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Crystal structure prediction at finite temperatures
Ivan A. Kruglov 1,2,3✉, Alexey V. Yanilkin1,2, Yana Propad1, Arslan B. Mazitov1,2, Pavel Rachitskii1 and Artem R. Oganov 4✉

Crystal structure prediction is a central problem of crystallography and materials science, which until mid-2000s was considered
intractable. Several methods, based on either energy landscape exploration or, more commonly, global optimization, largely solved
this problem and enabled fully non-empirical computational materials discovery. A major shortcoming is that, to avoid expensive
calculations of the entropy, crystal structure prediction was done at zero Kelvin, reducing to the search for the global minimum of
the enthalpy rather than the free energy. As a consequence, high-temperature phases (especially those which are not quenchable
to zero temperature) could be missed. Here we develop an accurate and affordable solution, enabling crystal structure prediction at
finite temperatures. Structure relaxation and fully anharmonic free energy calculations are done by molecular dynamics with a
forcefield (which can be anything from a parametric forcefield for simpler cases to a trained on-the-fly machine learning interatomic
potential), the errors of which are corrected using thermodynamic perturbation theory to yield accurate results with full ab initio
accuracy. We illustrate this method by applications to metals (probing the P–T phase diagram of Al and Fe), a refractory covalent
solid (WB), an Earth-forming silicate MgSiO3 (at pressures and temperatures of the Earth’s lower mantle), and ceramic oxide HfO2.
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INTRODUCTION
The search for a stable crystal structure is a very challenging task,
amounting to finding the structure with the lowest free energy
among an astronomical number of possible structures, for each of
which the free energy has to be computed. Today, this can only be
done at zero Kelvin1–5: relaxing crystal structures and computing
their free energies at finite temperatures would require extensive
statistical sampling, increasing the number of configurations by
several orders of magnitude. The challenge of crystal structure
prediction at finite temperatures must be addressed because
high-temperature phases often possess interesting properties and
are of fundamental and practical interest. Such elements as
titanium, iron, calcium, as well as many compounds (for example,
cubic paraelectric BaTiO3 or ultrahard borides, carbides, and
nitrides) have high-temperature phases which have no stability
fields at zero temperature and some may not even be metastably
quenched at low temperatures. Another important example is
planetary science: properties of planet-forming materials at
extreme conditions of planetary interiors are responsible for the
observed seismic profiles and dynamical processes occurring
within planets. For example, the exact structure of iron in the
Earth’s core6–10 and exact location of the perovskite–post-
perovskite MgSiO3 boundary at conditions of the lower man-
tle11–15 are still under debate.
Here we develop a new method, T-USPEX, extending crystal

structure prediction beyond the zero Kelvin regime. It is based on
a previously developed evolutionary crystal structure prediction
method USPEX1–3, which predicts the lowest-energy crystal
structure for a given chemical composition. Due to the need for
statistical sampling in the calculation of the free energy, the
computing costs of T-USPEX may increase by several, roughly 3–5,
orders of (in comparison with USPEX). However, this can be offset
when taking advantage of two factors.
First, the energy landscape is dramatically simplified as

temperature increases, greatly simplifying the combinatorial

problem. As a consequence, the global minimum is found in
fewer generations. This was confirmed, e.g., by results on
molecular crystals in ref. 16, and our tests for MgSiO3 system at
110 GPa and different temperatures (Supplementary Fig. 1 and
chapter “Free energy surface calculations” in Supplementary
Materials). This decrease must be very fast (at zero temperature,
the number of minima C is very large, let’s say, »106 for medium-
size systems, whereas near the melting temperature there is only
one or very few local minima). This has led Oganov17 to conjecture
exponential decrease of the number of local minima C:

C ¼ expðα T
� � T
T�

Þ; (1)

where α is a constant, and T* is a characteristic temperature
(higher than the melting temperature), at which only one free
energy minimum exists. We have verified this conjecture for
MgSiO3 at 110 GPa, where fitted values of the parameters were:
α ¼ 2:97, T� ¼ 7935K (see Supplementary Materials), while the
melting temperature of MgSiO3 at such conditions is about
6000 K18. Such rapid decrease of the number of minima (Fig. 1)
makes the problem much simpler: the number of structure
relaxations and free energy calculations needed to find the global
minimum decreases strongly.
Second, each structure relaxation and free energy calculation

