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Abstract

We approach the problem of computational crystal structure prediction, implementing an evolutionary algorithm—USPEX (Universal Structure
Predictor: Evolutionary Xtallography). Starting from chemical composition we have tested USPEX on numerous systems (with up to 80 atoms
in the unit cell) for which the stable structure is known and have observed a success rate of nearly 100%, simultaneously finding large sets of
competitive metastable structures. Here focus is on implementation and discussion of our method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The crystal structure is a great bearer of information on a
given material: knowledge of the crystal structure allows deter-
mination of numerous properties. The traditional way of solv-
ing crystal structure is based on experiment. Ideally experiment
yields the diffraction pattern, which then is inverted to give the
structure. For this method, the material needs to be synthesized
and studied at relevant conditions. At high pressures and tem-
peratures conditions diffraction patterns often are incomplete
and noisy, rendering experimental structure solution difficult
or impossible. Furthermore, in materials design searching for
desired properties experimentally leads to elaborate trial and
error.

A different approach to solve the crystal structure is com-
putational crystal structure prediction, based on optimization.
Many optimization methods, like simulated annealing [1,2],
metadynamics [3,4], minima hopping [5] and evolutionary al-
gorithms [6–8] have been applied. Although successes were
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made, many cases were not predicted correctly, leaving this ma-
jor scientific problem [9] essentially unsolved [10].

Since the stable crystal structure is the structure with the
lowest free energy, the task is to minimize the free energy. This
is far from trivial for the following reasons:

• The search space is high-dimensional.1

• The free energy response surface is extremely rugged, since
the free energy is very sensitive to small changes in inter-
atomic distances.2

• The representation of structures by unit cells leads to re-
dundancies within the search space.

• Ab initio free energy calculations are highly accurate, but
computationally expensive. While cheap methods to ap-
proximate the free energy exist, they often relate poorly to
reality. This can lead to a misguided search.

1 The dimensionality is 6 + 3(N − 1), where N is the number of atoms. In
detail, the six lattice parameters and three coordinates for each atom except one
(due to rigid coordinate system shifts).

2 No matter what evaluation function is used, the optimal solution has to be
optimal regarding the free energy.
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Seeing these difficulties, carefully choosing a strategy be-
comes all the more important. The formulation of an appropri-
ate evaluation function is a core issue in any optimization task.
Ab initio calculations of the free energy are by far the most
accurate and universally applicable estimates, while the cost
thereof seems affordable. Therefore and to avoid misguided
searching, ab initio free energy calculation is chosen as eval-
uation function.3

The next step is to find a good way to sample new structures.
In crystal structures the main information lies in the relative po-
sition of the nearby atoms—spatially selected fractions of one
structure can carry a large fraction of the information present
in the whole structure. Therefore combining such fractions of
‘parent’ structures seems like a promising way to sample new
structures, allowing to focus the search on an area defined by a
set of structures.

Considering the landscape, we reason that the global opti-
mum (stable structure) is surrounded by many very good local
optima (metastable structures), leading to a valley in the re-
duced response surface4—reduced to just the locally optimal
points—in the vicinity of the global optimum.5 The complete
response surface per contra is very rugged, featuring high peaks
and saddle points.6 Therefore, a set of locally optimized struc-
tures is a good source of information on the response surface.

Sampling method and landscape shape strongly suggest an
evolutionary algorithm and so, on the basis of these consid-
erations, we decided to implement an evolutionary algorithm
featuring local optimization of each candidate structure, spatial
recombination and ab initio free energy calculation as evalua-
tion function. The first application of our method was given in
[20] and a basic discussion of the method with many further
applications was presented in [24]. Here focus is on implemen-
tation, methodology and discussion thereof.

Section 2 outlines the implementation of USPEX. A short
overview of results can be found in Section 3, followed by a
discussion of USPEX, including future plans, in Section 4.

2. The algorithm

Quoting from Michalewicz and Fogel [13]:

‘In evolutionary algorithms a population of candidate solu-
tions is evolved over successive iterations of random vari-
ation and selection. Random variation provides the mech-
anism for discovering new solutions. Selection determines
which solutions to maintain as a basis for further explo-
ration.’

3 USPEX is interfaced with SIESTA [11] and VASP [12] for quantum-
mechanical calculations.

4 The response surface is the surface defined by the fitness values.
5 Not to be confused with valleys in the complete response surface, accom-

modating local minima.
6 This discouraged us from simulated annealing, since escaping local minima

gets in general more difficult with increasing height of peaks/saddle points.

