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We explore whether the topology of energy landscapes in chemical systems obeys any rules and
what these rules are. To answer this and related questions we use several tools: �i� Reduced energy
surface and its density of states, �ii� descriptor of structure called fingerprint function, which can be
represented as a one-dimensional function or a vector in abstract multidimensional space, �iii�
definition of a “distance” between two structures enabling quantification of energy landscapes, �iv�
definition of a degree of order of a structure, and �v� definitions of the quasi-entropy quantifying
structural diversity. Our approach can be used for rationalizing large databases of crystal structures
and for tuning computational algorithms for structure prediction. It enables quantitative and intuitive
representations of energy landscapes and reappraisal of some of the traditional chemical notions and
rules. Our analysis confirms the expectations that low-energy minima are clustered in compact
regions of configuration space �“funnels”� and that chemical systems tend to have very few funnels,
sometimes only one. This analysis can be applied to the physical properties of solids, opening new
ways of discovering structure-property relations. We quantitatively demonstrate that crystals tend to
adopt one of the few simplest structures consistent with their chemistry, providing a thermodynamic
justification of Pauling’s fifth rule. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3079326�

I. INTRODUCTION

Energy landscapes determine the behavior and properties
of chemical systems �molecules, fluids, and solids� such as
the melting temperature, strong/fragile behavior of liquids,
the glass transition, dynamics and kinetics of structural trans-
formations �e.g., displacive, order-disorder and reconstruc-
tive phase transitions, protein folding�; see Refs. 1 and 2.
However, being a multidimensional function, an energy land-
scape cannot be directly visualized and even storing all val-
ues of this function on the computer would be impractical.
The only way forward is to apply some reduction procedure,
whereby only the most essential information is extracted and
projected onto a small number of physically meaningful dis-
criminators. What kind of information is extracted and how
the discriminators are defined depends on a particular pur-
pose, and several approaches have been proposed in the past
�e.g., Refs. 3–8�. We mention in particular landscape statis-
tics �see, e.g., Refs. 3–5�, the disconnectivity graphs,7 orien-
tational bond order parameters,8 and various distance
metrics.6,9,10 Previous works focused mainly on kinetics and
physical properties of clusters, liquids, and glasses. Our fo-
cus is on crystalline solids and simple ways of translating the
immense information contained in energy landscapes into an
intuitive language of chemistry.

II. ENERGY SURFACE, REDUCED ENERGY
SURFACE, AND ITS DENSITY OF STATES

The most important piece of information is the set of
energy minima �including, but not restricted to, the global
minimum�. While for some purposes it is also necessary to
explore the saddle points �i.e., the transition states� of the
landscape, here we analyze only the minima, i.e., metastable
and stable structures, which bear relevant chemical informa-
tion, and can be experimentally observed and readily simu-
lated.

The resulting reduced energy surface �i.e., the imaginary
surface formed by local energy minima� is much simpler and
often has an overall funnel-like shape �Fig. 1�: The further a
local minimum is from the global minimum, the higher its

a�Present address: Department of Geosciences, Department of Physics and
Astronomy, and New York Center for Computational Sciences, Stony
Brook University, Stony Brook, NY 11794-2100, USA. Electronic mail:
artem.oganov@sunysb.edu.

FIG. 1. Conceptual depiction of an energy landscape �solid line� and re-
duced energy landscape �filled squares connected by dashed lines� �Ref. 11�.
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energy. In more complex cases, there can be several energy
funnels corresponding to different arrangements of atoms in
the structure. The emergence of funnels on the energy land-
scape can be understood by chemical intuition and can be
traced to scale-free properties of the landscape in chemical
systems.12

The reduced energy surface is still multidimensional and
overwhelmingly complex. Below we will show how to map
it in one or few dimensions and to establish whether it has
one or more energy funnels. Before that, we would like to
dwell briefly on the useful information contained in the den-
sity of states �DOS� of the reduced energy surface, see Fig. 2.

Such DOS plots provide a wealth of important informa-
tion. Typically, there is a tall maximum at high energies �de-
noted as “region 2” in Fig. 2�, corresponding to disordered
liquid-like structures, and one or several smaller maxima at
lower energies separated by gaps �denoted as “region 1” in
Fig. 2� and corresponding to ordered crystal structures and
their defective variants.14 The melting temperature of the
crystal is related to the energy separation between the ground
state and disordered structures.