can be made much cheaper if one replaces ab initio calculations
with a machine learning (ML) forcefield19–28, which speeds up the
calculations by at least two orders of magnitude29 with only a
small reduction of accuracy (usual mean average errors are
~10meV/atom29). Moreover, with ML one can consider large
supercells, thus considering long-wavelength phonons, which are
so important for thermodynamics. ML forcefields have been
applied to many different problems19–23,30–35, for a comparison of
different ML approaches, see ref. 36. ML forcefields were used to
build the phase diagram of uranium34, accelerate crystal structure
prediction29, calculate thermal conductivity37, lattice dynamics38

and so on. Here we mostly use the MTP potential39, which showed
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outstanding performance36. Structure relaxation at given P–T
conditions is equivalent to taking statistical averages for lattice
translation vectors and for atomic fractional coordinates, while
Gibbs free energy is calculated for each structure as:

G ¼ PV þ F ¼ PV þ F0 þ
Z 1

0
U λð Þ � U0ð Þdλ ; (2)

where P is the external pressure, V the equilibrium volume, and F
is the Helmholtz free energy which is computed by thermo-
dynamic integration using adiabatic switching from a reference
system with known free energy F0 and potential U0 (here we use
the Einstein crystal as reference system) to the system with
potential U(λ= 1) whose free energy we wish to compute40,41.
It is very important that we correct the errors of the ML

potential to obtain free energies equivalent to full ab initio values
FAI using thermodynamic perturbation theory, to second order42:

FAI ’ F þ 1
Nat

UAI � Uh i � 1
2kbT

UAI � U½ �2
D E� �

; (3)

where UAI is the total energy of the ab initio system, kB and T are
Boltzmann constant and temperature, respectively, and angle
brackets denote ensemble averages. Free energy calculations (2)
are done on large supercells with ~10,000 atoms, in the NVT
ensemble (typical duration of a run is 40 ps). Free energy
corrections (3) are done on smaller ~60-atom supercells (this
required a classical NVT run of 10 ps duration, where DFT energies
and ensemble averages in (3) were computed for 100 equally
spaced snapshots). Convergence of values of free energies
corrections is documented in Supplementary Materials section 8).
To summarize, crystal structure prediction at finite temperatures

is difficult because for each candidate structure extensive
sampling is needed to compute the entropy. However, two
factors were identified that give hope—the reduction of the
complexity of the free energy surface on increasing temperature,
and the possibility of computing highly precise (to within 1 meV/
atom) free energies in an economic way via ML forcefield using
thermodynamic integration and thermodynamic perturbation
theory corrections. This allowed us to develop an efficient and
reliable approach for crystal structure prediction at finite
temperatures, and we illustrate its performance on five sub-
stances—aluminum (calculating its phase diagram and searching
for possibly missed unknown phases), iron (to figure out the stable
crystal structure at conditions of the Earth’s inner core), MgSiO3

(calculating its important phase diagram and searching for
possibly overlooked phases at conditions of the lowermost mantle
of the Earth), WB (testing our approach for a system with complex
chemical bonding and predicting stability of a temperature-

induced phase), and HfO2 (studying its high-temperature phases
and looking for potential ferroelectric phases).

RESULTS
T-USPEX scheme
The scheme of the T-USPEX algorithm is shown in Fig. 2. The initial
population of structures was created using symmetric5 and
topological43 random structure generators. Each produced struc-
ture was then relaxed, first using density functional theory (DFT)
calculations at zero Kelvin, and then using a forcefield-based
molecular dynamics in the NPT ensemble for a relatively small
~60-atom supercell (types of interatomic potentials, used in this
work, will be discussed below in the section “Interatomic
potentials”). After a preliminary forcefield-based NPT-MD run, we
obtained equilibrium lattice vectors. Then, for equilibrium lattice
vectors averaged atomic coordinates were calculated from NVE-
MD run.
Even the best ML forcefields give rise to non-negligible errors in

pressure estimations, and this will affect the densities of the final
structures and the PV-term in the free energy. For this reason, we
calculate the pressure correction: we perform a molecular
dynamics simulation in the NVE ensemble using the forcefield
for 20 ps, and intermediate structures are saved every 1 ps—for
each of which we calculate the pressure using DFT, and pressure
correction is calculated as an ensemble average.
Then we created a large, ~1000-atom supercell and relaxed the

structure using NPT (for 40 ps) followed by NVE (for 20 ps)
molecular dynamics, taking pressure correction into account. This
gave us final averaged supercell vectors and fractional coordinates
of each atom. From them, using ASE44 and Spglib45 libraries, we
obtained space group, primitive cell vectors and all atomic
coordinates of the final structure. Structures with P1 symmetry
and unusually large unit cells were counted as defective and were
discarded.
For the remaining structures, we proceeded to compute Gibbs