For encoding the solutions, two types of variables are dis-
criminated: Lattice parameters and atomic coordinates. There
are 6 lattice parameters, three angles (α, β , γ )—coded as a
fraction of 2π—and the lengths of the three lattice vectors.7

Each atom has three coordinates, coded as a fraction of the cor-
responding lattice vector.8

A complete set of values defines one structure and a lo-
cally optimized structure is referred to as an individual. A set
of individuals is called a population or, depending on context, a
generation.

Quality comparisons between different individuals are based
on the corresponding fitness values of these individuals, being
the negative of the ab initio free energy (see Section 2.1).

A candidate for a new individual is obtained by applying
one variation operator (see Section 2.2) to selected individuals.
For every operation one or two—depending on the operation—
individuals are chosen stochastically from the population. The
probability of a given individual being chosen for a given op-
eration is a function of the individual’s fitness rank,9 where
a predefined number of worst individuals has a probability of
zero. The selected individual is not removed and can thus be
selected multiple times. The generated candidates are scaled to
a certain unit cell volume, VUC (see Section 2.3), and those not
fulfilling the hard constraints (see Section 2.5) are discarded.
The rest gets locally optimized (see Section 2.4) and hereby
new individuals are created. Each operation is repeated until
the user—requested number of new individuals for this opera-
tion are produced. The total number of new individuals equals
the population size. After the calculation of the fitness value of
each new individual, the new population is obtained by taking
the best individuals from the combination of offspring and a
user-defined number of best individuals from the parental pop-
ulation.10 Candidates for the initial population are acquired by
randomly generating and/or taking structures provided by the
user. These undergo the same steps as candidates produced by
variation operators (see above) before becoming individuals.

A description in pseudo-code can be found in Algorithm 1.
USPEX is implemented in Matlab.

2.1. Evaluation function

USPEX uses the negative of the ab initio free energy of the
locally optimized structure as fitness value. Ab initio free energy
is the most accurate and universal measure of quality and re-
quires no prior assumptions on the system. Surrogate evaluation
functions are computationally much cheaper, but typically work
only for a narrow range of system types and otherwise often
fail completely. Furthermore, many types of physical interac-
tions are not captured in a satisfactory manner by any surrogate
evaluation function.

7 For certain operations the lower-triangular matrix form is used.
8 Since parameters describing crystal structures are continuous numbers, US-

PEX represents every variable by a floating-point value, resulting in sufficient
resolution and intuitive handling.

9 The user can decide between linear and quadratic dependence.
10 This is an elitist environmental selection.
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set Percentages, VUC, Ncons
initialize X, fit_X #X is the population, fit_X contains the fitness values
while not done do

Y = ∅ #Y is the offspring
for operatori do

YOP = ∅ #YOP is the subset produced by the current operator
#The following while loop terminates when the required number of offspring is reached (for the current operator)
while |YOP| � (|X| × Percentagesi ) do

# The current operator OPi generates a new candidate y. Parents are selected, where probabilities depend on fitness ranking
y = OPi (select(X,fit_X))
# Candidate y is scaled to the volume VUC
y ← scaleV(y,VUC)

# If y satisfies the constraints, y gets locally optimized and accepted
if constraints_check(y) then

y ← local_opt(y)

YOP ← YOP ∪ y

end if
end while
Y ← Y ∪ YOP

end for
# Fitness values of the offspring are determined
fit_Y = evaluation(Y )
# The best individuals from Y ∪ keep(X,fit_X,Ncons) survive
(X,fit_X) ← select_env(X,Y,fit_X,fit_Y,Ncons)

# VUC gets adapted, see Section 2.3
VUC ← adaptV(VUC, X)

end while

Algorithm 1. Basic structure of USPEX.

2.2. Variation operators

USPEX features three different variation operators: hered-
ity,11 mutation and permutation. These operators are described
in detail below.

2.2.1. Heredity
Two individuals are selected and used to produce one new

candidate. This is achieved by taking a fraction of each in-
dividual and combining these. However, the fraction of each
individual should contain as much information of the individ-
ual as possible. The main information within crystal structures
is the relative position of the nearby atoms. Thus, to conserve
information, the fraction of an individual is selected by taking
a spatially coherent slab. The two slabs, one of each individ-
ual, are fitted together and the result thereafter made feasible
by adjusting the number of atoms of each type to the require-
ments.