As system size increases, the number of possible energy
minima increases exponentially. One might think that with
more degrees of freedom, larger systems would have more
uniform DOS with filled energy gaps. However, just the op-

posite happens �Fig. 2�b��: The liquid-like maximum �region
2 of the DOS� becomes higher �at the expense of ordered
structures, which become rarer�, narrower, more Gaussian-
like �as argued in Ref. 5 using the central limit theorem�, and
shifted to higher energies �disorder costs energy�, see Fig.
2�b�. What we observe by examining energies and fingerprint
functions �defined below� is that all disordered structures be-
come nearly identical for large system sizes. In the limit of
infinite system size all randomly produced structures will be
identical and representative of the amorphous state, DOS
will look like a delta function, and the corresponding energy
can be expected to correlate with the melting temperature.
Finding the ground state with random sampling will be ex-
ponentially impossible for increasingly large systems.

III. FINGERPRINT FUNCTIONS, ABSTRACT
DISTANCES, DEGREE OF STRUCTURAL SIMPLICITY

A. Fingerprint functions

Here we define a function �actually, one can propose a
number of similarly defined functions�, which we call a fin-
gerprint function and which uniquely characterizes the struc-
ture �Fig. 3�. Such a function should be �i� derived from the
structure itself, rather than its properties �such as energy�, �ii�
invariant with respect to shifts in the coordinate system, ro-
tations, and reflections, �iii� sensitive to different orderings of
the atoms �e.g., one should be able to distinguish between
different orderings in fcc alloys�, �iv� formally related either
to experiment �diffraction patterns� or microscopic energet-
ics, and �v� robust against numerical errors. In addition, we
require that fingerprints of similar structures be similar and
the difference of fingerprint functions be a reasonable mea-
sure of structural �dis�similarity. In Ref. 16 we discussed
definitions proposed by us11,16 and other authors.5,9,10 The
definition introduced in Ref. 16 involves a sum over all in-
teratomic distances Rij,

��R� =
N

�cellNiNjbibj
�
i,cell

�
j

bibj

4�Rij
2 Nj

V
�

��R − Rij� − 1. �1�

The factor before the double sum is just a normalization
constant involving the total number N of atoms in the unit
cell, the numbers Ni and Nj of atoms of each type, and their
scalar atomic properties b �which can be set, e.g., to the
atomic numbers, electronegativities, chemical scale or Men-
deleev numbers,17,18 or neutron scattering lengths�. The
double sum runs over all atoms i within the unit cell and j
within the threshold distance Rmax of the ith atom. V is the

FIG. 2. �Color online� DOS of energy minima for �a� GaAs with 8 atoms/
cell and �b� binary Lennard-Jones crystal AB2 for several system sizes. En-
ergies are shown relative to the ground state. Data were obtained by locally
optimizing random structures without pruning identical structures. In �a�,
3000 random structures were sampled, while in �b� we typically sampled
5000 random structures at each system size. Calculation �a� was done using
the generalized gradient approximation �Ref. 13� of density functional
theory. In �b�, for each atomic pair the Lennard-Jones potential was written
as Uij =�ij��Rmin,ij /R�12−2�Rmin,ij /R�6�, where Rmin,ij is the distance at which
the potential reaches minimum and � is the depth of the minimum. For all
pairs we used the same � but different ideal lengths: Rmin,BB=1.5Rmin,AB

=2Rmin,AA. Competition between these simple spherically symmetric inter-
actions leads to very complex energy landscapes and nontrivial ground
states.

FIG. 3. �Color online� F-fingerprint of the ground-state structure of Au8Pd4

�12 atoms/cell� found in Ref. 11.
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unit cell volume and ��R−Rij� is a Gaussian-smeared delta
function, absorbing numerical errors and making ��R� a
smooth function. To be robust against numerical errors and
computationally convenient, the ��R� function is discretized
over bins of width �. This �-fingerprint is short ranged, i.e.,
tends to zero at infinite R, and ��0�=−1. When b-parameters
in Eq. �1� are set to atomic neutron scattering lengths, ��R�
is related to the structure factor

S�Q� = 4�
N

V
� R2��R�

sin�QR�
QR

dR+�
j

Nj

N
bj

2. �2�

When atomic numbers are used as b-parameters, relation �2�
gives a zeroth-order approximation to the x-ray scattering
structure factor.