free energy. First, using ~10,000-atom supercells, we computed
the Helmholtz free energy using thermodynamic integration as
the most accurate method46. To obtain accurate Gibbs free
energies, these Helmholtz free energies were combined with the
PV-term and 1st- and 2nd-order corrections of thermodynamic
perturbation theory. To determine these corrections, we ran NVE-
MD using the same forcefield, and took statistically independent
(separated by ~1 ps) snapshots of the MD trajectory, at which we
computed DFT energy. While the 1st-order correction is quite
large, the 2nd-order correction in all cases here is tiny, indicating
extremely high reliability of the final free energies and robustness
of our procedure.
Next, we test our method on five very different systems—

aluminum, iron, WB, MgSiO3, and HfO2—in order to check the
possible presence of unknown stable phases and refine phase
diagrams.

Phase diagram of aluminum
For aluminum, three phases are experimentally known to be
stable at different P–T conditions: fcc (at normal conditions), hcp
and bcc. First, using DFT we determined that at zero Kelvin fcc-
Al transforms to hcp-Al at 162 GPa (Supplementary Fig. 1), and
hcp-Al transforms to bcc-Al at 373 GPa (Supplementary Fig. 2).
These values agree well with previous theoretical calcula-
tions47–49, but in experiment fcc-Al transforms to hcp-Al at
217 ± 10 GPa50 at 300 K. Then, we ran T-USPEX calculations for
Al at 0 GPa and 300 K, 100 GPa and 2000 K, 400 GPa and 2000 K.
Each generation consisted of 20 randomly generated structures,
and used the MTP potential trained on results of ab initio
molecular dynamics (see “Methods”). We saw that during
subsequent NPT molecular dynamics calculations (used for

Fig. 1 Free energy surfaces of MgSiO3 calculated with T-USPEX.
Free energy surfaces were calculated at 110 GPa and 300 K, 2000 K,
4000 K, and 6000 K. Positions of perovskite and post-perovskite
MgSiO3 phases are shown with red arrows.
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relaxing structures at finite temperatures) almost all randomly
generated structures transformed either to the fcc, hcp and/or
bcc structures, or to defective structures with large unit cells
(the latter structures were discarded). The transformation of a
randomly generated Al structure to bcc-Al in a T-USPEX
calculation is shown in Fig. 3. It is worth noting that at the
first step the number of atoms in the unit cell decreased. This
happens after symmetrization (these steps are shown in Fig. 2),
when lattice vectors and the number of atoms in the unit cell
are transformed to a standard setting corresponding to the
space group with higher symmetry (with Spglib45).
The model potential has two kinds of errors (relative to ab initio

calculations)—a small error in density (which we compensate by a
shift of pressure to bring pressure in exact agreement with ab initio
result) and (at a given density) a small error in the free energy
(which we correct for by thermodynamic perturbation theory). The
pressure correction turned out to be several GPa at most
(Supplementary Fig. 3); at the simulated pressure of 400 GPa it
varied from 5 to 12 GPa. In the calculation at 0 GPa and 300 K 15
structures (out of 20) transformed to fcc-Al with free energies equal
to (−3.8474 ± 0.0002) eV/atom and densities (2.660 ± 0.0044) g/cm3,
1 structure to I4/mmm phase with free energy of −3.7490 eV/atom
(clearly, this structure is not competitive), the other 4 structures

being defective supercells (Supplementary Table 1). We find that in
the P–T region of interest (temperature up to 5000 K and pressures
up to 400 GPa) only fcc, hcp, and bcc structures have stability fields.
In order to calculate the P–T phase diagram, we used the fcc,

hcp, and bcc structures as seeds and performed T-USPEX
calculations close to the previously calculated phase transition
boundaries47,49. These calculations can be viewed as computer
experiments akin to real experiments sampling the phase
diagram. The resulting P–T phase diagram for Al is presented in
Fig. 4 (see also Supplementary Fig. 4). Clearly, the hcp phase
occupies a much larger region of the phase diagram than in
previous studies47–49. Our fully anharmonic result should be more
reliable than previous calculations47–49 based on the quasiharmo-
nic approximation. The melting curve was taken from
refs. 47,49,51,52.