In more detail this works as follows. One lattice vector is
picked randomly, �ach. Before the cut is realized, atoms may be
shifted along the lattice vectors. For each individual and each
vector along which to be shifted, a random number between
zero and one is generated and added to the respective coor-
dinates. Since the unit cell is periodically repeated, the atoms
ending up with a coordinate value greater than 1 (outside the
unit cell) are adapted so as to lie within the unit cell again, by
subtracting 1. Original and shifted systems are physically iden-
tical. Both for �ach and the other vectors the user can specify
in how many percent of the cases this should be done. This

11 Often referred to as two-parent crossover.

operation increases diversity and enhances the power of the al-
gorithm, if set correctly. Typically a setting close to 100% for
�ach and close to 5% for the remaining vectors works well.12

If shifting was performed, all following operations apply to the
shifted individual. Now a value x between 0 and 1 is determined
randomly. From the first individual, every atom is taken which
has a coordinate value on �ach between 0 and x. From the sec-
ond individual every atom is taken with a respective coordinate
value between x and 1.13

Now the atoms of both individuals are put together. The total
number of atoms of each type is counted and compared with the
required number. If there are too many atoms of a type, atoms
of this type are removed randomly. If there are too few, the fol-
lowing procedure is repeated until the number is correct: An
interval ([0,x] or [x,1]) is picked randomly. The probability of
an interval being chosen is either equal to the width of this in-
terval or it is inverse proportional to the atom density (of this
type) in the interval. Then one atom of this type (having co-
ordinates falling in this interval) is chosen randomly from the
individual not having originally provided the atoms within this
interval.

Heredity of lattice parameters is achieved by taking the
weighted average of the aij matrices (in the lower triangular
form) of both individuals, where the weight is chosen randomly.
An example for heredity can be found in Fig. 1.

12 Heredity without shifting basically introduces a bias, insofar as that a given
substructure has a ‘preferred’ position within the unit cell, which is of course
unphysical.
13 This is equivalent to a cutting plane parallel to the plane spanned by the two
lattice vectors other than �ach.
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(a) (b) (c)

Fig. 1. Example of heredity. (a) Parent 1, (b) parent 2, (c) offspring. All structures are locally optimized.

2.2.2. Mutation
One individual is selected and used to produce one new can-

didate. The lattice vectors �a are transformed to new vectors �a′
by applying a strain matrix:

(1)�a′ = [I + εij ]�a,

where I is the unit matrix and εij is the symmetric strain matrix,
such that

(2)[I + εij ] =
⎡

⎣
1 + ε11

ε12
2

ε13
2

ε12
2 1 + ε22

ε23
2

ε13
2

ε23
2 1 + ε33

⎤

⎦

and strains are zero mean Gaussian random variables, εij ∼
N(0, σ 2

lattice). The new lattice is scaled to the volume VUC.
Mutation of atomic positions is achieved by adding zero-mean
Gaussian random variables, N(0, σ 2

atoms).
Due to diversification within heredity (see Section 4) and

local optimization, mutation of the atomic positions is not im-
portant and can be omitted. Mutation of the lattice should be
present for optimal performance, both to prevent a possibly pre-
mature convergence towards a certain lattice and for efficient
exploration of the immediate neighborhood of good individ-
uals. Furthermore, the implementation using distortion by a
strain matrix facilitates physically sensible setting of the step
size parameter σlattice, since the required strain for structural
transition can be approximated theoretically. An example for
mutation can be found in Fig. 2.

2.2.3. Permutation
One individual is selected and used to produce one new can-

didate. Two atoms of different types are exchanged (as done in
[7]), a variable number of times. Permutation facilitates finding
the correct atomic ordering. Obviously, permutation is possible
only for systems with different types of atoms. An example for
permutation can be found in Fig. 3.

2.3. Volume scaling

Every produced candidate is scaled to a certain unit cell vol-
ume, VUC, prior to testing against hard constraints and to local
optimization.14 VUC can be adapted during the run. This en-

14 After local optimization the volume of the individual may differ from VUC.

(a)

(b)

Fig. 2. Example of a mutation. (a) Initial structure, (b) mutated structure. All
structures are locally optimized.

hances the performance for systems where the initial value is
not sufficiently accurate. For each new generation, the new VUC
is a weighted (weight Wadapt) average between the old VUC and
the average volume of the Nadapt best individuals of the previ-
ous generation. Thus depending on Wadapt, the method adapts
more or less fast to the currently most successful volume(s).