This fingerprint, however, is not very sensitive to order-
ing of the atoms on a given structure and depends on the
choice of b-parameters. To overcome these problems, we
separate the components of the fingerprint function coming
from different atomic type pairs A-B, making the total fin-
gerprint a matrix, each element of which is a function

FAB�R� = �
Ai,cell

�
Bj

��R − Rij�

4�Rij
2 NANB

V
�

− 1 = gAB�R� − 1, �3�

where the double sum runs over all ith atoms of type A
within the unit cell and all jth atoms of type B within the
distance Rmax. In Eq. �3�, gAB�R� is the pair correlation func-
tion; subtracting 1 from it makes it short ranged. The
F-fingerprint components have the same limiting behavior as
the �-fingerprint, FAB�0�=−1 and FAB���=0. Individual fin-
gerprint components can be obtained from diffraction experi-
ments. F-fingerprint does not contain atomic b-parameters
and is very sensitive to ordering as well as structure.

Each F-component satisfies the following sum rule:

4�
NB

V
�

0

�

FAB�R�R2dR = − �AB. �4�

B. Distance between structures

Discretization of fingerprints �1� and �3� allows them to
be represented as vectors, values of the fingerprint FAB�k� in
each kth bin �of width �� being vector coordinates. The di-
mensionality of the fingerprint space equals the number of
bins. Each structure can thus be uniquely described by a
fingerprint vector in this abstract space, and dissimilarity be-
tween structures can be calculated using one of distance defi-
nitions given below.

When there is only one atomic type, both �- and
F-fingerprints reduce to g�R�-1 �where g�R� is the pair cor-
relation function�, and the Minkowski distance is

DMinkowski = ��
k

�F1�k� − F2�k��p�1/p
. �5�

When p=2, Minkowski distances are the usual Euclidean
distances. However, we found16 that cosine distances

Dcosine =
1

2
	1 −

F1 * F2


F1

F2

�

=
1

2	1 −
�kF1�k�F2�k�

��kF1
2�k���kF2

2�k�
� �6a�

are more robust to the “curse of dimensionality” effect of
distance concentration.19 They are related to Euclidean dis-
tances in a nonlinear way, but conveniently can only take
values between 0 and 1 and are much more robust to small
numerical errors. Cosine distances measure the similarity be-
tween structures using the angle between their F-vectors. For
finite systems two F-vectors can be parallel only if they are
identical. The generalization of Eq. �6a� to multicomponent
fingerprints is straightforward,

Dcosine =
1

2	1 −
�AB�kF1,AB�k�F2,AB�k�wAB

��AB�kF1,AB
2 �k�wAB

��AB�kF2,AB
2 �k�wAB

� ,

�6b�

where the sums are over all FAB components, taking each
component �note that FAB=FBA� only once. The importance
weight wAB of each fingerprint component is defined as

wAB =
NANB

�cellNANB
. �7�

Computing the distance between two structures one quanti-
fies the difference between them. This can be used for ana-
lyzing crystal structure databases and for visualizing results
of evolutionary structure prediction simulations, as shown in
Fig. 4.

FIG. 4. �Color� Similarity matrix �dimensions of 630�630� for an evolu-
tionary structure prediction simulation for Au8Pd4 �with 12 atoms/cell� at 1
atm. Each �N ,M� pixel shows the distance between the Nth and Mth struc-
tures. Note the increase in similarity between the structures toward the end
of the simulation—this is a consequence of “learning” in evolutionary simu-
lations. This matrix is by construction symmetric with respect to its diagonal
and all diagonal �N ,N� elements are zero �structure N is identical to itself�.
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C. Degree of order