Iron in the Earth’s inner core
Until now, an open question is which phase of iron (bcc or hcp or
perhaps some new structure) is stable at conditions of the Earth’s
solid inner core (pressures in the range 330–350 GPa and
temperatures of approximately 5400–5700 K). Available experi-
mental results are not fully consistent 6–10. Computational studies

Fig. 2 The scheme of the T-USPEX algorithm. Left panel shows general workflow of the developed algorithm, and right panel shows process
of crystal structure relaxation and free energy calculation.
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up to now either checked a few simple structures at relevant
temperatures and pressures, or performed crystal structure
prediction, but at zero Kelvin. Here, we perform crystal structure
prediction at actual P–T conditions of the Earth’s inner core,
namely at the pressure of 330 GPa and temperatures of 5400 K,
5700 K and 6000 K. We trained a single ML forcefield for iron at
each P–T point. An iterative approach was used to prepare a
suitable training set. First, we generated random crystal structures
of iron with up to 16 atoms in the unit cell at 330 GPa. Then, we
collected new configurations for our training set from ab initio MD
trajectories at 330 GPa and 5700 K using the generated random
structures as initial configurations. The sampled configurations
were pruned to remove identical structures, and their energies,

interatomic forces, and stresses were calculated within DFT.
Finally, using active learning, the existing training set was updated
with new data, and the interatomic potential was re-trained. This
process was repeated iteratively until no new configurations were
actively sampled from molecular dynamics runs. The resulting
training set contained 494 configurations, and the ML forcefield
had the mean absolute error (MAE) on energies prediction of
29meV/atom, while the MAEs for forces and stresses were 0.43 eV/
A (1%) and 3.2 GPa (1.7%), respectively. The non-negligible MAE in
energy prediction is the price for the generality of the forcefield in
a wide range of configurations, but this error was canceled by
corrections due to thermodynamic perturbation theory. On the
other hand, high accuracy of interatomic forces and stresses
prediction was essential for relaxations and free energy
calculations.
Using T-USPEX and pre-trained MTP potential, we searched for

stable Fe phase at 330 GPa and 5700 K. In the first generation
consisting of 20 random structures, 3 structures relaxed into the
hcp phase with the Gibbs free energy 6.0652 ± 0.0008 eV/atom,
4—into fcc phase with the free energy of 6.0859 ± 0.0005 eV/atom,
2—into newly found R3m phase (which is a close-packed
structure, its crystal structure parameters are shown in Supple-
mentary Table 10) with free energy of 6.0768 ± 0.0019 eV/atom
(see Supplementary Table 3). We also found that at 330 GPa and
5400 K all initially random structures relaxed either to hcp or to fcc
phase, and hcp phase had the lowest free energy (T-USPEX results
are shown in Supplementary Table 4). Thus, our calculations
showed that hcp structure is stable for iron at P–T conditions
corresponding to the Earth’s inner core, in agreement with results
from ref. 8. In order to check the stability of bcc phase, we used it
as a seed in the T-USPEX calculation. At 330 GPa and all
temperatures we studied (5400 K, 5700 K, 6000 K) it relaxed to
the hcp phase. Thus, at our level of theory (PBE-DFT) we rule out
the stability of the bcc phase of pure iron in the inner core of the
Earth—however, impurities may still stabilize it9.

Fig. 4 P–Tphase diagram of MgSiO3. Vertical dashed line shows
the pressure of the Earth’s core–mantle boundary.

Fig. 3 Relaxation of randomly generated Al structure in the T-USPEX algorithm. After a series of consequent MD relaxations and
symmetrizations, random Al structure transforms to bcc-Al.
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Phase diagram of MgSiO3 at the Earth’s core–mantle
boundary
Using T-USPEX, we explored the main Earth-forming compound—
MgSiO3 (comprising ~40 vol.% of our entire planet, or ~80 vol.% of
its lower mantle)—searching for phases stable at conditions of the
lowermost mantle. Throughout most of the lower mantle this
compound exists as bridgmanite, a perovskite-type modification,
while in the lowermost D” layer a post-perovskite polymorph is
stable11,12. Here we followed a scheme somewhat different from
what we used above, to illustrate the flexibility of our approach.
For crystal structure relaxation and free energy calculations, we
used the classical interatomic potential developed in ref. 53, which
showed good agreement with experimental crystal structures and
many properties. Here, using this interatomic potential, we ran
T-USPEX for 20 generations (each containing 20 structures) at
135 GPa and 2700 K. Instead of applying expensive pressure and
free energy corrections within crystal structure prediction runs, we
ran highly efficient T-USPEX searches based solely on this
interatomic potential, then selected structures with the lowest
free energies and for these performed very accurate crystal
structure and free energies calculations as described above.
In the T-USPEX search at 135 GPa and 4000 K, already in the first

generation, we saw post-perovskite (pPv) Cmcm-MgSiO3 as the
most stable structure, and in the second generation— bridgma-
nite, the phase with Pnma-perovskite (Pv) structure, and no other
competitive structures with up to 80 atoms in the primitive cell.