2.4. Local optimization

The approach of locally optimizing every candidate has been
used with great success, e.g., for the traveling salesman prob-
lem [14] and the problem of cluster optimization [15]. Local
optimization increases the cost of each individual, but reduces
the search space to the local optima, enhances comparability
between different structures and provides locally optimal struc-
tures for further usage. Many methods used for crystal struc-
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(a)

(b)

Fig. 3. Example of a permutation. (a) Initial structure, (b) permutated structure.
All structures are locally optimized.

ture prediction generate candidate structures and after the run,
locally optimize only the most promising ones with accurate
methods [2,7,8]. We use the ab initio free energy as fitness
throughout the simulation. The free energy of structures may
vary drastically with respect to small changes of interatomic
distances. Such changes can be interpreted as noise. While eval-
uating the influence thereof, we have found that the correlation
between locally optimized and not optimized fitness value rank-
ing is weak.15 Therefore, to achieve representative and compa-
rable free energy values in terms of structure, we deem local
optimization of every candidate to be necessary.

For local optimization, a variety of approaches implemented
in standard codes (e.g., [11,12]) can be used, for instance, steep-
est descent conjugate gradient methods. Both the atomic coor-
dinates and the lattice parameters are locally optimized.

2.5. Hard constraints

Every candidate produced by the variation operators (or ran-
domly generated in the first generation) is tested against three
hard constraints:

• Atom-dependent minimal interatomic distances.
• Minimum/maximum values of the angles α, β and γ.

• Minimum lattice vector length.

15 Taking the ratio of the sum of rank changes between locally not optimized
to optimized ranking and the expected sum of rank changes between random to
locally optimized ranking, we have obtained the value 0.73.

Candidates violating at least one of these constraints are dis-
qualified. Hard constraints fulfill two purposes. First the mini-
mal interatomic distances must be sufficient to ensure stability
of ab initio calculations (e.g., to ensure that there is no patho-
logical overlap of pseudopotential core regions.). Second, they
reduce the search space and allow for inclusion of system-
specific knowledge (e.g., if one knows a certain interatomic
distance to be large in reality, one can set that distance to a large
value). Further or other constraints are possible, however ensur-
ing stability is vital and the set of constraints mentioned above
works very well in ruling out both infeasible and redundant
regions. For large systems the interatomic distance constraint
is only applied after optimizing the structure using a potential.
This is important, since with increasing number of atoms, the
probability of generating candidates that satisfy this constraint
decreases fast.

2.6. Input–output

The minimal input is:

• Number of atoms of each type.
• Initial guess of the unit cell volume, VUC.
• Hard constraints.
• Parameters of the algorithm.

The method is therefore completely independent from ex-
perimental data.

If lattice parameters are available from experimental data,
they can be incorporated and kept constant during a run. This
reduces the search space significantly.16 Furthermore, crystal
structures can be supplied before the run, replacing randomly
generated individuals in the first generation. Every locally op-
timized structure is stored with the corresponding free en-
ergy. USPEX is linked to the STM3 visualization code [16],
thus even large scale visualization of results is straightfor-
ward.

2.7. K-point adaptation

Depending on the lattice dimensions of an individual, the
grid (k1, k2, k3) is calculated and adapted. This greatly en-
hances accuracy and speed of the calculations, rendering the
method much faster overall. The number ki for a given recipro-
cal space dimension is calculated as follows:

(3)ki = 1

li × kresol
,

where li is the length of a lattice vector and kresol is the
reciprocal-space resolution specified by the user. The resulting
ki is rounded to the next higher integer.

16 All atomic coordinates are strongly coupled with the lattice parameters.
This strongly suggests that the six lattice dimensions have a larger impact on
the difficulty of the task than two extra atoms (also six dimensions) do.
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Table 1
Standard parameter values for a 20-atom system

Parameter Value Symbol

Population size 30–60
Percentage heredity 85 Pher
Percentage mutation 10 Pmut
Percentage permutation 5 Pperm
Percentage shifting along �ach 100
Percentage shifting along remaining vectors 5
Percentage of individuals with selection probability zero 40
Average number of two-atom-exchanges during permutation 2–3 Nperm
Standard deviation of lattice strain matrix 0.7 σlattice
Standard deviation of atomic position shifts 0.0 σatoms
Resolution for ki determination (smaller values required for metals) 0.12 Å−1 kresol
Weight for VUC adaptation from generation to generation 0.5 Wadapt
Number of (best) individuals to be averaged over for VUC adaptation 4 Nadapt
Number of (best) individuals of parental population to be considered for environmental selection 1–2 Ncons