Both �- and F-fingerprints describe correlations be-
tween atomic positions, i.e., the nonrandomness of the struc-
ture, responsible for its diffraction signal �Eq. �2��. For an
ideal gas both �- and F-fingerprints are zero, and therefore
their deviation from zero level can be used as a measure of
order. We write a dimensionless and scale-invariant defini-
tion of the degree of order �,

� =
1

	
�

0

Rmax

F2�R�dR =
�

	

F
2, �8�

where 	 is a characteristic length �for instance, 	=R0, the
distance at which F�R� first becomes zero�.20 While the
angles between fingerprint vectors measure structural differ-
ences, the lengths of these vectors show the degree of order
of each structure. For an ideal gas �=0, for a gas of hard-
sphere atoms �=1, for solids �
1. We use an alternative
definition of the degree of order: Modifying the sum rule �4�
to obtain the next moment we get

P =
1

V/N�0

Rmax

F2�R�R2dR . �9a�

The generalization for multicomponent fingerprints is
straightforward,

P = �
A,B

wABPAB, �9b�

where PAB are computed separately for each fingerprint com-
ponent.

Roughly, P is related to the total scattering power of the
structure �cf. Eq. �2�� and simpler structures have higher P
values. As we will show below on concrete cases, statisti-
cally, the higher the P, the lower the energy of the structure,
and therefore the degree of order P is an excellent predictor
of the structural energy.

D. Total energy and fingerprint functions

We can relate the total energy to F-fingerprint in the
approximation that the total energy is a sum of pairwise in-
teraction potentials UAB�R�,

E =
1

2�
A,B

UAB�R�

= ERAN +
4�

2 �
A,B
�

0

�

FAB�R�wABUAB�R�R2dR , �10�

where ERAN is the energy of a totally random structure with
the same volume. Since ERAN is a function of volume only,
energy differences at constant volume can be written as

�EV = 2��
A,B
�

0

�

�FAB�R�wABUAB�R�R2dR . �11�

This expression shows what is intuitively expected: the more
similar a structure is to the ground-state structure, the lower
its energy.

E. Quasi-entropy: A measure of structural diversity

Based on our distance metric and noting that cosine dis-
tances, just like occupation numbers, take values between 0
and 1, we propose collective quasi-entropy

Scoll = − ln�1 − Dij�� �12�

as a measure of collective diversity. Calculating Scoll for a set
of structures gives a single number measuring the diversity
of that set. This is very useful for tuning global optimization
methods, where rapid decrease in quasi-entropy may indicate
premature convergence of the algorithm.

For each given structure, one may also compute its own
quasi-entropy as a measure of disorder and complexity of
that structure �alternative to definitions �8� and �9��,

Sstr = − �
A

NA

N
ln�1 − DAiAj

�� , �13�

where distances DAiAj
are measured between fingerprints21 of

all ith and jth sites occupied by chemical species A, and the
total quasi-entropy is a weighted sum over all chemical spe-
cies. Standard crystallographic description gives the number
of symmetrically inequivalent atomic positions, but does not
provide any measure of physical difference between those
positions. Such a difference is given by Eq. �13�.

F. Summary of the formalism

We have proposed two families of closely related finger-
print functions �1� and �3�. Based on these functions, we
proposed a measure �6a� and �6b� of similarity �distance�
between different structures and a new parameter �9a� and
�9b� quantifying the simplicity and order of a crystal struc-
ture. Quasi-entropies �12� and �13� can be used for analyzing
the performance of global optimization methods and provide
another measure of structural complexity. Below we show
how these quantities can be used to map energy landscapes
of solids and rationalize them in terms of intuitive chemical
concepts.

IV. ILLUSTRATIONS OF OUR APPROACH ON
REALISTIC SYSTEMS

In all illustrations given below, we used F-fingerprints
�Eq. �3�� with Rmax=15 Å, �=0.05 Å, and Gaussian-
smeared �-function with �=0.075 Å. We use cosine dis-
tances and degree of order P �Eqs. �9a� and �9b�� throughout.