Then we obtained reliable structures and their free energies using
pressure and free energy corrections as described above; this was
done at 120 GPa and 1500 K, 2000 K and 2500 K; at 130 GPa and
500 K, 1500 K, 3000 K, 4000 K. At 120 GPa pPv phase was stable up
to 2000 K, at 130 GPa—up to 3700 K. Using these values, the
phase transition boundary between Pv and pPv MgSiO3 phases
was calculated (Fig. 5). The result is right in the middle of the
previous theoretical12,13 and experimental11,14,15,43 works (see Fig.
5) and has a positive Clapeyron slope of +5.88 MPa/K. This value is
important for calculating the heat flow from the core into the
mantle and for determining the thermal structure of the lower-
most mantle19. Here, we give its most accurate theoretical
calculation, with full account of the anharmonic terms in the free
energy.

Temperature-induced phase transition in WB
Next, we applied our method to WB - a hard refractory ultrahard
compound, undergoing a temperature-induced phase transition
and characterized by a nontrivial chemical bonding and lack of an
accurate and transferable forcefield. The temperature-induced
phase transition from the low-temperature α-phase into the high-
temperature β-phase takes place at ~2100–2700 K44–46. We ran
T-USPEX at 0 GPa and 2000 K with MTP forcefield, and obtained
both I41/amd-WB (α-phase) and Cmcm-WB (β-phase) and a hitherto
unknown low-energy Pnma structure of WB to have the lowest free
energies (within a few meV/atom of each other, see Supplementary
Table 2). In order to find stability fields of the discovered tungsten
monoborides, their equilibrium crystal structures and free energies
were calculated with higher accuracy in the temperature range of
300–3000 K at zero pressure. Our calculations show that the α-β
transition takes place at 2789 K (Fig. 6), in agreement with
experimental results45, while Pnma-WB remains a low-energy
metastable phase at all temperatures.

High-temperature phase transitions in HfO2

We also applied T-USPEX to predict high-temperature phase
transitions in a ceramic material - HfO2. This material is particularly
interesting due to the recently found ferroelectricity in its thin
films54. Experimental studies55 showed that at ambient pressure
and room temperature, it adopts a monoclinic P21/c structure,
which then transforms at ~2000 K to tetragonal P42/nmc phase
and after at ~2800 K to cubic Fm3m phase. At higher pressures,
HfO2 transforms to Pbca and Pnma polymorphs. Yet, none of the
experimentally found phases can explain ferroelectricity in HfO2.
Possible explanations include metastable Pca21 or Pmn21 struc-
tures 56–60. Previously, machine learning interatomic potentials for
HfO2 were constructed based on PBE61 and PBEsol62 exchange-

Fig. 5 P–T phase diagram of MgSiO3. Vertical dashed line shows
the pressure of the Earth’s core–mantle boundary.

Fig. 6 Thermodynamics of WB polymorphs. Here we show the calculated Gibbs free energies of Cmcm and Pnma structures of WB (relative to
I41/amd).
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correlation functionals, yet for the closely related compound ZrO2

it was shown that Δ-ML approach (based on the RPA approxima-
tion) gives the most accurate results for phase transition
boundaries63. Here, using the T-USPEX method (within PBE and
PBEsol approximations), we searched for stable HfO2 phases at
300 K, 1000 K and 2000 K. The results are shown in Supplementary
Tables 5–9 and Supplementary Figs. 6 and 7.
Using T-USPEX (within the PBE approximation) at 300 K for HfO2

we found the experimentally known P21/c structure as the most
stable one. We also found likely candidates for the ferroelectric
phase: Pca21 (~25 meV/atom above ground state) and Pmn21
(~30 meV/atom above ground state). At higher temperatures
(1000 K and 2000 K) we found anatase I41/amd phase to be the
most stable one, and experimentally known P42/nmc phase to be
metastable (detailed results are given in Supplementary Tables
5–7). Supplementary Fig. 6 shows that at T > 300 K anatase I41/
amd phase is the stable phase within PBE functional, which
contradicts experiment. Given small free energy differences
between phases, one can expect that small errors of the PBE
exchange-correlation functional can lead to incorrect phase
stability. It is known64 that PBEsol is more accurate for HfO2, so
we decided to use it.
Doing T-USPEX calculations for HfO2 within PBEsol exchange-