2.8. Parameters

For a system with 20 atoms in the unit cell with unknown lat-
tice, no starting structures and a reasonable guess at the unit cell
volume, a reasonable setting for the parameters can be found in
Table 1. Hard constraints are system specific. For the angles
60◦ � α,β, γ � 120◦ makes sense since for any structure there
exists a unit cell with these constraints. The minimal lattice vec-
tor length should not be larger than the diameter of the largest
atom.

A given parameter setting results in a certain behavior of the
algorithm. Depending on the system chemistry and the pres-
ence/absence of input (lattice parameters, starting structures)
the desired behavior will change. Therefore there is no univer-
sal optimal set of parameters.

If, for example, a set of good starting structures is available,
the proposed parameter values change significantly. Most im-
portantly Ncons, Pmut and Pperm increase, while Nperm, Pher and
σlattice decrease. Thus the search would be more localized and
by keeping more individuals, be more restrained to the currently
best region—both enhancing exploitation of the information
present in the starting structures.

2.9. Parallelization

The computationally expensive part of the algorithm is
the local optimization. Locally optimizing different candidates
within one generation is independent and can thus be processed
in parallel. However only calculations within the same popula-
tion can be parallelized.17

3. Results

The method has been successfully tested on various systems
with known structure. An overview of the systems can be found
in Table 2. For all these systems calculations were performed
with minimal input (see Section 2.6) or providing the lattice

17 Since in order to generate a new population, all fitness values of the old
population need to be known (see Section 2).

Fig. 4. MgSiO3 at 120 GPa. Enthalpy of the best individual versus generation.
Population size: 30.

parameters where this is specified. For non-molecular systems
with up to 80 atoms/cell, we have observed a success rate of
close to 100%. Usually the correct prediction was achieved in
the first run. With up to approximately one dozen atoms/cell, the
global minimum can be found with reasonable effort by random
search. Molecular systems are generally harder to predict.

Furthermore USPEX yields numerous metastable struc-
tures, some of which highly competitive, and is extremely
efficient: e.g. for structure prediction of MgSiO3 at 120 GPa (20
atoms/cell) with minimal input, only between 150 and 40018 in-
dividuals were calculated before the structure of post-perovskite
was found.19 An example, where both perovskite and post-
perovskite were identified, can be found in Fig. 4.

18 Exact timing differed between runs, depending on parameter setting and
random factors.
19 High-pressure behavior of MgSiO3 was thoroughly studied by standard
computational methods over the last 20–30 years, but the post-perovskite phase
was found [17,18] only after an analogous phase was identified for Fe2O3 [19].
This discovery has significantly changed models of the Earth’s internal struc-
ture and evolution. USPEX finds this structure straightforwardly.
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Table 2
Systems with known structures on which calculations were performed—
USPEX always found the stable structure

System Conditions

C 0, 100, 300, 500, 1000, 2000 GPa
C exp. cell of diamond
Xe 200, 1000 GPa
Si 0, 10, 14, 20 GPa
N 100 GPa
Fe 350 GPa
TiO2 exp. cell of anatase
SiO2 0 GPa
Al2O3 300 GPa
MgSiO3 80, 120, 1000 GPa
MgSiO3 exp. cell of post-perovskite
Si2N2O 0 GPa
SrSiN2 0 GPa
(NH2)2CO exp. cell of tetragonal urea
Li 100 GPa

Table 3
Systems with unknown structures, for which we have done calculations and
discovered new structures

System Conditions

O exp. cell of ε—and ξ—phase
O 25, 50, 130, 250 GPa
N 250 GPa
F 50, 100 GPa
MgCO3 150 GPa
S 12 GPa
CaCO3 50, 80, 150 GPa
H 200, 600 GPa
CO2 50 GPa

An overview of systems with unknown structures for which
we have performed calculations and discovered new structures
can be found in Table 3. An example is discussed in Section 3.1.

3.1. CaCO3

Chronologically the first application of USPEX for solution
of relatively complex and hitherto unknown structures was the
study of high-pressure phases of CaCO3 [20]. Experimental
studies found a new phase, post-aragonite, to be stable above
40 GPa [21], but could not solve its structure. The structure
found by USPEX (see Fig. 5(a)) closely reproduces experi-
mental diffraction pattern; in agreement with experiment, cal-
culations show that this structure is more stable than aragonite
above 42 GPa.