FIG. 5. �Color online� Energy-distance correlation for 2997 distinct local
minima of GaAs �8 atoms/cell�. The minima were found in several ab initio
evolutionary and random sampling simulations. Energy differences �per unit
cell� and distances in this and all subsequent graphs are relative to the
ground state.
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The data analyzed here include 2997 distinct local minima
for GaAs �8 atoms/cell�, 249 for Au8Pd4 �12 atoms/cell�, 967
for MgO �32 atoms/cell�, 949 for H2O �12 atoms/cell�, 6977
for MgNH �12 atoms/cell�, and 1949 distinct local minima
for the AB2 Lennard-Jones crystal. All data were obtained in
evolutionary and random sampling runs. Duplicate minima
were pruned using a clustering procedure described in Ref.
16. Local optimizations for most systems were done within
the generalized gradient approximation13 �only for Au8Pd4,
calculations were done within the local density approxima-
tion� using the VASP code.22 Exceptions are MgO, for which
we used the interatomic potential23 and Lennard-Jones �see
caption to Fig. 2 for the description of the potential model�
systems; for both, structure relaxations and energy calcula-
tions were performed using the GULP code.24

A. Confirming the existence of energy funnels

Chemical intuition tells us that since low-energy struc-
tures share many similarities �similar coordination numbers,
bond lengths, and angles, sometimes even whole structural
blocks�, they have to be clustered in the same region of pa-
rameter space. This would lead to an overall bowl-like shape
of the reduced energy surface �Fig. 1� and would have many
consequences of paramount importance. First, this would im-
ply that low-energy structures tend to be connected by rela-
tively low energy barriers and short transition pathways
�Bell–Evans–Polanyi principle25�. If there are several

funnels,15 transitions between them are likely to involve
large activation barriers. Second, funnel-like topology of the
landscape is important for modern structure prediction meth-
ods �e.g., the evolutionary algorithm11,26–28 and all neighbor-
hood search methods� to be efficient.

If the funnel-like shape of the reduced energy landscape
is valid, there would be a correlation between the energy and
the distance from the global minimum: The further from the
global minimum, the higher the energy. This correlation can
now be easily checked and turns out to be excellent in many
chemically simple systems—this is shown in Fig. 5 for GaAs
and in Fig. 6 for Au8Pd4.

Surprisingly at first, for MgO with 32 atoms/cell the
landscape turns out to be more complex and contains three
broad funnels with six-, five-, and four-coordinate Mg atoms,
respectively �Fig. 7�a��. The potential23 used here correctly
finds the ground state to have the NaCl-type structure, and
among the lowest-energy local minima we find an exciting
metastable structure with both Mg and O atoms in the five-
fold coordination �Fig. 7�b��. This structure was previously
predicted in Ref. 30, but has not yet been identified experi-
mentally. Among other low-energy metastable structures are
zinc blende, wurtzite, and their polytypes. The ability of Mg
atoms to adopt very different coordination numbers �ranging
from four to eight� in oxides and silicates is well known to
mineralogists and is the key to the multifunnel structure of
the landscape. Figure 7�a� shows that the funnels almost
“touch” each other and there are low-energy structures close
to the boundaries between funnels. This means that there
may be relatively low-energy transition pathways between
the funnels, and the landscape can be considered intermedi-
ate between single-funnel and multifunnel types. The non-
monotonic energy-distance plot reflects the complicated to-
pology of the landscape very clearly �Fig. 7�c��.

An extremely clear depiction of a multifunnel energy
landscape is provided by H2O with 12 atoms/cell. This land-
scape contains �at least� three clearly separated and chemi-
cally distinct funnels �Fig. 8�. These funnels have very dif-

FIG. 6. �Color online� Energy-distance correlation based on 249 distinct
local minima of Au8Pd4 obtained in an ab initio evolutionary run �Ref. 25�.
Most structures are different decorations of fcc or hcp structures.

