied in the search for stable phases. Structure relaxations used k-
mesh with a resolution of 27 x 0.03A™" and electronic smearing of 0.1
eV. The USPEX simulation included 80 structures per generation for a

Fig. 6. The crystal structure of AuTe. Thick solid and dashed lines
correspond to short and long Au-Te bonds, respectively.
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variable-composition run. Also all known Au-Ag-Te compounds (with sil-
ver atoms substituted by gold) were included in the calculation (6, 37, 39,
44, 45). Phonon calculations were performed using Phonopy (31) with a
4 x 4 x 2 supercell.
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