Above 137 GPa, our simulations predicted stability of an-
other new structure (space group C2221, see Fig. 5(b)) contain-
ing carbon in the tetrahedral coordination. This prediction has
been subsequently verified experimentally [22].

4. Conclusions and outlook

USPEX can very reliably find the most stable crystal struc-
ture of systems with up to several dozen atoms/cell. Due to local
optimization and the process of exploiting promising regions,
many highly competitive metastable structures are found during

(a)

(b)

Fig. 5. (a) Post-aragonite phase of CaCO3 identified by USPEX. (b) Phase I
(orthorhombic C2221) identified by USPEX.

the search. Furthermore, the generated structures and their re-
spective free energies yield information on the chemical regime
at the given conditions. Besides identifying stable phases, this
method can thus be used for materials design, both in finding
promising structures to synthesize and in giving information on
what conditions would be best suited for synthesis.

Local optimization and spatial heredity seem to be the key is-
sues for the success of USPEX. Strong changes of free energies
due to slight changes of interatomic distances render evalua-
tion of not locally optimized structures unreliable. Therefore
information carried by such structures is close to inexploitable.
The quality of locally optimized structures per contra is well
captured by their free energies. Furthermore, locally optimized
structures are a good basis for further creation of new structures.
Therefore, in accordance with our experience, local optimiza-
tion seems crucial for an effective global optimization based on
methods exploiting information from a set of structures, like
evolutionary algorithms. Local optimization also provides the
abundant metastable structures.

Spatial heredity is likely to be the essential variation op-
erator. The quick decay of atomic interactions with distance
suggests a partial separability of the given problem. This sepa-
rability is exploited in spatial heredity. Local optimization fur-
ther enhances this operation, leading to heredity of close to
locally optimal fractions of structures. Due to the prior shifting
of the structures, successful ‘substructures’ can quickly man-
ifest themselves anywhere within the unit cell, leading to an
immanent diversification.

Other features complement USPEX to the powerful method
it has become. Lattice mutation is an efficient way of search-
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ing the neighborhood of promising structures in a way hard to
achieve with other operations. In systems where many highly
competitive metastable structures differ essentially in a dis-
torted lattice from the stable structure, lattice mutation is very
powerful. Permutation seems useful for cases with many dif-
ferent types of atoms involved and/or in cases where differ-
ent types of atoms have similar properties. ‘Seeding’ the first
generation—i.e. providing structures to incorporate in the first
generation—can cut computational costs significantly, where
good structures are available. These structures can be chosen
from known structures of similar systems, or from previous US-
PEX runs. Potential strategies are, for example, to include struc-
tures from different runs with very small populations, where
convergence is fast20 or from runs with smaller unit cells, where
resulting structures are ‘blown up’ to the desired size.21 Seed-
ing increases the bias of the calculation which not only can
be helpful, but can misdirect the search completely and should
therefore be treated with care.

Even on a qualitative level, system chemistry has a huge im-
pact on the landscape shape. The landscapes of, e.g., molecular
and ionic systems are very dissimilar. Therefore the optimal
parameter setting will vary from system to system. However
we have observed that USPEX is capable of finding the stable
structure both for different systems using identical parameter
settings and for different parameter settings used on the same
system. This indicates a high robustness.

Many further developments are envisioned. Major projects
are to extend the method, enabling whole-molecule-handling
(for molecular crystals) and dealing with variable stoichiome-
tries. Operating on whole molecules greatly decreases the di-
mensionality of molecular systems. Instead of three dimensions
for each atom, only three coordinates and three angles per mole-
cule would remain, at least for molecules, where distortions of
interatomic distances and torsion angles can be identified by
local optimization. If necessary some of these variables can
be included in global optimization. From operating on whole
molecules we therefore expect a major impact on molecular
systems.

Variable stoichiometries would allow simultaneous opti-
mization of structure and composition. This is especially im-
portant for metallic alloys, where it is very difficult to ratio-
nalize or predict a priori stable stoichiometries. Optimizing
stoichiometries has been pursued in [23], where an evolutionary
algorithm was used to find stable alloys. However, in that work
the structure was fixed (fcc- and bcc-structures). Simultaneous
optimization of structure and composition would certainly be a
major challenge.
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