FIG. 7. �Color� Energy landscape for MgO with 32 atoms/cell. �a� 2D mapping of the landscape where each point represents a structure and distances between
points on the graph are maximally close to the distances between the corresponding fingerprints �Ref. 29�. Darker points indicate lower-energy structures. �b�
Metastable structure of MgO with five-coordinate Mg and O atoms in the trigonal bipyramidal coordination. It has the space group P63 /mmc, cell parameters
a=b=3.46 Å and c=4.18 Å, and atomic positions Mg �1/3, 2/3, 3/4� and O �2/3, 1/3, 3/4�. �c� Energy-distance correlation.
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ferent energies—structures in the deepest funnel consist of
H2O molecules, whereas structures belonging to the two
higher-energy funnels contain various mixtures of molecular
groups �H2O, H2, O2, OH−, many structures containing
H2O2, and some H2O3 molecules�. In many structures we
find OH− ions which are at variance with previous
calculations31 where these ions were not seen at all. The
energy-distance correlation is clearly seen across the land-
scape and, of course, within each funnel �Fig. 8�b��.

Among the systems we explored, the most complex
landscapes are found for MgNH and AB2 Lennard-Jones
crystal with the potential described in caption to Fig. 2. Both
systems, although small �12 atoms/cell�, possess remarkable
complexity with multiple degeneracies.

For instance, for MgNH we found 25 structures with
energies less than 2.5 meV/atom above the ground state.
Most of these structures contain NH2− groups, although some
have �NH2�− and N3− ions—low energies of the latter struc-
tures suggest �in agreement with experiment� that MgNH is
only marginally stable with respect to decomposition into
Mg3N2+Mg�NH2�2. Generally, the existence of funnels with
energies close to the ground state indicates that the system is
close either to a phase transition or to decomposition. The
two-dimensional �2D� map of the landscape and the energy-
distance correlation plot for MgNH �Fig. 9�a�� show low-
energy funnels, some of which show very obvious structural

differences. One of the funnels consists entirely of layered
structures, whereas in another funnel all structures contain
either parallel or antiparallel NH− groups. Finally, we note
the gap in the energy distribution related to the dissociation
of molecular ions—the higher-energy structures contain
atomic/ionic hydrogen, the formation of which requires
breaking N–H bonds.

For the AB2 Lennard-Jones crystal the energy-distance
plot �Fig. 9�b�� has several flat regions with nearly constant
energies, a feature characteristic of strong degeneracy. We
will see in Sec. IV B that several families of structures exist
here, and within each family the energy is nearly constant.
The degeneracies originate from the short-rangeness of inter-
atomic interactions, where the length scale of typical geo-
metric features �in this case, interplanar distances� is longer
than the range of interatomic interactions, and in the compe-
tition between different interactions �in this model, A-A, B-B,
and A-B interactions have the same strength and thus com-
pete�. Such degeneracies and complex energy landscapes
may be expected in systems forming quasicrystals and in-
commensurate phases as well as systems unstable �as the
AB2 crystal here� or nearly unstable �as MgNH� against de-
composition.

B. Does nature prefer simple structures?

Pauling’s fifth rule32 states that “the number of essen-
tially different kinds of constituents in a crystal tends to be
small”—in other words, structures tend to be simple. Some
have accepted this rule, some criticized it. Our approach en-
ables its systematic analysis from the viewpoint of structural
energies. If Pauling’s rule is valid, one should see a clear
correlation between the energy and degree of order. Finding
cases where the correlation breaks down would indicate the
limits of its applicability.

A vast majority of cases that we analyzed shows an ex-
cellent correlation between the energy and the degree of or-
der. This correlation is equally good for single- and multi-
funneled landscapes; in other words, it is more fundamental.
For GaAs, MgO and H2O ground states are the most ordered
structures among the multitude of structures that we gener-
ated. For Au8Pd4 the ground state is among the very few
most ordered structures, and even for heavily frustrated sys-
tems, such as MgNH and AB2 Lennard-Jones crystal, the

FIG. 8. �Color� Energy landscape of
H2O with 12 atoms/cell. �a� Energy-
distance correlation. The inset shows
only the 580 structures based on H2O
molecules. �b� 2D map of the land-
scape with darker points indicating
lower-energy structures.

FIG. 9. �Color online� Complex energy landscapes: �a� MgNH �12 atoms/
cell� and �b� AB2 Lennard-Jones crystal �12 atoms/cell�.
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ground states still belong to a small number of most ordered
structures. Figure 10 shows such correlation plots for MgO,
Au8Pd4, H2O, and Lennard-Jones AB2 crystal.