correlation functional (Supplementary Tables 8 and 9), we find
P21/c-HfO2 to be the most stable phase at temperatures up to
about 2000 K (Supplementary Fig. 7), while at higher temperatures
Fm3m-HfO2 is thermodynamically stable. The P42/nmc-HfO2 phase
is found to be metastable, while in experiment it has stability field
between P21/c and Fm3m phases. Anatase-type phase is no longer
stable within PBEsol functional. The tiny free energy differences
between these phases are calculated by T-USPEX with remarkable
numerical robustness. Clearly (just as for zero-temperature crystal
structure prediction) the global minimum depends on the choice
of the exchange-correlation functional when energy differences
are small.

DISCUSSION
Until now, finite-temperature crystal structure prediction was
thought to be prohibitively expensive. Here we showed a
computationally efficient approach solving this problem, and
illustrated its power by applying it to five very different substances:
a simple metal (Al at high pressures and temperatures), a transition
metal (Fe in Earth’s core), a geologically important silicate (MgSiO3 at
conditions of the lowermost mantle), a hard refractory compound
WB with a temperature-induced phase transition and a ceramic
oxide (HfO2). We find that the hcp phase of aluminum has a wider
stability field than previously thought, and the temperature-induced
α-β transition in WB occurs at 2789 K. It is also found that iron has
hcp structure at conditions of the Earth’s inner core, and the much
debated (and important for constraining Earth’s thermal structure)
Clapeyron slope of the post-perovskite phase transition in MgSiO3 is
5.88MPa/K. For HfO2 we find a number of competitive phases with
small free energy differences, making the choice of exchange-
correlation functional critical for correct predictions. We also show
how this method can be used, in the spirit of a computational
experiment akin to a real experiment, to probe phase diagrams,
resolve long-standing disputes, and open new horizons in the
search for unique materials with improved properties. Our method
takes advantage of increasing simplification of the topology of the
free energy landscape on increasing temperature, and of reliable
machine learning forcefields and thermodynamic perturbation
theory which allow highly accurate and affordable calculations of
free energies. This development enables crystal structure prediction
at any temperature for ordered materials. Further work is needed to
extend T-USPEX approach to configurationally or magnetically
disordered systems in a numerically robust and computationally
affordable way.

METHODS
DFT calculation details
Crystal structure relaxations, energy calculations at 0 K and ab
initio molecular dynamics were performed using density func-
tional theory (DFT) as implemented in the VASP code65–67 within
Perdew–Burke–Ernzerhof (PBE)68 functional. Projector-augmented
wave (PAW)69 method was used to describe core electrons and
their interaction with valence electrons. The plane wave kinetic
energy cutoff was set at 500 eV and Γ-centered k-points meshes
with a resolution of 2π × 0.05 Å−1 were used for sampling the
Brillouin zone. For metals, the electronic free energy was
calculated and included in the total free energy. Ab initio
molecular dynamics was performed in the NPT ensemble during
5 ps with 1 fs timestep. The convergence criterion for electronic
step was set to 10-6 eV. Molecular dynamics with classical or ML
forcefields was performed using the LAMMPS code70.

Interatomic potentials
The choice of interatomic potential plays an important role in
T-USPEX calculations. If, for a given system, a good classical
forcefield is known, then it can be applied in molecular dynamics
simulations (as we did for MgSiO3). However, for most systems
there is no classical forcefield which can work in a vast
configurational space (created by random structures from T-USPEX).
In this case, we use a machine learning forcefield trained on ab
initio data. We used MTP machine learning forcefield23, due to its
outstanding performance33 and ability to perform active learning27,
i.e., re-train the forcefield whenever a structure different from its
original training set is encountered. We considered MTP potential to
be reliable if the error on energies was about few meV/atom and
the error on forces not more that 10%. For Fe, we trained one ML
forcefield and then applied it to all structures. For the other cases
(Al, WB, HfO2), we separately trained a ML forcefield for each
structure at a given P–T-point, which allowed us to check and
confirm numerical stability of our procedure.

DATA AVAILABILITY
Data will be available on request.

CODE AVAILABILITY
The code will be merged into the next release of USPEX (https://uspex-team.org/).
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