Furthermore, we see that all chemically interesting struc-
tures are on the high-order side of the correlation plots. We
illustrate this point for MgO �Fig. 10�a�� where a number of
interesting and even unexpected low-energy ordered struc-
tures were found with the help of such a correlation plot. For
AB2 Lennard-Jones crystal, we see families of structures with
nearly identical energies. The two most ordered families in-
clude a family of defective NaCl-type structures �cubic close
packings of the B atoms with a half of octahedral voids oc-
cupied by the A atoms—the well-known CdCl2 structure type
also belongs to this family� and a family of layered struc-
tures, where the B atoms form a defective hexagonal close
packing interrupted by layers of the A atoms in the trigonal
prismatic coordination �Fig. 11�. It is the latter family that
contains several degenerate ground-state structures. The
A-layers are topologically identical to the graphene sheet and

there is a striking structural similarity between the ground
states of the AB2 Lennard-Jones crystal and Al–C alloys.33

Another similarity is that both Al–C alloys and the AB2

Lennard-Jones crystal are unstable to decomposition into
pure elements.

Recently, Hart34 found that for the special case of order-
ing in alloys the simplest ordering schemes have the highest
probability of occurring.35 Here we have generalized this
conclusion to all structures �i.e., beyond the special case of
ordering in alloys� and confirmed it by analyzing structural
energies. We can conclude that the ground state normally
adopts one of the simplest structures compatible with the
chemistry of the compound. Such structures tend to have
lower energies. This rule is nothing else than an energetic-
based reformulation of Pauling’s fifth rule. The main limita-
tion of this rule is the presence of competing interactions, as
in the case of AB2 Lennard-Jones crystal �Fig. 10�e��.

Structural quasi-entropy Sstr, which is zero when each
atomic species occupies only one Wyckoff orbit, and in-
creases as the physical difference between the occupied sites
increases, is another and perhaps even more direct measure
of structural simplicity. It more directly relates to the
original32 formulation of Pauling’s fifth rule. Unlike the de-
gree of order, Sstr does not depend critically on the smoothing
function ��R-Rij� in the fingerprint definition �Eqs. �1� and
�3�� and its absolute �not only relative� values are meaning-
ful. For all cases investigated here, we found an excellent
correlation between the energy and quasi-entropy Sstr—this
is shown in Fig. 12 for MgO �32 atoms/cell� and MgNH �12
atoms/cell�. Like with the degree of order P, the correlation
is worst for the AB2 Lennard-Jones crystal, the reason being
its instability to decomposition that leads to long-period lay-
ered structures that contain quite diverse atomic sites. The
same can be expected for other complex and frustrated sys-
tems. A good example is the recently discovered36 high-
pressure stable phase of boron, the structure of which con-
tains atomic sites that are so different that there is charge
transfer between them36 and the structure possesses large
Sstr=0.18. Our conclusion is that in the ground state and
low-energy structures, atoms of each species tend to occupy
similar crystallographic sites.

The degree of order P and structural quasi-entropy Sstr

are not the only possible measures of structural simplicity.
One alternative is the set of orientational bond order param-
eters Qn proposed by Steinhardt et al.8 These parameters
successfully differentiate between liquid-like and crystal-like
configurations and could be expected to be good predictors
of the energy. However, for all systems examined here �even
as simple as MgO� the correlation of these parameters with
the energy is either very weak or nonexistent—Fig. 13 shows
this for the Q6 parameter �we also checked for Q4, as well as
W4 and W6 parameters,36,37 and arrived at the same conclu-
sion�. Thus, the degree of order P and structural quasi-
entropy Sstr are strong predictors of the energy, whereas the
orientational bond order parameters Qn and Wn are not.

FIG. 10. �Color online� Energy-order correlation plots: �a� MgO �32 atoms/
cell�, �b� Au8Pd4 �12 atoms/cell�, �c� H2O �12 atoms/cell� with inset showing
only the 580 structures containing only H2O molecules, �d� MgNH �12
atoms/cell�, and �e� AB2 Lennard-Jones crystal �12 atoms/cell�. Large
squares indicate the ground state.
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V. CONCLUSIONS

We have introduced a number of powerful tools to in-
vestigate structures and energy landscapes of crystalline sys-
tems. These tools can be used for rationalizing structural and
thermodynamic information on solids.

The basic function from which all others are derived is
the fingerprint �Eq. �3�� which can be represented as a vector
in an abstract multidimensional space. The possibility of
computing a well-defined index of similarity �“distance”� be-
tween two crystal structures is valuable for many
purposes—as two examples, we mention monitoring of the
progress of structure prediction simulations11 and the emerg-
ing field of crystallographic genomics,38 where such analysis
is central for the rationalization of large databases of crystal
structures.

Typical dimensionalities of fingerprint vector spaces for
cases studied here, 102–103, are clearly redundant compared
to the true dimensionality d=3N+3 �N is the number of at-
oms in the unit cell�. However, even d overestimates the true
dimensionality of the landscape because it ignores short-
range order that leads to certain constraints � in relative po-
sitions of the atoms. The actual intrinsic dimensionality

d� = 3N + 3 − � �14�

is generally a noninteger number and can be computed from
the distance distribution. Using the Grassberger–Procaccia
algorithm in the modification,39 our preliminary estimates are
d�=10.85 �d=39� for Au8Pd4, d�=11.6 �d=99� for MgO
with 32 atoms/cell, and d�=32.5 �d=39� for MgNH with 12
atoms/cell. The intrinsic dimensionality gives the minimum
number of dimensions sufficient for mapping the data ex-
actly, but approximate mappings can be done in lower
dimensions.

By allowing direct mapping of energy landscapes in any
number of dimensions—from 1 �energy-distance plots exten-
sively used here� to 2 �landscape “maps” also presented here�
to as many dimensions as needed, such analysis leads to a
new level of chemical insight.

Based on the fingerprint function, we introduced two
indices of structural simplicity, the degree of order P �Eqs.
�9a� and �9b�� and structural quasi-entropy Sstr �Eq. �13��,
which enabled us to directly verify the well-known Pauling’s
fifth rule �the parsimony rule�: Statistically, simpler struc-
tures tend to have lower energies. Parameters P and Sstr are
powerful tools for analyzing the results of crystal structure
prediction simulations �see Ref. 16� and crystal structure da-
tabases. This analysis can be brought further: For instance,
energy-order correlations for order components PAB �Eq.
�9b�� may indicate the dominant structure-forming interac-
tions and causes of geometric frustrations.

The tools developed here are helpful in monitoring the
structure prediction simulations, as shown in Fig. 14. Fur-
thermore, these tools, as well as improved understanding of
energy landscapes, can be �and already have been40� used to
improve the performance of the existing global optimization
methods for crystal structure prediction.

The same analysis can be done for the physical proper-
ties of crystals, leading to the discovery of interesting
structure-property relations. For many properties we also ex-
pect to observe funnel-shaped landscapes, which would indi-
cate types of structures that are of particular interest. Many

FIG. 11. �Color online� Families of nearly degenerate structures for AB2

Lennard-Jones crystal �12 atoms/cell�. ��a�–�c�� Ground states with layers of
the A atoms in the trigonal prismatic coordination. ��d� and �e�� Defective
NaCl-type structures. Structure �a� is the lowest-energy structure we found.

FIG. 12. �Color online� Energy-structural quasi-entropy Sstr correlation
plots: �a� MgO �32 atoms/cell� and �b� MgNH �12 atoms/cell�. Note a clear
energetic preference for simple structures �those with lowest quasi-entropy�.

FIG. 13. �Color online� Energy-Q6 correlation plots: �a� MgO �32 atoms/
cell� and �b� AB2 Lennard-Jones crystal �12 atoms/cell�. It is obvious that
unlike the degree of order P �Eqs. �9a� and �9b�� or structural quasi-entropy
�Eq. �13��, the orientational bond order parameter Q6 is not a good predictor
of energy.
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properties �e.g., the electrical conductivity� are expected to
be well correlated with the degree of order P and structural
quasi-entropy Sstr. The analysis presented here can thus pro-
vide the general link between the structure, properties, and
stability of solids.
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generation. Scoll should not decrease too fast, and when it becomes suffi-
ciently small, the simulation can be terminated. The inset shows the lowest
energy as a function of generation number.
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